首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphorylation of a protein of 80 kDa in permeable mouse lymphocytes is shown to be dependent both on exogenously added calcium and on concanavalin A. Lymphocyte plasma membranes are rendered permeable to exogenously added [γ-32P]ATP and other small molecules by treatment with 20 μg/ml α-lysophosphatidylcholine for 1 min on ice. Treated cells are permeable to Trypan blue dye and exhibit phosphatidylinositol turnover in response to concanavalin A stimulation. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autofluorography, maximal phosphorylation of this protein occurs 5 min after addition of 20 μM calcium and 4 μg/ml concanavalin A. Exogenously added cyclic nucleotide cofactors do not enhance the phosphorylation of this 80 kDa protein, nor do inhibitors of calcium or calmodulin-dependent kinases suppress it, although in each case, other proteins are affected. In contrast, an inhibitor of the calcium-activated, phospholipid-dependent protein kinase (protein kinase C), H-7, strongly suppresses the phosphorylation of the 80 kDa protein. The tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, a known activator of protein kinase C, significantly increases the phosphorylation of the 80 kDa protein. Finally, this protein is phosphorylated at a serine residue. These results taken together suggest that it is a substrate for protein kinase C. The possibility that it may also be an element of the concanavalin A signal transduction mechanism is discussed.  相似文献   

2.
Recently, we characterized a surface antigen (Z-1) of guinea pig macrophages by monoclonal anti-Z-1 antibody. The Z-1 antigen consists of two different polypeptide chains; alpha (140 kDa) and beta (95 kDa). This antigen is closely correlated with the phagocytic activity of the cells for zymosan and presumably functions as a receptor for zymosan. In the present study, the effect of phorbol 12-myristate 13-acetate (PMA) on the function of Z-1 was examined. Incubation of ortho-[32P]phosphate-labeled macrophages with PMA greatly increased the phosphorylation of the beta subunit of Z-1 but not that of the alpha subunit. Optimal phosphorylation was observed when cells were incubated with 300 ng/ml of PMA for 60-120 min. The PMA-induced phosphorylation was markedly suppressed by treatment of the macrophages with H-7, an inhibitor of protein kinase C. A chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP) also caused phosphorylation of the beta subunit. Unlike PMA, fMLP maximized the phosphorylation within 30 s. Purified Z-1 was an excellent substrate for the exogenously added protein kinase C only in the presence of both Ca2+ and phosphatidylserine. H-7 completely inhibited the in vitro phosphorylation. These data suggest that the beta subunit of Z-1 is phosphorylated by protein kinase C. The phosphorylation of Z-1 by PMA and fMLP coincided with inhibition of zymosan phagocytosis. A linear relationship was obtained between the level of phosphorylation of Z-1 and the degree of inhibition of zymosan phagocytosis induced by PMA. Thus, the results suggest that zymosan uptake is negatively regulated by protein kinase C-mediated phosphorylation of the beta subunit of Z-1.  相似文献   

3.
Rat heart plasma membranes contain a calcium-dependent protein kinase which phosphorylates endogenous protein substrates as well as added histones. The major endogenous protein phosphorylated is of 17 kDa on SDS-polyacrylamide gel electrophoresis. Proteins of 85 kDa and 60 kDa were also phosphorylated. Treatment of a rat heart homogenate with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate increased the recovery of kinase activity in the sarcolemmal membranes by up to 10-fold. The activity in such membranes was no longer calcium dependent. Although several histones were effective substrates for the enzyme, myosin light chain and phosvitin were not phosphorylated. These membranes contain a very active ATP hydrolysing activity which necessitated very brief incubation times to avoid loss of substrate. The membranes also contain cyclic AMP dependent protein kinase activity which is not active unless cyclic AMP is added to the incubations. The calcium dependent endogenous kinase, which is not inhibited by the heat stable inhibitor protein of cyclic AMP-dependent kinase, or by trifluoperazine, has several properties in common with protein kinase C. Preincubation of the sarcolemmal membranes with a high concentration of insulin caused inhibition of the phosphorylation of the endogenous 17 kDa and 85 kDa bands. There was no effect on the phosphorylation of the 60 kDa peptide. This effect of insulin was specific for the hormone and required preincubation of the hormone with the membranes for 20 min.  相似文献   

4.
It has been found that 1,2- but not 1,3-diacylglycerols stimulated phosphorylation of the insulin receptor of cultured human monocyte-like (U-937) and lymphoblastoid (IM-9) cells both in the intact- and broken-cell systems. The stimulation of the receptor's beta-subunit phosphorylation was dose-dependent, with optimal effect at 100 micrograms/ml of diacylglycerol. The effects of insulin and 1,2-diacylglycerols on the phosphorylation of partially purified insulin receptors were additive. Phosphoamino acid analysis showed a major effect of diacylglycerols on phosphorylation of tyrosine residues. The diacylglycerols also stimulated tyrosine kinase activity of the partially purified U-937 and IM-9 insulin receptors 2.5-3.5-fold when measured by phosphorylation of an exogenous substrate, poly(Glu80Tyr20) in the absence of any added insulin, calcium or phospholipid. Since this diacylglycerol effect could not be reproduced under conditions optimal for protein kinase C activation and the purified protein kinase C did not stimulate phosphorylation of the beta-subunit of the insulin receptor in this system, it is unlikely that the diacylglycerol effect was mediated by protein kinase C. Since these exogenous 1,2-diacylglycerols at the same high concentration also inhibited 125I-insulin binding to the insulin receptor of the intact U-937 and IM-9 cells, diacylglycerols could modulate the function of the insulin receptor and insulin action in human mononuclear cells.  相似文献   

5.
Induction of a substrate for casein kinase II during lymphocyte mitogenesis   总被引:4,自引:0,他引:4  
Particulate fractions prepared from concanavalin A-activated murine T lymphocytes contain an endogenous protein kinase that phosphorylates an endogenous protein substrate of Mr 112 000. The phosphorylation of 112 kDa protein is greatly reduced or absent in unstimulated T cells. Phosphoamino acid analysis indicates that 112 kDa protein is labeled on a serine. Add-back experiments using purified protein kinases indicate that 112 kDa protein serves as a substrate for casein kinase II. Phosphorylation of 112 kDa protein by the endogenous kinase is inhibited by heparin, a known casein kinase II inhibitor. The site or sites modified by the endogenous kinase and exogenous casein kinase II appear identical by peptide-mapping experiments. A time-course of the appearance of phosphorylated 112 kDa protein following stimulation with concanavalin A, measured in the presence or absence of added casein kinase II, suggests that 112 kDa protein is induced in activated T cells. Subcellular localization studies suggest that 112 kDa protein is a nuclear protein. Silver-binding and purification studies suggest that 112 kDa protein is of the nucleolar organizing region.  相似文献   

6.
Total protein kinase activity and the expression of the type I and type II cyclic adenosine 3′:5′-monophosphate-dependent protein kinases were studied in subcellular fractions of rat thymocytes and the effect of concanavalin A treatment on protein kinase activity was assessed. At a concentration of 100 μ/ml of concanavalin A a marked decline of total nuclear protein kinase activity occurred which lasted approximately 20 to 90 min. Concomitantly, a twofold increase of total protein kinase activity in the 900g supernatant fraction was observed which lasted from 5 to 30 min. Studies using the heat-stable protein kinase inhibitor revealed that the concanavalin A-mediated activity changes were primarily due to changes of cAMP-dependent protein kinase activity, whereas cAMP-independent protein kinase activity remained unchanged. Analysis of the type I and type II cAMP-dependent protein kinase isozyme pattern before and after concanavalin A treatment revealed a selective change of the relative expression of isozyme activities. Whereas type I protein kinase was the major nuclear isozyme before concanavalin A treatment, nuclear type II cAMP-dependent protein kinase increased markedly with a concomitant loss of type I isozyme expression. In the 900g supernatant fraction, containing primarily the type II isozyme in unstimulated cells, concanavalin A treatment caused an increase of the expression of the type I isozyme. The concanavalin A-mediated relative changes of cAMP-dependent protein kinase isozyme expression were confirmed by photoaffinity labeling of the regulatory subunits RI and RII before and after concanavalin A stimulation. The intracellular concanavalin A-mediated isozyme changes were time dependent, exhibiting maximal effects about 20 min after concanavalin A addition. These results indicate that selective regulation of intracellular cAMP-dependent protein kinase isozyme expression may be a mechanism related to isozyme-specific phosphorylation of specific intracellular substrates in concanavalin A-activated thymocytes.  相似文献   

7.
The phosphorylation of myelin (basic protein) purified from rabbit brain was markedly stimulated by exogenously added calmodulin in the presence of calcium and inhibited by W-7(N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide), a calmodulin interacting agent, in a dose-dependent fashion. However, exogenously added myelin basic protein free from protein kinase activity could not serve as a substrate of this calmodulin dependent protein kinase, suggesting that this kinase catalyzes the phosphorylation of the enzyme-substrate complex. These results suggest that a calmodulin-dependent protein kinase complex with the substrate (basic protein) is located in the myelin membrane of the central nervous system.  相似文献   

8.
When rat hepatoma cells (R117-21B) were incubated for 20 h at 37 degrees C with 125I-labeled concanavalin A at low concentrations (0.5-10 micrograms/ml), only 20-30% of the cell-associated radioactivity was released by alpha-methyl-D-mannoside, but at high concentrations (50-500 micrograms/ml), 60-80% of the cell-associated radioactivity was released. At 4 degrees C, the cell-associated radioactivity decreased with the increase in concentration of concanavalin A, and more than 80% of the cell-associated radioactivity was released by alpha-methyl-D-mannoside. These results suggest that the amount of cell-associated concanavalin A is related to the physicochemical state of the plasma membrane, which can be altered by the incubation temperature or by the concentration of concanavalin A, the transitional concentration being 5-10 micrograms/ml.  相似文献   

9.
Abstract: Primary neuronal cultures from 8-day-old rat cerebellum were incubated in the presence of exogenously added 16 n M [γ-32P]ATP. Phosphorylation of a 45-kDa endogenous protein was detected within 1 min and increased linearly for ∼20 min. Unlike what was seen with [γ-32P]ATP, in the presence of [32P] orthophosphate no visible phosphorylation of protein was detected after 10 min, but a different pattern of phosphorylation was obtained in 30 min. The phosphorylation of the 45-kDa protein was reduced by 80–90% in the presence of 1 µ M unlabeled ATP, 5 U/ml of apyrase, or 0.01% trypsin but not 1 m M PO43−. Phosphorylation was inversely proportional to cell density and was unaffected by addition to the cells of 56 m M KCl or 100 µ M glutamate for 3 min. The presence of exogenously added cellular protein extracts or pretreatment of the cells for up to 20 min in phosphorylation buffer also did not affect the observed phosphorylation of the 45-kDa protein. The phosphorylation was found to be insensitive to MgCl2 but inhibited in the presence of MnCl2 or NaF and in the absence of CaCl2. Analogues of ATP suppressed phosphorylation of the 45-kDa protein by 80–90%. A similar inhibition was obtained in the presence of ADP or AMP. In this study, we establish via several different means that the phosphorylation of the 45-kDa protein in primary neuronal granule cultures occurs extracellularly through an ectokinase activity, which is furthermore distinguishable from a series of other presently characterized ecto-protein enzymes and intracellular kinases.  相似文献   

10.
We have characterized a novel ecto-protein kinase activity and a novel ecto-protein phosphatase activity on the membrane surface of human platelets. Washed intact platelets, when incubated with [gamma-32P]ATP in Tyrode's buffer, showed the phosphorylation of a membrane surface protein migrating with an apparent molecular mass of 42 kDa on 5-15% SDS polyacrylamide gradient gels. The 42 kDa protein could be further resolved on 15% SDS gels into two proteins of 39 kDa and 42 kDa. In this gel system, it was found that the 39 kDa protein became rapidly phosphorylated and dephosphorylated, whereas the 42 kDa protein was phosphorylated and dephosphorylated at a much slower rate. NaF inhibited the dephosphorylation of these proteins indicating the involvement of an ecto-protein phosphatase. The platelet membrane ecto-protein kinase responsible for the phosphorylation of both of these proteins was identified as a serine kinase and showed dependency on divalent cations Mg2+ or Mn2+ ions. Ca2+ ions potentiated the Mg(2+)-dependent ecto-protein kinase activity. The ecto-protein kinase rapidly phosphorylated histone and casein added exogenously to the extracellular medium of intact platelets. Following activation of platelets by alpha-thrombin, the incorporation of [32P]phosphate from exogenously added [gamma-32P]ATP by endogenous protein substrates was reduced by 90%, suggesting a role of the ecto-protein kinase system in the regulation of platelet function. The results presented here demonstrate that both protein kinase and protein phosphatase activities reside on the membrane surface of human platelets. These activities are capable of rapidly phosphorylating and dephosphorylating specific surface platelet membrane proteins which may play important roles in early events of platelet activation and secretion.  相似文献   

11.
Mouse neuroblastoma X embryonic Chinese hamster brain explant hybrid cell line (NCB-20) forms functional synapses when intracellular cyclic AMP levels are elevated for a prolonged period of time. NCB-20 cells were labeled with [32P]orthophosphate under conditions where 2-chloroadenosine gave maximum increases of 32P incorporation into tyrosine hydroxylase in nerve growth factor dibutyryl cyclic AMP-differentiated PC12 (pheochromocytoma) cells. When NCB-20 cells were exposed to activators [5-hydroxytryptamine (5-HT), prostaglandin E1, or forskolin], resulting in activation of cyclic AMP-dependent protein kinase, increased 32P incorporation into two major proteins [130 kilodaltons (kDa) and 90 kDa] occurred. 5-HT (in the presence of phosphodiesterase inhibitor, isobutylmethylxanthine) gave a three- to fourfold increase, and forskolin a four- to sevenfold increase in 32P incorporation into the 90-kDa protein. [D-Ala2,D-Leu5]-enkephalin, which decreased cyclic AMP levels and reversed the 2-chloroadenosine-stimulated phosphorylation of tyrosine hydroxylase in differentiated PC12 cells, also reversed the stimulation of phosphorylation of the 90-kDa protein in NCB-20 cells. Pretreatment of NCB-20 cells with a calcium ionophore, A23187, gave increased phosphorylation of the 90- and 130-kDa proteins, but phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (tumor promoting agent), cell depolarization with high K+, or pretreatment with dibutyryl cyclic GMP had no effect on phosphorylation of these proteins. In contrast, phosphorylation of an 80-kDa protein was decreased by forskolin, but increased following activation of the calcium/phospholipid-dependent kinase with tumor promoting agent. Neither the 90-kDa nor the 80-kDa protein showed any immunological cross-reactivity with synapsin, a major synaptic protein known to be phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase, but not calcium/phospholipid-dependent protein kinase. This suggests that in NCB-20 cells, several unique proteins can be phosphorylated by cyclic AMP-dependent protein kinase in response to hormonal elevation of cyclic AMP levels. In contrast, an 80-kDa protein is the primary substrate for calcium/phospholipid-dependent protein kinase, and its phosphorylation is inhibited by agents that elevate cyclic AMP levels and thereby activate cyclic AMP-dependent protein kinase.  相似文献   

12.
In Streptomyces fradiae, calcium ions induce alterations in intensity and specificity of the secondary metabolism and stimulate sporulation. Using in vivo labeling, we demonstrate that in S. fradiae phosphorylation of some proteins are also influenced by Ca2+ added exogenously. Calcium ions at physiological concentration increase phosphorylation of multiple proteins on serine/threonine residues and suppress modification of a 140-kDa protein on tyrosine residues. Assay of protein kinases in situ demonstrated that Ca2+-induced differences in the pattern of protein phosphorylation in vivo are accompanied by Ca2+-dependent cessation of autophosphorylation of 140-kDa tyrosine kinase and by increased autophosphorylation of three serine/threonine kinases with molecular masses of 127, 65, and 31.5 kDa.  相似文献   

13.
Our recently described purification scheme for rat brain protein kinase C yields an enzyme consisting of a 78/80-kilodalton (kDa) doublet upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (submitted for publication). Antisera against this preparation were raised in two rabbits. One of the antisera detected only the 80-kDa component by immunoblotting of purified protein kinase C and immunoprecipitated an 80-kDa [35S]methionine-labeled protein from a variety of human, rodent, and bovine cells, which was shown to represent protein kinase C by comparative one-dimensional peptide mapping. In contrast, the second antiserum detected both 78- and 80-kDa enzyme forms by immunoblotting and immunoprecipitated a [35S]methionine-labeled 78/80-kDa doublet from mammalian cells. One-dimensional peptide maps of these 78- and 80-kDa proteins were similar to those derived from the 78- and 80-kDa forms of purified protein kinase C, respectively. The two forms were not related by either partial proteolysis or differential phosphorylation, showing that two distinct forms of this enzyme exist in mammalian cells. Treatment of mouse B82 L cells with 2.5 micrograms of 12-O-tetradecanoylphorbol-13-acetate (TPA) per ml for 18 h resulted in complete loss of immunoprecipitable protein kinase C with a half time of disappearance of 48 min. Since the normal half-life of protein kinase C was greater than 24 h and the biosynthetic rate of the protein was not decreased after 18 h by TPA treatment, TPA induces down-regulation by increasing the degradation rate of the enzyme. Treatment of cells with 50 ng of TPA per ml followed by resolution of the membrane and cytosol in the presence of ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA) promoted an apparent translocation of both 78- and 80-kDa proteins from the cytosol to the membrane fraction. A similar translocation was effected by cell lysis in the presence of Ca2+, indicating the subcellular localization of protein kinase C to be sensitive to the presence of both activators and micromolar amounts of Ca2+.  相似文献   

14.
In human platelets, serotonin is known to induce a shape change followed by (reversible) aggregation. Recently, it was found that the amine triggers the elevation of cytosolic free calcium and activates phospholipase C. On stimulation of human platelets with serotonin we found an immediate increase in protein kinase C activity, phosphorylating its 40 kDa substrate protein. A 20 kDa protein, most likely the myosin light chain, was phosphorylated to the same extent. Ketanserin, a highly selective serotonin-S2 antagonist inhibited both phosphorylation processes at subnanomolar concentrations.  相似文献   

15.
A protein kinase capable of phosphorylating basic fibroblast growth factor (FGF) can be localized on the outer cell surface of human hepatoma cells (SK-Hep cells). The addition of [gamma-32P]ATP, but not H3(32)PO4, results in a rapid (less than 10 min) incorporation of 32P into exogenously added basic FGF. The reaction is time and concentration dependent (apparent Km, 170 nM) and is stimulated by the addition of cAMP (EC50, 0.5 microM), but not the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate. There is also no tyrosine protein kinase detected on the cell surface. The inhibition of basic FGF binding to its low and/or high affinity sites decreases the phosphorylation of basic FGF by the ecto-protein kinase. Accordingly, pretreatment of cells with heparinase for 30 min or coincubation with heparin (0.1-10 micrograms/ml) decreases phosphorylation in a dose-dependent manner. Furthermore, the addition of a nonphosphorylatable peptide analog of basic FGF ([Val112] basic FGF-(106-146)NH2) that can compete with basic FGF binding to cells prevents the phosphorylation of basic FGF. Together, these observations suggest that 1) exogenous basic FGF must associate with its low and/or high affinity binding sites to be phosphorylated, and 2) the kinase is cAMP dependent and associated with the outer cell surface, and support the hypothesis that phosphorylation may regulate the activity and/or bioavailability of the growth factor.  相似文献   

16.
ADP, added to suspensions of aspirinized 32P-prelabelled washed platelets, induced reversible platelet aggregation, the rapid elevation of cytosolic Ca2+ (maximum at 2 s), 20 kDa myosin light chain phosphorylation (maximum faster than 3 s), 40 kDa protein phosphorylation (maximum at 3-10 s) and phosphatidic acid formation (maximum at 30 s). Prior addition of epinephrine potentiated platelet aggregation, cytosolic Ca2(+)-elevation, 20 and 40 kDa protein phosphorylation evoked by ADP, but it did not enhance phosphatidic acid formation induced by ADP. The potentiating effect of epinephrine on aggregation, cytosolic Ca2(+)-increase and 20 and 40 kDa protein phosphorylation induced by ADP was also observed in the presence of EGTA. Ethylisopropylamiloride, an inhibitor of Na+/H(+)-exchange, did not affect the potentiation of ADP-induced platelet aggregation by epinephrine. We conclude that epinephrine primes platelets to increase Ca2(+)-influx and Ca2(+)-mobilization in response to ADP. The potentiation of cytosolic Ca2(+)-elevation by epinephrine leads to further stimulation of myosin light chain phosphorylation and protein kinase C activation and ultimately to enhanced platelet aggregation. These effects of epinephrine do not seem to take place at the level of phospholipase C.  相似文献   

17.
Suspensions of aspirin-treated, 32P-prelabelled, washed platelets containing ADP scavengers in the buffer were activated with either phorbol 12,13-dibutyrate (PdBu) or the Ca2+ ionophore A23187. High concentrations of PdBu (greater than or equal to 50 nM) induced platelet aggregation and the protein kinase C (PKC)-dependent phosphorylation of proteins with molecular masses of 20 (myosin light chain), 38 and 47 kDa. No increase in cytosolic Ca2+ was observed. Preincubation of platelets with prostacyclin (PGI2) stimulated the phosphorylation of a 50 kDa protein [EC50 (concn. giving half-maximal effect) 0.6 ng of PGI2/ml] and completely abolished platelet aggregation [ID50 (concn. giving 50% inhibition) 0.5 ng of PGI2/ml] induced by PdBu, but had no effect on phosphorylation of the 20, 38 and 47 kDa proteins elicited by PdBu. The Ca2+ ionophore A23187 induced shape change, aggregation, mobilization of Ca2+, rapid phosphorylation of the 20 and 47 kDa proteins and the formation of phosphatidic acid. Preincubation of platelets with PGI2 (500 ng/ml) inhibited platelet aggregation, but not shape change, Ca2+ mobilization or the phosphorylation of the 20 and 47 kDa proteins induced by Ca2+ ionophore A23187. The results indicate that PGI2, through activation of cyclic AMP-dependent kinases, inhibits platelet aggregation at steps distal to protein phosphorylation evoked by protein kinase C and Ca2+-dependent protein kinases.  相似文献   

18.
The effects of platelet secretion inhibitors on protein phosphorylation   总被引:2,自引:0,他引:2  
Protein phosphorylation was investigated in human platelets after stimulation to secretion by thrombin. After stimulation by thrombin at 4 degrees C (in which secretion is inhibited), phosphorylations of the 80, 56, and 38 kDa polypeptides and dephosphorylation of the 67 kDa phosphopeptide eventually occurred. The phosphorylations of the 27 and 20 kDa polypeptides remained inhibited until the temperature was increased to 37 degree C, which also resulted in secretion. Various stimulants and inhibitors of platelet function were used to characterize individual protein phosphorylations. The divalent-cation ionophore, A23187, induced the phosphorylations (or dephosphorylation) of the same proteins as thrombin with the exception of the 80 kDa protein, which remained incompletely phosphorylated. The intracellular calcium antagonist, TMB-8, inhibited thrombin-stimulated secretion and phosphorylation of all the polypeptides except the 80 kDa protein. The dephosphorylation of the 67 kDa phosphoprotein was not affected by TMB-8. Incubation of platelets with prostaglandin E1 and isobutylmethylxanthine inhibited thrombin-stimulated secretion and the phosphorylation of the 38 and 20 kDa protein and increased the phosphorylation of the 67 and 27 kDa phosphoproteins. These observations may be used to correlate protein phosphorylation with secretion, suggesting a possible sequence of intracellular events that mediate thrombin-stimulated secretion.  相似文献   

19.
The implication of protein phosphorylation in the mitogenic action of high density lipoproteins (HDL) on bovine vascular endothelial cells was investigated by incubating endothelial cell cultures in the presence of 32P-labeled phosphoric acid. The incorporation of 32P into proteins was measured after fractionation by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and autoradiography of the gel. In endothelial cells seeded at low density and made quiescent by serum starvation, HDL markedly and consistently enhanced the degree of phosphorylation of a Mr 27,000 protein in a time- and dose-dependent manner. Using 500 micrograms/ml HDL, 32P labeling of the 27-kDa protein was already measurable after 10 min of incubation and reached a maximum at 20-30 min. Minimal effective dose of HDL during a 30-min incubation period was in the range of 5-10 micrograms/ml. While the apolipoprotein moiety of HDL was able to mimic the effect of total HDL, the lipid part of HDL was not. Furthermore, fibroblast growth factor appeared to potentiate the effect of HDL on 27-kDa protein phosphorylation, in agreement with the synergism observed between fibroblast growth factor and HDL on endothelial cell proliferation. Two activators of protein kinase C, 12-O-tetradecanoylphorbol 13-acetate and 1-oleoyl-2-acetylglycerol also induced the phosphorylation of the 27-kDa protein. These results suggest that the 27-kDa protein may be a physiological substrate for protein kinase C and that HDL could exert their mitogenic effect on endothelial cells through activation of protein kinase C and subsequent protein phosphorylation.  相似文献   

20.
The calcium- and phospholipid-dependent kinase activity (protein kinase C) was isolated from bovine brains by a combination of DEAE-cellulose chromatography, gel filtration and hydrophobic chromatography on octyl-Sepharose and phenyl-Sepharose. The phorbol ester receptor co-purifies with the protein kinase C throughout the procedure yielding a homogeneous protein of 79 500 daltons on SDS-polyacrylamide gels. The purified kinase incorporated approximately 5000 nmol phosphate into substrate/min/mg protein at saturating concentrations of Ca2+ and phosphatidyl serine. Reciprocal plots of protein kinase activity at varying phosphatidyl serine concentrations were biphasic and yielded two apparent Ka values for phosphatidyl serine of 0.6-2 and 35-80 micrograms/ml). These apparent Ka values were reduced 2- to 3-fold by either diolein (20 micrograms/ml) or phorbol-12,13-dibutyrate (10 micrograms/ml). The protein binds [3H]phorbol-12,13-dibutyrate ( [3H]PDB) with high affinity (Ka = 15 nM) in a phosphatidyl serine-dependent manner. At saturating phosphatidyl serine concentrations 0.89 mol [3H]PDB are bound per mol protein. The identification of protein kinase C as the phorbol ester receptor is discussed with respect to the function and regulation of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号