首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virion infectivity factor (vif), a gene found in all lentiviruses, plays an essential role in virus replication in certain target cells. We examined the replication competence of the human immunodeficiency virus type 2 (HIV-2) vif mutant in different T-cell lines and primary cells in comparison with that of the HIV-1 vif mutant. Both mutant viruses were unable to replicate in peripheral blood-derived mononuclear cells but replicated with wild-type efficiency in certain T-cell lines, such as SupT1 and MOLT-4/8. These results confirm the importance of vif in the infection of relevant target cells and imply that some cellular factor(s) could compensate for vif function. However, HIV-1 and HIV-2 vif mutant viruses also show differential replications in other cell lines, suggesting either different threshold requirements for the same cellular factor(s) or the involvement of different factors to compensate for vif-1 and vif-2 functions. By cross complementation experiments, we showed that vif-1 and vif-2 have similar functions. Our studies further indicate the existence of two kinds of nonpermissive cells: H9 is unable to complement HIV-1 delta vif but is susceptible to a one-round infection with HIV-1 delta vif produced from permissive cells. In contrast, U937 is nonpermissive for HIV-2 delta vif produced from permissive cells but, once infected, is able to complement the delta vif function. In both types of nonpermissive cells, a step prior to proviral DNA synthesis is affected.  相似文献   

2.
Integrase function is required for retroviral replication in most instances. Although certain permissive T-cell lines support human immunodeficiency virus type 1 (HIV-1) replication in the absence of functional integrase, most cell lines and primary human cells are nonpermissive for integrase mutant growth. Since unintegrated retroviral DNA is lost from cells following cell division, we investigated whether incorporating a functional origin of DNA replication into integrase mutant HIV-1 might overcome the block to efficient gene expression and replication in nonpermissive T-cell lines and primary cells. Whereas the Epstein-Barr virus (EBV) origin (oriP) did little to augment expression from an integrase mutant reporter virus in EBV nuclear antigen 1-expressing cells, simian virus 40 (SV40) oriT dramatically enhanced integrase mutant infectivity in T-antigen (Tag)-expressing cells. Incorporating oriT into the nef position of a full-length, integrase-defective virus strain yielded efficient replication in Tag-expressing nonpermissive Jurkat T cells without reversion to an integration-competent genotype. Adding Tag to integrase mutant-oriT viruses yielded 11.3-kb SV40-HIV chimeras that replicated in Jurkat cells and primary monocyte-derived macrophages. Real-time quantitative PCR analyses of Jurkat cell infections revealed that amplified copies of unintegrated DNA likely contributed to SV40-HIV integrase mutant replication. SV40-based HIV-1 integrase mutant replication in otherwise nonpermissive cells suggests alternative approaches to standard integrase-mediated retroviral gene transfer strategies.  相似文献   

3.
To investigate the mechanism underlying one aspect of the cellular tropism of human immunodeficiency virus type 1 (HIV-1), we used a macrophage-tropic isolate, 89.6, and screened its ability to infect a number of continuous cell lines. HIV-1 (89.6) was able to replicate robustly in a T-cell/B-cell hybrid line, CEMx174, while it replicated modestly or not at all in either of its parents, one of which is the CD4-positive line CEM.3. Analysis by transfection of a molecular clone, a virus uptake assay, and polymerase chain reaction all provided strong evidence that the block to HIV-1(89.6) replication in the CEM.3 line lies at the level of cellular entry. These results were complemented by preparing a CD4-expressing derivative of the B-cell parent, 721.174, and demonstrating that it is permissive for productive HIV-1(89.6) replication. Given these experimental findings, we speculate that there exist cellular accessory factors which facilitate virus entry and infection in CD4-positive cells. Furthermore, these cellular accessory factors may be quite virus strain specific, since not all macrophage-tropic strains of HIV-1 were able to replicate in the CEMx174 hybrid cell line. This experimental model provides a system for the identification of one or more of these putative cellular accessory factors.  相似文献   

4.
Replication of human immunodeficiency virus type 1 (HIV-1) is regulated by virus-encoded regulatory proteins, as well as by a variety of cellular factors. Productive infection of human T lymphocytes by HIV-1 is dependent upon the activation status of the target cells. In general, short-term mitogenic stimulation of CD4 T cells is used to enhance infection of peripheral blood mononuclear cells (PBMC) in vitro. Recently, we demonstrated that adoptive transfer of human PBMC into lethally irradiated BALB/c mice, radioprotected with severe combined immunodeficiency (SCID) mouse bone marrow, leads to marked T-cell activation and proliferation. In the present study, we investigated the effect of such xenoactivation of human T cells on their susceptibility to HIV-1 infection. Human cells that were recovered from human/Balb radiation chimeras supported efficient replication of laboratory strains of HIV-1, as well as of HIV-1 clinical isolates. The multiplicity of infection required to attain effective virus replication in the recovered xenoactivated human cells was 10- to 100-fold lower than that needed for infection of short- or long-term phytohemagglutinin (PHA)-stimulated blasts or of various T-cell lines. Analysis of human cell surface activation markers has indicated that xenoactivation in the mouse, in contrast to in vitro stimulation with PHA, is associated with a marked downregulation of CD25 (interleukin 2 receptor). Our results demonstrate that human cells recovered from human/Balb radiation chimeras, which are hypersensitive to HIV-1 infection, differ from in vitro-stimulated cells in their activation status. Therefore, this system could be used to study host factors that participate in HIV-1 infection and replication in vitro and in vivo.  相似文献   

5.
Human cytomegalovirus (HCMV) is commonly found in the brains of patients with AIDS and in some cases can be detected in the same cells as can human immunodeficiency virus type 1 (HIV-1). In this study, we analyzed the patterns of replication of HIV-1 and HCMV in singly infected cells and the effects of dual infection in human brain-derived cell lines of three different origins: neuroblastoma cell lines SK-N-MC and SY5Y; astrocytoma/glioblastoma cell lines U373-MG and Hs 683; and undifferentiated glioblastoma cell lines A172 and T98G. To bypass the restriction at the adsorption/penetration step in these CD4-negative cells, we used HIV-1 (amphotropic retrovirus) pseudotypes. These HIV-1 pseudotypes infected the majority of the cells in the cultures and expressed high levels of HIV-1 gene products in all except the SY5Y cells. The cell lines differed in the ability to support HCMV infection, but coinfection with HIV-1 had no effect on HCMV replication. The A172 cells were completely nonpermissive for HCMV gene expression, while HCMV replication in the singly infected T98G and SK-N-MC cell lines was restricted at the level of some early gene products. This resulted in complete and partial inhibition, respectively, of viral DNA synthesis. Dual infection of the A172, T98G, and SK-N-MC cells had no effect on HIV-1 replication. The other three cell lines, U373-MG, Hs 683, and SY5Y, were fully permissive for HCMV replication. In the U373-MG and Hs 683 cells, HCMV markedly inhibited the synthesis of HIV-1 gene products. In contrast, a transient stimulation of HIV-1 production followed by a repression was observed in the dually infected SY5Y cells. We conclude from these results that under conditions in which both HIV-1 and HCMV can undergo fully permissive infection, HCMV can repress HIV-1 gene expression. In cells in which HCMV replication is limited but HIV-1 replicates well, there is no effect on HIV-1 gene expression. However, activation of HIV-1, at least transiently, may occur in cells in which HIV-1 gene expression is limited. These studies suggest that a threshold level of some HIV-1 gene product(s) may obscure activation or promote repression of HIV replication by HCMV.  相似文献   

6.
Jurkat T-cell clones, stably expressing the human immunodeficiency virus type 1 (HIV-1) Vpr protein, exhibited an impaired susceptibility to HIV-1 infection. A marked down-modulation of surface CD4 receptors was detected in Vpr-expressing clones with respect to control cells. Likewise, a reduced CD4 expression was also observed in parental Jurkat cells infected with wild-type but not with Vpr-mutant HIV-1. Notably, Vpr-expressing clones were fully susceptible to infection with a vesicular stomatitis virus G protein-pseudotyped HIV-1 virus, indicating that a block at the level of viral entry was responsible for the inhibition of viral replication. The effect exerted by Vpr on HIV replication and CD4 expression suggests that this protein can regulate both the establishment of a productive HIV-1 infection and CD4-mediated T-cell functions.  相似文献   

7.
Cell surface receptors exploited by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) for infection are major determinants of tropism. HIV-1 usually requires two receptors to infect cells. Gp120 on HIV-1 virions binds CD4 on the cell surface, triggering conformational rearrangements that create or expose a binding site for a seven-transmembrane (7TM) coreceptor. Although HIV-2 and SIV strains also use CD4, several laboratory-adapted HIV-2 strains infect cells without CD4, via an interaction with the coreceptor CXCR4. Moreover, the envelope glycoproteins of SIV of macaques (SIV(MAC)) can bind to and initiate infection of CD4(-) cells via CCR5. Here, we show that most primary HIV-2 isolates can infect either CCR5(+) or CXCR4(+) cells without CD4. The efficiency of CD4-independent infection by HIV-2 was comparable to that of SIV, but markedly higher than that of HIV-1. CD4-independent HIV-2 strains that could use both CCR5 and CXCR4 to infect CD4(+) cells were only able to use one of these receptors in the absence of CD4. Our observations therefore indicate (i) that HIV-2 and SIV envelope glycoproteins form a distinct conformation that enables contact with a 7TM receptor without CD4, and (ii) the use of CD4 enables a wider range of 7TM receptors to be exploited for infection and may assist adaptation or switching to new coreceptors in vivo. Primary CD4(-) fetal astrocyte cultures expressed CXCR4 and supported replication by the T-cell-line-adapted ROD/B strain. Productive infection by primary X4 strains was only triggered upon treatment of virus with soluble CD4. Thus, many primary HIV-2 strains infect CCR5(+) or CXCR4(+) cell lines without CD4 in vitro. CD4(-) cells that express these coreceptors in vivo, however, may still resist HIV-2 entry due to insufficient coreceptor concentration on the cell surface to trigger fusion or their expression in a conformation nonfunctional as a coreceptor. Our study, however, emphasizes that primary HIV-2 strains carry the potential to infect CD4(-) cells expressing CCR5 or CXCR4 in vivo.  相似文献   

8.
CD8(+) T-cells secrete soluble factor(s) capable of inhibiting both R5- and X4-tropic strains of human immunodeficiency virus type 1 (HIV-1). CCR5 chemokine ligands, released from activated CD8(+) T-cells, contribute to the antiviral activity of these cells. These CC-chemokines, however, do not account for all CD8(+) T-cell antiviral factor(s) (CAF) released from these cells, particularly because the elusive CAF can inhibit the replication of X4 HIV-1 strains that use CXCR4 and not CCR5 as a coreceptor. Here we demonstrate that activated CD8(+) T-cells of HIV-1-seropositive individuals modify serum bovine antithrombin III into an HIV-1 inhibitory factor capable of suppressing the replication of X4 HIV-1. These data indicate that antithrombin III may play a role in the progression of HIV-1 disease.  相似文献   

9.
10.
DC-SIGN is a C-type lectin expressed on dendritic cells and restricted macrophage populations in vivo that binds gp120 and acts in trans to enable efficient infection of T cells by human immunodeficiency virus type 1 (HIV-1). We report here that DC-SIGN, when expressed in cis with CD4 and coreceptors, allowed more efficient infection by both HIV and simian immunodeficiency virus (SIV) strains, although the extent varied from 2- to 40-fold, depending on the virus strain. Expression of DC-SIGN on target cells did not alleviate the requirement for CD4 or coreceptor for viral entry. Stable expression of DC-SIGN on multiple lymphoid lines enabled more efficient entry and replication of R5X4 and X4 viruses. Thus, 10- and 100-fold less 89.6 (R5/X4) and NL4-3 (X4), respectively, were required to achieve productive replication in DC-SIGN-transduced Jurkat cells when compared to the parental cell line. In addition, DC-SIGN expression on T-cell lines that express very low levels of CCR5 enabled entry and replication of R5 viruses in a CCR5-dependent manner, a property not exhibited by the parental cell lines. Therefore, DC-SIGN expression can boost virus infection in cis and can expand viral tropism without affecting coreceptor preference. In addition, coexpression of DC-SIGN enabled some viruses to use alternate coreceptors like STRL33 to infect cells, whereas in its absence, infection was not observed. Immunohistochemical and confocal microscopy data indicated that DC-SIGN was coexpressed and colocalized with CD4 and CCR5 on alveolar macrophages, underscoring the physiological significance of these cis enhancement effects.  相似文献   

11.
Tardif MR  Tremblay MJ 《Journal of virology》2005,79(21):13714-13724
Memory CD4+ T cells are considered a stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) and a barrier to eradication of this retroviral infection in patients under therapy. It has been shown that memory CD4+ T cells are preferentially infected with HIV-1, but the exact mechanism(s) responsible for this higher susceptibility remains obscure. Previous findings indicate that incorporation of host-derived intercellular adhesion molecule 1 (ICAM-1) in HIV-1 increases virus infectivity. To measure the putative involvement of virus-anchored ICAM-1 in the preferential infection of memory cells by HIV-1, quiescent and activated naive and memory T-cell subsets were exposed to isogenic virions either lacking or bearing ICAM-1. Memory CD4+ T cells were found to be more susceptible than naive CD4+ T cells to infection with ICAM-1-bearing virions, as exemplified by a more important virus replication, an increase in integrated viral DNA copies, and a more efficient entry process. Interactions between virus-associated host ICAM-1 and cell surface LFA-1 under a cluster formation seem to be responsible for the preferential HIV-1 infection of the memory cell subset. Altogether, these data shed light on a potential mechanism by which HIV-1 preferentially targets long-lived memory CD4+ T cells.  相似文献   

12.
In a previous study, we had found that the extent of T-cell dysfunctions induced by a T-tropic strain of human immunodeficiency virus type 1 (HIV-1) in SCID mice reconstituted with human peripheral blood lymphocytes (hu-PBLs) (hu-PBL-SCID mice) was related to the in vivo state of activation of the human lymphocytes. In this article, we compared the effect of infection of hu-PBL-SCID mice with either T-tropic (X4) or M-tropic (R5) strains of HIV-1 by performing virus inoculation at either 2 h or 2 weeks after the hu-PBL transfer, when the human T cells exhibited a marked activation state or a predominant memory phenotype, respectively. A comparable level of infection was found when hu-PBL-SCID mice were challenged with either the SF162 R5 or the IIIB X4 strain of HIV at 2 h postreconstitution, while at 2 weeks, the R5 virus infection resulted in a higher level of HIV replication than the X4 virus. The R5 strain induced a marked human CD4(+) T-cell depletion along with a drop in levels of human immunoglobulin M in serum and release of soluble factors at both infection times, while the X4 virus induced severe immune dysfunctions only at 2 h. Of interest, injection of hu-PBLs into SCID mice resulted in a marked up-regulation of CCR5 on human CD4(+) T cells. The percentage of CXCR4(+) cells did not change after transplantation, even though a significant decrease in antigen expression was observed. Comparative experiments with two molecular clones of HIV-1 (X4 SF2 and R5 SF162) and two envelope recombinant viruses generated from these viruses showed that R5 viruses (SF162 and the chimeric env-SF162-SF2) caused an extensive depletion of human CD4(+) T cells in SCID mice at both 2 h and 2 weeks after reconstitution, while the X4 viruses (SF2 and the chimeric env-SF2-SF162) induced CD4 T-cell depletion only when infection was performed at the 2-h reconstitution time. These results emphasize the importance of the state of activation/differentiation of human CD4(+) T cells and gp120-coreceptor interactions at the time of primary infection in determining HIV-1 pathogenicity in the hu-PBL-SCID mouse model.  相似文献   

13.
CXCR4 (also termed fusin, LESTR, or HUMSTR) is a member of the G-protein-coupled chemokine receptor family with seven membrane-spanning domains. CXCR4 acts as a coreceptor for syncytium-inducing human immunodeficiency virus type 1 (HIV-1) strains, conferring entry into CD4+ cells. We show here that a novel mouse monoclonal antibody (12G5) that recognizes CXCR4 blocked cell-to-cell fusion and cell free-virus infection of CXCR4+ CD4+ RD rhabdomyosarcoma cells by seven HIV-1 and HIV-2 strains that had various cell tropisms for different CD4+ human cell types. Yet the majority of the members of the same virus panel resisted 12G5 inhibition on T-cell lines. When inhibition was observed on these cell types, it was both cell type and virus strain dependent. In at least one situation, 12G5 failed to block LAI infection of cells expressing CXCR4 as the only available coreceptor. Our observations suggest that CXCR4 could be processed or presented differently depending on the cell type, allowing some strains to evade 12G5 inhibition. Alternatively, since several of the viruses could infect certain CXCR4- CD4+ cell lines, it is conceivable that alternative coreceptors are active, enabling individual HIV strains to choose between compatible coreceptors during entry into cells. Moreover, the strain dependency of 12G5 inhibition implies that the interaction of different HIVs with CXCR4 varies.  相似文献   

14.
More than 10 G protein-coupled receptors (GPCRs) have been shown to act as coreceptors for infection of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). We have isolated HIV-1 variants infectious to primary brain-derived CD4-positive cells (BT-3 and BT-20/N) and U87/CD4 glioma cells that are resistant to T-cell line-tropic (T-tropic), macrophage-tropic (M-tropic), and T- and M-tropic (dualtropic) (X4, R5, and R5X4) HIV-1 strains. These primary brain-derived cells were also highly susceptible to HIV-2(ROD), HIV-2(SBL6669), and SIV(mndGB-1). A factor or coreceptor that determines the susceptibility of these brain-derived cells to these HIV and SIV strains has not been fully identified. To identify this coreceptor, we examined amino acid sequences of all known HIV and SIV coreceptors and noticed that tyrosine residues are well conserved in their extracellular amino-terminal domains. By this criterion, we selected 18 GPCRs as candidates of coreceptors for HIV and SIV strains infectious to these brain-derived cells. mRNA expression of an orphan GPCR, RDC1, was detected in the brain-derived cells, the C8166 T-cell line, and peripheral blood lymphocytes, all of which are susceptible to HIV-1 variants, but not in macrophages, which are resistant to them. When a CD4-expressing cell line, NP-2/CD4, which shows strict resistance to infection not only with HIV-1 but also with HIV-2 or SIV, was transduced with the RDC1 gene, the cells became highly susceptible to HIV-2 and SIV(mnd) strains but to neither M- nor T-tropic HIV-1 strains. The cells also acquired a low susceptibility to the HIV-1 variants. These findings indicate that RDC1 is a novel coreceptor for several HIV-1, HIV-2, and SIV strains which infect brain-derived cells.  相似文献   

15.
16.
17.
To identify a cell surface molecule other than CD4 involved in infection of cultured cells with human immunodeficiency virus type 1 (HIV-1), mice were immunized with the CD4-negative Raji human B-cell line in order to isolate a monoclonal antibody (mAb). We isolated mAb 33A, which inhibited the infection of CD4-positive T cells, B cells, human peripheral blood lymphocytes (PBL), and brain-derived cells with HIV-1. Formation of viral DNA was also blocked when CD4-positive Raji cells were treated with 33A after adsorption of HIV-1, but not before its adsorption. mAb 33A had little effect on syncytium formation induced by cocultivation with HIV-1-producing cells. Flow cytometry revealed that 33A reacted with HTLV-I-positive T-cell lines, Burkitt's lymphoma cell lines, phytohemagglutinin (PHA) -stimulated PBL, brain-derived fibroblast-like cells, and some adherent cell lines, but hardly at all with immature T-cell lines. Immunoblotting experiments showed that 33A recognized an antigen with an apparent molecular mass of 32 kDa, but did not recognize chemokine receptors such as CXCR4, CCR5, or CCR3. The distribution characteristic of the antigen recognized by 33A on various cells and its molecular weight suggest that mAb 33A recognizes a new cellular antigen that is necessary for HIV-1 entry.  相似文献   

18.
Infected CD4+ T cells are the primary sites of human immunodeficiency virus type 1 (HIV-1) replication in vivo. However, signals from professional antigen-presenting cells (APCs), such as dendritic cells and macrophages, greatly enhance HIV-1 replication in T cells. Here, we report that in cocultures, vascular endothelial cells (ECs), which in humans can also serve as APCs, can enhance HIV-1 production of both CCR5- and CXCR4-utilizing strains approximately 50,000-fold. The observed HIV-1 replication enhancement conferred by ECs occurred only in memory CD4+ T cells, required expression of major histocompatibility complex class II (MHC-II) molecules by the ECs, and could not be conferred by fixed ECs, all of which are consistent with a requirement for EC-mediated T-cell activation via T-cell receptor (TCR) signaling. Deletion of nef (Nef-) decreased HIV-1 production by approximately 100-fold in T cells cocultured with ECs but had no effect on virus production in T cells cocultured with professional APCs or fibroblasts induced to express MHC-II. Human ECs do not express B7 costimulators, but Nef- replication in CD4(+)-T-cell and EC cocultures could not be rescued by anti-CD28 antibody. ECs act in trans to enhance wild-type but not Nef- replication and facilitate enhanced wild-type replication in naive T cells when added to T-cell or B-lymphoblastoid cell cocultures, suggesting that ECs also provide a TCR-independent signal to infected T cells. Consistent with these in vitro observations, wild-type HIV-1 replicated 30- to 50-fold more than Nef- in human T cells infiltrating allogeneic human skin grafts on human huPBL-SCID/bg mice, an in vivo model of T-cell activation by ECs. Our studies suggest that ECs, which line the entire cardiovascular system and are, per force, in frequent contact with memory CD4+ T cells, provide signals to HIV-1-infected CD4+ T cells to greatly enhance HIV-1 production in a Nef-dependent manner, a mechanism that could contribute to the development of AIDS.  相似文献   

19.
The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity approximately 10- to approximately 40-fold.  相似文献   

20.
We characterized in detail the life cycle of human immunodeficiency virus type 1 (HIV-1) in human glioma H4/CD4 cells which stably express transfected CD4 DNA (B. Volsky, K. Sakai, M. Reddy, and D. J. Volsky, Virology 186:303-308, 1992). Infection of cloned H4/CD4 cells with the N1T strain of cell-free HIV-1 (HIV-1/N1T) was rapid and highly productive as measured by the initial expression of viral DNA, RNA, and protein, but all viral products declined to low levels by 14 days after infection. Chronically infected, virus-producing H4/CD4 cells could be obtained by cell cloning, indicating that HIV-1 DNA can integrate and remain expressed in these cells. The HIV-1 produced in H4/CD4 cells was noninfectious to glial cells, but it could be transmitted with low efficiency to CEM cells. Examination of viral protein composition by immunoprecipitation with AIDS serum or anti-gp120 antibody revealed that HIV-1/N1T-infected H4/CD4 cells produced all major viral proteins including gp160, but not gp120. Deglycosylation experiments with three different glycosidases determined that the absence of gp120 was not due to aberrant glycosylation of gp160, indicating a defect in gp160 proteolytic processing. Similar results were obtained in acutely and chronically infected H4/CD4 cells. To determine the generality of this HIV-1 replication phenotype in H4/CD4 cells, nine different viral clones were tested for replication in H4/CD4 cells by transfection. Eight were transiently productive like N1T, but one clone, NL4-3, established a long-lived productive infection in H4/CD4 cells, produced infectious progeny virus, and produced both gp160 and gp120. We conclude that for most HIV-1 strains tested, HIV-1 infection of H4/CD4 is restricted to a single cycle because of the defective processing of gp160, resulting in the absence of gp120 on progeny virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号