共查询到20条相似文献,搜索用时 0 毫秒
1.
Using Brownian dynamics simulations, all of the charged residues in Chlamydomonas reinhardtii cytochrome c(6) (cyt c(6)) and plastocyanin (PC) were mutated to alanine and their interactions with cytochrome f (cyt f) were modeled. Systematic mutation of charged residues on both PC and cyt c(6) confirmed that electrostatic interactions (at least in vitro) play an important role in bringing these proteins sufficiently close to cyt f to allow hydrophobic and van der Waals interactions to form the final electron transfer-active complex. The charged residue mutants on PC and cyt c(6) displayed similar inhibition classes. Our results indicate a difference between the two acidic clusters on PC. Mutations D44A and E43A of the lower cluster showed greater inhibition than do any of the mutations of the upper cluster residues. Replacement of acidic residues on cyt c(6) that correspond to the PC's lower cluster, particularly E70 and E69, was observed to be more inhibitory than those corresponding to the upper cluster. In PC residues D42, E43, D44, D53, D59, D61, and E85, and in cyt c(6) residues D2, E54, K57, D65, R66, E70, E71, and the heme had significant electrostatic contacts with cyt f charged residues. PC and cyt c(6) showed different binding sites and orientations on cyt f. As there are no experimental cyt c(6) mutation data available for algae, our results could serve as a good guide for future experimental work on this protein. The comparison between computational values and the available experimental data (for PC-cyt f interactions) showed overall good agreement, which supports the predictive power of Brownian dynamics simulations in mutagenesis studies. 相似文献
2.
The paper is devoted to computer simulation of complex formation of protein plastocyanin with transmembrane pigment-protein complex photosystem I and subunit f of cytochrome b 6 f complex in the cyanobacterium Phormidium laminosum. The computer algorithm considers diffusion and electrostatic interactions of protein molecules. The computer models have shown that electrostatic interactions in the cyanobacterium play a less important role than in higher plants because of different electrostatic potentials created by charged amino acid residues on the protein surfaces. 相似文献
3.
The interaction between cytochrome f and its electron acceptor plastocyanin (PC) was studied. To address the question of which specific regions and which of the positively charged residues of cytochrome f are important for the interaction with the negatively charged residues of PC we have used two different experimental approaches. Cytochrome f was proteolytically cleaved and fragments that could bind to a PC-affinity column were isolated. The smallest of these fragments was analysed to give information on the minimum structural requirement for binding to PC. By this procedure, we identified a peptide of approx. 11 kDa, containing the heme binding site, and having an N-terminal sequence identical to that of the mature cytochrome f. This finding suggests that the first 90 amino acids of cytochrome f contain at least some of the residues interacting with PC. The second approach involved modification of Arg residues of cytochrome f with the specific chemical modifier, hydroxyphenylglyoxal (HPG). Cytochrome f modification was performed in the absence of PC to enable identification of residues that are protected from modification when PC is bound to cytochrome f. Two peptides containing Arg residues which are modified in the absence of PC, but are not modified when PC is present, were isolated. Sequence analysis of these two peptides revealed that Arg residues no. 88 and 154 of cytochrome f are the residues that are protected from modification when cytochrome f is bound to PC, suggesting a role for these residues in the binding of cytochrome f to PC. 相似文献
4.
Electrostatic analysis and Brownian dynamics simulation of the association of plastocyanin and cytochrome f.
下载免费PDF全文

F De Rienzo R R Gabdoulline M C Menziani P G De Benedetti R C Wade 《Biophysical journal》2001,81(6):3090-3104
The oxidation of cytochrome f by the soluble cupredoxin plastocyanin is a central reaction in the photosynthetic electron transfer chain of all oxygenic organisms. Here, two different computational approaches are used to gain new insights into the role of molecular recognition and protein-protein association processes in this redox reaction. First, a comparative analysis of the computed molecular electrostatic potentials of seven single and multiple point mutants of spinach plastocyanin (D42N, E43K, E43N, E43Q/D44N, E59K/E60Q, E59K/E60Q/E43N, Q88E) and the wt protein was carried out. The experimentally determined relative rates (k(2)) for the set of plastocyanin mutants are found to correlate well (r(2) = 0.90 - 0.97) with the computed measure of the similarity of the plastocyanin electrostatic potentials. Second, the effects on the plastocyanin/cytochrome f association rate of these mutations in the plastocyanin "eastern site" were evaluated by simulating the association of the wild type and mutant plastocyanins with cytochrome f by Brownian dynamics. Good agreement between the computed and experimental relative rates (k(2)) (r(2) = 0.89 - 0.92) was achieved for the plastocyanin mutants. The results obtained by applying both computational techniques provide support for the fundamental role of the acidic residues at the plastocyanin eastern site in the association with cytochrome f and in the overall electron-transfer process. 相似文献
5.
6.
7.
The highly efficient electron-transfer chain in photosynthesis demonstrates a remarkable variation among organisms in the type of interactions between the soluble electron-transfer protein plastocyanin and it partner cytochrome f. The complex from the cyanobacterium Nostoc sp. PCC 7119 was studied using nuclear magnetic resonance spectroscopy and compared to that of the cyanobacterium Phormidium laminosum. In both systems, the main site of interaction on plastocyanin is the hydrophobic patch. However, the interaction in the Nostoc complex is highly dependent on electrostatics, contrary to that of Phormidium, resulting in a binding constant that is an order of magnitude larger at low ionic strength for the Nostoc complex. Studies of the mixed complexes show that these differences in interactions are mainly attributable to the surface properties of the plastocyanins. 相似文献
8.
Plastocyanin can be covalently cross-linked to the monomeric cytochrome f from turnip by incubation in the presence of a water-soluble carbodiimide. The adduct between the two proteins has a molecular weight of approximately 43,000 suggesting a 1:1 stoichiometry between the two proteins of the adduct. This stoichiometry has been verified by spectral characterization of the adduct. The efficiency of the cross-linking reaction is pH dependent with a higher degree of cross-linking being observed at pH 6.5 than at pH 7.0. 相似文献
9.
A cross-linked complex between plastocyanin and cytochrome f was prepared by incubation in the presence of a water soluble carbodiimide and its kinetic properties were studied. The optical spectra, oxidation-reduction potentials and isoelectric pH of plastocyanin and cytochrome f did not change upon the formation of the cross-linked complex. Studies on the ionic strength effect on the electron transfer rate from cross-linked plastocyanin to ferricyanide indicated that the negative charge on the reaction site of plastocyanin was masked upon the cross-linking. It was also suggested that the sign of the net charge near the cytochrome f heme edge changed from positive to negative upon the cross-linking. On the other hand, electrostatic interactions between cross-linked plastocyanin and P700 seemed to be essentially the same as those in the case of native plastocyanin, although the rate of electron transfer from cross-linked plastocyanin to P700 was severely reduced. We also measured the intra-complex electron transfer from cytochrome f to plastocyanin. This suggested that the covalently cross-linked complex is a valid model of the electron transfer encounter complex. Based on these results, the reaction sites of plastocyanin with P700 and cytochrome f were discussed. 相似文献
10.
Light-induced redox conversions of cytochrome f and plastocyanin in situ and electron transporst from H2O to NADP+ were studied by a dual-wave differential spectrophotometry under identical conditions and subsequently compared. The analysis in red and far red light, treatment by inhibitors, e. g. diurone and dibromothymoquinone, and the analysis of photoreactions during the greening of etiolated seedlings demonstrated that cytochrome f functions only in the non-cyclic chain of electron transport, whereas plastocyanin--both in the non-cyclic and in the cyclic electron transport chains. The jositions of cytochrome f and plastocyanin in various electron-transport chains are proposed. 相似文献
11.
In oxygenic photosynthesis, plastocyanin shuttles electrons between the membrane-bound complexes cytochrome b6f and photosystem I. The homologous complex between cytochrome f and plastocyanin, both from spinach, is the object of this study. The solution structure of the reduced spinach plastocyanin was determined using high field NMR spectroscopy, whereas the model structure of oxidized cytochrome f was obtained by homology modeling calculations and molecular dynamics. The model structure of the intermolecular complex was calculated using the program AUTODOCK, taking into account biological information obtained from mutagenesis experiments. The best electron transfer pathway from the heme group of cytochrome f to the copper ion of plastocyanin was calculated using the program HARLEM, obtaining a coupling decay value of 1.8 x 10(-4). Possible mechanisms of interaction and electron transfer between plastocyanin and cytochrome f were discussed considering the possible formation of a supercomplex that associates one cytochrome b6f, one photosystem I, and one plastocyanin. 相似文献
12.
Brownian dynamics simulations of the interaction of Chlamydomonas cytochrome f with plastocyanin and cytochrome c6
下载免费PDF全文

The interaction of Chlamydomonas cytochrome f (cyt f) with either Chlamydomonas plastocyanin (PC) or Chlamydomonas cytochrome c(6) (cyt c(6)) was studied using Brownian dynamics simulations. The two electron acceptors (PC and cyt c(6)) were found to be essentially interchangeable despite a lack of sequence homology and different secondary structures (beta-sheet for PC and alpha-helix for cyt c(6)). Simulations using PC and cyt c(6) interacting with cyt f showed approximately equal numbers of successful complexes and calculated rates of electron transfer. Cyt f-PC and cyt f-cyt c(6) showed the same types of interactions. Hydrophobic residues surrounding the Y1 ligand to the heme on cyt f interacted with hydrophobic residues on PC (surrounding the H87 ligand to the Cu) or cyt c(6) (surrounding the heme). Both types of complexes were stabilized by electrostatic interactions between K65, K188, and K189 on cyt f and conserved anionic residues on PC (E43, D44, D53, and E85) or cyt c(6) (E2, E70, and E71). Mutations on cyt f had identical effects on its interaction with either PC or cyt c(6). K65A, K188A, and K189A showed the largest effects whereas residues such as K217A, R88A, and K110A, which are located far from the positive patch on cyt f, showed very little inhibition. The effect of mutations observed in Brownian dynamics simulations paralleled those observed in experiments. 相似文献
13.
14.
Direct electrochemistry of protein-protein complexes involving cytochrome c, cytochrome b5, and plastocyanin 总被引:3,自引:0,他引:3
The direct electrochemistry of the cytochrome c/cytochrome b5 and cytochrome c/plastocyanin complexes has been investigated at edge-plane graphite and modified gold electrode surfaces, which are selective for one of the two components of the complex. Electrochemical response of one protein at an otherwise electrostatically unfavorable electrode surface was achieved in the presence of the other protein, and the calculated heterogeneous electron-transfer rate constant and diffusion coefficient were found to be in good agreement with the values determined previously from the electrochemistry of the individual proteins [Armstrong, F. A., Hill, H. A. O., & Walton, N. J. (1988) Acc. Chem. Res. 21, 407 and references therein]. A dynamic model of the protein-protein-electrode ternary complex is proposed to explain the promotion effect, and this model is supported by a study comparing the electrochemical responses of covalent and electrostatic cytochrome c/plastocyanin complexes. It is also suggested that the behavior of protein-protein complexes at electrode surfaces could be related to that of the complexes associated with biological membranes. 相似文献
15.
A Brownian dynamics study of the effects of cytochrome f structure and deletion of its small domain in interactions with cytochrome c6 and plastocyanin in Chlamydomonas reinhardtii
下载免费PDF全文

The availability of seven different structures of cytochrome f (cyt f) from Chlamydomonas reinhardtii allowed us, using Brownian dynamics simulations, to model interactions between these molecules and their redox partners, plastocyanin (PC) and cytochrome c6 (cyt c6) in the same species to study the effect of cyt f structure on its function. Our results showed that different cyt f structures, which are very similar, produced different reaction rates in interactions with PC and cyt c6. We were able to attribute this to structural differences among these molecules, particularly to a small flexible loop between A-184 and G-191 (which has some of the highest crystallographic temperature factors in all of the cyt f structures) on the cyt f small domain. We also showed that deletion of the cyt f small domain affected cyt c6 more than PC, due to their different binding positions on cyt f. One function of the small domain in cyt f may be to guide PC or cyt c6 to a uniform dock with cyt f, especially due to electrostatic interactions with K-188 and K-189 on this domain. Our results could serve as a good guide for future experimental work on these proteins to understand better the electron transfer process between them. Also, these results demonstrated the sensitivity and the power of the Brownian dynamics simulations in the study of molecular interactions. 相似文献
16.
X S Gong J Q Wen N E Fisher S Young C J Howe D S Bendall J C Gray 《European journal of biochemistry》2000,267(12):3461-3468
The role of electrostatic interactions in determining the rate of electron transfer between cytochrome f and plastocyanin has been examined in vitro with mutants of turnip cytochrome f and mutants of pea and spinach plastocyanins. Mutation of lysine residues Lys58, Lys65 and Lys187 of cytochrome f to neutral or acidic residues resulted in decreased binding constants and decreased rates of electron transfer to wild-type pea plastocyanin. Interaction of the cytochrome f mutant K187E with the pea plastocyanin mutant D51K gave a further decrease in electron transfer rate, indicating that a complementary charge pair at these positions could not compensate for the decreased overall charge on the proteins. Similar results were obtained with the interaction of the cytochrome f mutant K187E with single, double and triple mutants of residues in the acidic patches of spinach plastocyanin. These results suggest that the lysine residues of the basic patch on cytochrome f are predominantly involved in long-range electrostatic interactions with plastocyanin. However, analysis of the data using thermodynamic cycles provided evidence for the interaction of Lys187 of cytochrome f with Asp51, Asp42 and Glu43 of plastocyanin in the complex, in agreement with a structural model of a cytochrome f-plastocyanin complex determined by NMR. 相似文献
17.
The role of charged residues on the surface of plastocyanin from the cyanobacterium Phormidium laminosum in the reaction with soluble cytochrome f in vitro was studied using site-directed mutagenesis. The charge on each of five residues on the eastern face of plastocyanin was neutralized and/or inverted, and the effect of the mutation on midpoint potentials was determined. The dependence of the overall rate constant of reaction, k(2), on ionic strength was investigated using stopped-flow spectrophotometry. Removing negative charges (D44A or D45A) accelerated the reaction and increased the dependence on ionic strength, whereas removing positive charges slowed it down. Two mutations (K46A, K53A) each almost completely abolished any influence of ionic strength on k(2), and three mutations (R93A, R93Q, R93E) each converted electrostatic attraction into repulsion. At low ionic strength, wild type and all mutants showed an inhibition which might be due to changes in the interaction radius as a consequence of ionic strength dependence of the Debye length or to effects on the rate constant of electron transfer, k(et). The study shows that the electrostatics of the interaction between plastocyanin and cytochrome f of P. laminosum in vitro are not optimized for k(2). Whereas electrostatics are the major contributor to k(2) in plants [Kannt, A., et al. (1996) Biochim. Biophys. Acta 1277, 115-126], this role is taken by nonpolar interactions in the cyanobacterium, leading to a remarkably high rate at infinite ionic strength (3.2 x 10(7) M(-1) s(-1)). 相似文献
18.
Ponamarev MV Schlarb BG Howe CJ Carrell CJ Smith JL Bendall DS Cramer WA 《Biochemistry》2000,39(20):5971-5976
Cytochrome f of oxygenic photosynthesis has an unprecedented structure, including the N-terminus being a heme ligand. The adjacent N-terminal heme-shielding domain is enriched in aromatic amino acids. The atomic structures of the chloroplast and cyanobacterial cytochromes f were compared to explain spectral and redox differences between them. The conserved aromatic side chain in the N-terminal heme-shielding peptide at position 4, Phe and Tyr in plants and algae, respectively, and Trp in cyanobacteria, is in contact with the heme. Mutagenesis of cytochrome f from the eukaryotic green alga Chlamydomonas reinhardtii showed that a Phe4 --> Trp substitution in the N-terminal domain was unique in causing a red shift of 1 and 2 nm in the cytochrome Soret (gamma) and Q (alpha) visible absorption bands, respectively. The resulting alpha band peak at 556 nm is characteristic of the cyanobacterial cytochrome. Conversely, a Trp4 --> Phe mutation in the expressed cytochrome from the cyanobacterium Phormidium laminosum caused a blue shift to the 554 nm alpha band peak diagnostic of the chloroplast cytochrome. Residue 4 was found to be the sole determinant of this 60 cm(-)(1) spectral shift, and of approximately one-half of the 70 mV redox potential difference between cytochrome f of P. laminosum and C. reinhardtii (E(m7) = 297 and 370 mV, respectively). The proximity of Trp-4 to the heme implies that the spectral and redox potential shifts arise through differential interaction of its sigma- or pi-electrostatic potential with the heme ring and of the pi-potential with the heme Fe orbitals, respectively. The dependence of the visible spectrum and redox potential of cytochrome f on the identity of aromatic residue 4 provides an example of the use of the relatively sharp cytochrome spectrum as a "spectral fingerprint", and of the novel structural connection between the heme and a single nonliganding residue. 相似文献
19.
The orientation of poplar plastocyanin in the complex with turnip cytochrome f has been determined by rigid-body calculations using restraints from paramagnetic NMR measurements. The results show that poplar plastocyanin interacts with cytochrome f with the hydrophobic patch of plastocyanin close to the heme region on cytochrome f and via electrostatic interactions between the charged patches on both proteins. Plastocyanin is tilted relative to the orientation reported for spinach plastocyanin, resulting in a longer distance between iron and copper (13.9 A). With increasing ionic strength, from 0.01 to 0.11 M, all observed chemical-shift changes decrease uniformly, supporting the idea that electrostatic forces contribute to complex formation. There is no indication for a rearrangement of the transient complex in this ionic strength range, contrary to what had been proposed earlier on the basis of kinetic data. By decreasing the pH from pH 7.7 to pH 5.5, the complex is destabilized. This may be attributed to the protonation of the conserved acidic patches or the copper ligand His87 in poplar plastocyanin, which are shown to have similar pK(a) values. The results are interpreted in a two-step model for complex formation. 相似文献
20.
M S Khristin 《Biokhimii?a (Moscow, Russia)》1983,48(7):1067-1073
The effects of redox conversions of plastocyanin copper chromophore on the formation of plastocyanin complexes with cytochrome f and the reaction center of photosystem I from pea chloroplasts were studied. In order to investigate the complex formation plastocyanin and cytochrome f were immobilized on Sephadex G-200. The cytochrome f and reaction center assembly takes place on the immobilized plastocyanin, which is necessary for cytochrome f photooxidation. It was found that in a reconstituted system the reduced plastocyanin forms more stable complexes with the proteins than the oxidized one, which is due to its lower pI value. 相似文献