首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnt signaling is a key regulator of development that?is often associated with cancer. Wingless,?a Drosophila Wnt homolog, has been reported to be a survival factor in wing imaginal discs. However, we found that prospective wing cells survive in the absence of Wingless as long as they are not surrounded by Wingless-responding cells. Moreover, local autonomous overactivation of Wg signaling (as a result of a mutation in APC or axin) leads to the elimination of surrounding normal cells. Therefore, relative differences in Wingless signaling lead to competitive cell interactions. This process does not involve Myc, a well-established cell competition factor. It does, however, require Notum, a conserved secreted feedback inhibitor of Wnt signaling. We suggest that Notum could amplify local differences in Wingless signaling, thus serving as an early trigger of Wg signaling-dependent competition.  相似文献   

2.
Myc: a weapon of mass destruction   总被引:11,自引:0,他引:11  
Secombe J  Pierce SB  Eisenman RN 《Cell》2004,117(2):153-156
Growth and proliferation potentiated by deregulated myc oncogene expression is balanced by myc-induced apoptosis. Abrogation of this apoptotic pathway in Myc overexpressing cells leads to cancer progression. Recent work has shown that cell clones in the Drosophila wing disc with higher dMyc expression levels act as supercompetitors to potentiate the programmed death of surrounding normal cells. Yet another paper identifies dE2F1 as a critical component of pathways that normally restrict the ability of growth perturbing genes like dMyc to cause organ overgrowth.  相似文献   

3.
Drosophila wing development is a useful model to study organogenesis, which requires the input of selector genes that specify the identity of various morphogenetic fields (Weatherbee, S. D. and Carroll, S. B. (1999) Cell 97, 283-286) and cell signaling molecules. In order to understand how the integration of multiple signaling pathways and selector proteins can be achieved during wing development, we studied the regulatory network that controls the expression of Serrate (Ser), a ligand for the Notch (N) signaling pathway, which is essential for the development of the Drosophila wing, as well as vertebrate limbs. Here, we show that a 794 bp cis-regulatory element located in the 3' region of the Ser gene can recapitulate the dynamic patterns of endogenous Ser expression during wing development. Using this enhancer element, we demonstrate that Apterous (Ap, a selector protein), and the Notch and Wingless (Wg) signaling pathways, can sequentially control wing development through direct regulation of Ser expression in early, mid and late third instar stages, respectively. In addition, we show that later Ser expression in the presumptive vein cells is controlled by the Egfr pathway. Thus, a cis-regulatory element is sequentially regulated by multiple signaling pathways and a selector protein during Drosophila wing development. Such a mechanism is possibly conserved in the appendage outgrowth of other arthropods and vertebrates.  相似文献   

4.
5.
Drosophila myc regulates organ size by inducing cell competition   总被引:7,自引:0,他引:7  
Experiments in both vertebrates and invertebrates have illustrated the competitive nature of growth and led to the idea that competition is a mechanism of regulating organ and tissue size. We have assessed competitive interactions between cells in a developing organ and examined their effect on its final size. We show that local expression of the Drosophila growth regulator dMyc, a homolog of the c-myc protooncogene, induces cell competition and leads to the death of nearby wild-type cells in developing wings. We demonstrate that cell competition is executed via induction of the proapoptotic gene hid and that both competition and hid function are required for the wing to reach an appropriate size when dMyc is expressed. Moreover, we provide evidence that reproducible wing size during normal development requires apoptosis. Modulating dmyc levels to create cell competition and hid-dependent cell death may be a mechanism used during normal development to control organ size.  相似文献   

6.
The scalloped and vestigial genes are both required for the formation of the Drosophila wing, and recent studies have indicated that they can function as a heterodimeric complex to regulate the expression of downstream target genes. We have analyzed the consequences of complete loss of scalloped function, ectopic expression of scalloped, and ectopic expression of vestigial on the development of the Drosophila wing imaginal disc. Clones of cells mutant for a strong allele of scalloped fail to proliferate within the wing pouch, but grow normally in the wing hinge and notum. Cells overexpressing scalloped fail to proliferate in both notal and wing-blade regions of the disc, and this overexpression induces apoptotic cell death. Clones of cells overexpressing vestigial grow smaller or larger than control clones, depending upon their distance from the dorsal-ventral compartment boundary. These studies highlight the importance of correct scalloped and vestigial expression levels to normal wing development. Our studies of vestigial-overexpressing clones also reveal two further aspects of wing development. First, in the hinge region vestigial exerts both a local inhibition and a long-range induction of wingless expression. These and other observations imply that vestigial-expressing cells in the wing blade organize the development of surrounding wing-hinge cells. Second, clones of cells overexpressing vestigial exhibit altered cell affinities. Our analysis of these clones, together with studies of scalloped mutant clones, implies that scalloped- and vestigial-dependent cell adhesion contributes to separation of the wing blade from the wing hinge and to a gradient of cell affinities along the dorsal-ventral axis of the wing.  相似文献   

7.
8.
Drosophila Myc is required for normal DREF gene expression   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
11.
Myc proteins are essential regulators of cellular growth and proliferation during normal development. Activating mutations in myc genes result in excessive growth and are frequently associated with human cancers. At the same time, forced expression of Myc sensitizes vertebrate cells towards different pro-apoptotic stimuli. Recently, the ability of overexpressed Myc to induce cell-autonomous apoptosis has been shown to be evolutionarily conserved in Drosophila Myc (dMyc). Here, we show that dMyc induced apoptosis is accompanied by the induction of Drosophila p53 mRNA, but that dp53 activity is not essential for dMyc's ability to induce apoptosis. Conversely, larvae carrying a hypomorphic dmyc mutation are more resistant to the apoptosis-promoting effects of X-irradiation. These data suggest that the control of apoptosis is a physiological function of Myc and that dMyc might play a role in the response to DNA damage.  相似文献   

12.
13.
Abstract Wg/Wnt signaling is a key signaling pathway in Drosophila. Many genes involved in Wingless(wg) signal transduction pathway downstream of Wg, or it s vertebrate Wg homologue Wnt, have been identified. Transduction of the Wg signal downstream of Wg is mediated by nuclear TCF/LEF-1, through association with Armadillo (Arm)β-catenin. Pygopus (pygo) is a new identified component in this pathway. Cellular localization experiment showed that pygo was expressed specifically in the nucleus. The expression profile of pygo in embryos was examined using in situ hybridization. Although pygo expressed ubiquitously in the embryos, it expressed at relatively high level in pre-blastoderm embryos which indicate a high degree of maternally provided message, followed by a low level of ubiquitous zygotic expression. This continues into larval tissues (including wing disc, eye disc and leg disc), where pygo appears to be expressed at low level. Comparison of pygo expression levels, in the wing disc, eye disc and leg disc, showed pygo expression level in the wing disc pouch and leg disc were relative higher.  相似文献   

14.
Although the bys-like family of genes has been conserved from yeast to humans, it is not apparent to what extent the function of Bys-like proteins has been conserved across phylogenetic groups. Human Bystin is thought to function in a novel cell adhesion complex involved in embryo implantation. The product of the yeast bys-like gene, Enp1, is nuclear and has a role in pre-ribosomal RNA (pre-rRNA) splicing and ribosome biogenesis. To gain insight into the function of the Drosophila melanogaster bys-like family member, termed bys, we examined bys mRNA expression and the localization of Bys protein. In embryos, bys mRNA is expressed in a tissue-specific pattern during gastrulation. In the larval wing imaginal disc, bys mRNA is expressed in the ventral and dorsal regions of the wing pouch, regions that give rise to epithelia that adhere to one another after the wing disc everts. The bys mRNA expression patterns could be interpreted as being consistent with a role for Bys in events requiring cell-cell interactions. However, embryonic bys mRNA expression patterns mirror those of genes that are potential targets of the growth regulator Myc and encode nucleolar proteins implicated in cell growth. Additionally, in Schneider line 2 (S2) cells, an epitope-tagged Bys protein is localized to the nucleus, suggesting that Drosophila Bys function may be conserved with that of yeast Enp1.Edited by D.A. Weisblat  相似文献   

15.
16.
dMyc transforms cells into super-competitors   总被引:8,自引:0,他引:8  
Moreno E  Basler K 《Cell》2004,117(1):117-129
Overexpression of myc protooncogenes has been implicated in the genesis of many human tumors. Myc proteins seem to regulate diverse biological processes, but their role in tumorigenesis remains enigmatic. Here we use Drosophila imaginal discs to mimic situations in which cells with unequal levels of Myc protein are apposed and show that this invariably elicits a win/lose situation reminiscent of cell competition; cells with lower levels of dMyc are eliminated by apoptosis whereas cells with higher levels of dMyc over-proliferate. We find that this competitive behavior correlates with, and can be corrected by, the activation of the BMP/Dpp survival signaling pathway. Hence the heritable increase in dMyc levels causes cells to behave as "super-competitors" and reveals a novel mode of clonal expansion that causes, but also relies on, the killing of surrounding cells.  相似文献   

17.
18.
19.
20.
We have identified widerborst (wdb), a B' regulatory subunit of PP2A, as a conserved component of planar cell polarization mechanisms in both Drosophila and in zebrafish. In Drosophila, wdb acts at two steps during planar polarization of wing epithelial cells. It is required to organize tissue polarity proteins into proximal and distal cortical domains, thus determining wing hair orientation. It is also needed to generate the polarized membrane outgrowth that becomes the wing hair. Widerborst activates the catalytic subunit of PP2A and localizes to the distal side of a planar microtubule web that lies at the level of apical cell junctions. This suggests that polarized PP2A activation along the planar microtubule web is important for planar polarization. In zebrafish, two wdb homologs are required for convergent extension during gastrulation, supporting the conjecture that Drosophila planar cell polarization and vertebrate gastrulation movements are regulated by similar mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号