首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms underlying Ca2+ effects on lipid peroxidation (LPO) induced in liposomes (from egg yolk lecithin) and UFsomes (from linolenic acid, methyl linolenate) with the aid of O2- -system (Fe2+ + ascorbate) were studied. It was shown that stimulation of lipid peroxidation by low Ca2+ concentrations (10(-6)-10(-5) M) was due to its ability to release Fe2+-ions bound to negatively charged (phosphate, carboxylic) lipid groups (of licethin, linolenic acid), thus increasing the concentration of catalytically active Fe2+. The inhibitory effect of high Ca2+ concentrations was caused by its interaction with superoxide anion-radicals and was not observed in LPO-systems, independent of O2- generation (e. g. Fe2+ + cumol hydroperoxide).  相似文献   

2.
The antioxidative effect of rutin (vitamin P) on Fe2+-induced lipid peroxidation (LPO) in bovine heart microsomes and lecithin liposomes was studied. It was shown that the LPO-induced inhibition of microsomes and liposomes in the presence of rutin occurs via two mechanisms, i.e., association of Fe2+ ions to form an inactive complex and a direct interaction between rutin and free radicals. The contribution of these mechanisms depends on the composition of the reaction mixture. In bovine heart microsomes and liposomes, ascorbic acid has a dual activity towards LPO. At high concentrations of Fe2+ necessary for LPO induction (approximately 1 x 10(-3) M), ascorbic acid blocks LPO, whereas at low Fe2+ concentrations (less than 1 x 10(-4) M) it has a prooxidative effect. A combined use of ascorbic acid and rutin results in an additive antioxidative effect at high Fe2+ concentrations (approximately 1.10(-3) M). However, at low Fe2+ concentrations rutin acts as an antagonist of the prooxidative effect of ascorbic acid.  相似文献   

3.
A novel histamine-containing peptidomimetic, L-glutamyl-histamine (L-Glu-Hist), has been synthesized and characterized as a possible cytokine mimic which might lead to cellular responses of improved specificity. The energy-minimized 3-D conformations of L-Glu-Hist derived from its chemical structure stabilize Fe2+-chelating complexes. L-Glu-Hist concentration-dependently accelerates a decrease in ferrous iron in ferrous sulfate solution and shows ferroxidase-like activity at concentrations less than 3 mM in the phenanthroline assay, whereas in the concentration range 3-20 mM it restricts the availability of Fe2+ to phenanthroline by chelation of iron ions. At low concentrations (less than or about 1 mM), L-Glu-Hist stimulates peroxidation of phosphatidylcholine in liposomes catalyzed by a superoxide anion radical (O2)-generating system (Fe2+ + ascorbate) and, at high concentrations (*10 mM), it suppresses lipid peroxidation (LPO) in liposomes. The stimulation of LPO by L-Glu-Hist is related to its ability at low concentrations (*0.05 mM) to release O2 free radicals as determined by the superoxide dismutase-inhibitable reduction of cytochrome c. The release of O2 by L-Glu-Hist might result from its ferroxidase-like activity, while its inhibition of LPO is due to chelation of Fe2+, prevention of the formation of free radicals, and degradation of lipid hydroperoxides at 5-20 mM L-Glu-Hist concentrations. L-Glu-Hist releases O2 at concentrations which stimulate [3H]thymidine incorporation into DNA and proliferation of mouse spleen lymphocytes and also of mononuclear cells from human blood. The induction of lymphocyte proliferation by L-Glu-Hist is dose-dependent in the 0.01-0.05 mM concentration range, although the maximal stimulation of LPO in the O2-dependent system is observed at higher L-Glu-Hist concentrations (*1 mM). Thus, low concentrations of oxygen free radicals released by L-Glu-Hist may provide a very fast, specific, and sensitive trigger for lymphocyte proliferation and immunoregulation.  相似文献   

4.
The lipid distribution in binary mixed membranes containing charged and uncharged lipids and the effect of Ca2+ and polylysine on the lipid organization was studied by the spin label technique. Dipalmitoyl phosphatidic acid was the charged, and spin labelled dipalmitoyl lecithin was the uncharged (zwitterionic) component. The ESR spectra were analyzed in terms of the spin exchange frequency, Wex. By measuring Wex as a function of the molar percentage of labelled lecithin a distinction between a random and a heterogeneous lipid distribution could be made. It is established that mixed lecithin-phosphatidic acid membranes exhibit lipid segregation (or a miscibility gap) in the fluid state. Comparative experiments with bilayer and monolayer membranes strongly suggest a lateral lipid segregation. At low lecithin concentration, aggregates containing between 25% and 40% lecithin are formed in the fluid phosphatidic acid membrane. This phase separation in membranes containing charged lipids is understandable on the basis of the Gouy-Chapman theory of electric double layers. In dipalmitoyl lecithin and in dimyristoyl phosphatidylethanolamine membranes the labelled lecithin is randomly distributed above the phase transition and has a coefficient of lateral diffusion of D = 2.8-10(-8) cm2/s at 59 degrees C. Addition of Ca2+ dramatically increases the extent of phase separation in lecithin-phosphatidic acid membranes. This chemically (and isothermally) induced phase separation is caused by the formation of crystalline patches of the Ca2+-bound phosphatidic acid. Lecithin is squeezed out from these patches of rigid lipid. The observed dependence of Wex on the Ca2+ concentration could be interpreted quantitatively on the basis of a two-cluster model. At low lecithin and Ca2+ concentration clusters containing about 30 mol % lecithin are formed. At high lecithin or Ca2+ concentrations a second type of precipitation containing 100% lecithin starts to form in addition. A one-to-one binding of divalent ions and phosphatidic acid at pH 9 was assumed. Such a one-to-one binding at pH 9 was established for the case of Mn2+ using ESR spectroscopy. Polylysine leads to the same strong increase in the lecithin segregation as Ca2+. The transition of the phosphatidic acid bound by the polypeptide is shifted from Tt = 47.5 degrees to Tt = 62 degrees C. This finding suggests the possibility of cooperative conformational changes in the lipid matrix and in the surface proteins in biological membranes.  相似文献   

5.
Oxidation of ferrous iron during peroxidation of lipid substrates   总被引:3,自引:0,他引:3  
Oxidation of Fe2+ in solution was dependent upon medium composition and the presence of lipid. The complete oxidation of Fe2+ in 0.9% saline was markedly accelerated in the presence of phosphate or EDTA and the ferrous oxidation product formed was readily recoverable as Fe2+ by ascorbate reduction. In contrast, in the presence of either brain synaptosomal membranes, phospholipid liposomes, fatty acid micelles or H2O2, less than 50% of the Fe2+ oxidized during an incubation could be recovered as Fe2+ via reduction with ascorbate. In the presence of unsaturated lipid, oxidation of Fe2+ was associated with peroxidation of lipid, as assessed by the uptake of O2 and formation of thiobarbituric acid-reactive products during incubations. Although relatively little Fe2+ oxidation or lipid peroxidation occurred in saline with synaptosomes or linoleic acid micelles during an incubation with Fe2+ alone, significant Fe2+ oxidation and lipid peroxidation occurred in incubations containing a 1:1 ratio of Fe2+ and Fe3+. Extensive Fe2+ oxidation and lipid peroxidation also occurred with Fe2+ alone in saline incubations with either linolenic or arachidonic acid acid micelles or liposomes prepared from dilinoleoylphosphatidylcholine. While a 1:1 ratio of Fe2+ and Fe3+ enhanced thiobarbituric acid-reactive product formation in incubations containing linolenic or arachidonic micelles, it reduced the rate of O2 consumption as compared with Fe2+ alone. The results demonstrate that oxidation of Fe2+ in incubations containing lipid substrates is linked to and accelerated by peroxidation of those substrates. Furthermore, the results suggest that oxidation of Fe2+ in the presence of lipid or H2O2 creates forms of iron which differ from those formed during simple Fe2+ autoxidation.  相似文献   

6.
Unscheduled DNA synthesis (UDSox) and lipid peroxidation (LPO) induced by non-enzymatic activation of molecular oxygen (Fe2+ +H2O2) were measured in human peripheral lymphocytes from healthy volunteers. The effect of paracetamol (PC) in a final concentration range of 0.05-10 mmole/l on these oxidative processes and on DNA repair induced by MNNG (UDSmut) was investigated. The level of induced LPO was measured by the thiobarbituric acid assay, UDSox and UDSmut were determined by scintillometric measurement of incorporated [methyl-3H]thymidine into damaged DNA. PC at concentrations lower than 1 mmole/l significantly potentiates the non-enzymatically induced LPO and UDSox with the maximum of the activation being around 0.1 mmole/l. In contrast, PC at concentrations higher than 1 mmole/l exhibits an inhibitory effect on both LPO and UDSox. On the other hand, concentrations higher than 1 mmole/l significantly suppressed DNA-repair synthesis induced by MNNG.  相似文献   

7.
Eu3+-tetracycline complex (EuT) increased the chemiluminescence (CL) intensity of linolenic acid micells (UFA-somes) oxidized with lipoxygenase and CL of the lecithin liposomes peroxidized with Fe2+ ions by 3 orders of magnitude. In the systems producing oxygen radicals (xanthine + xanthine oxidase and Fenton's reagent) EuT was ineffective. Luminol increased CL intensity up to 4 orders of magnitude in Fenton's reagent and by 2 orders of magnitude in xanthine oxidase reaction. The sensitization of CL in Fe2+-induced lipid peroxidation (LPO) of liposomes was by a factor 40, while in lipoxygenase reaction very low sensitization was observed. By means of cut-off light filter OS-12 (Soviet) having short wave-length transmittance limit at 560 nm it was possible to measure separately in the same sample the luminol-sensitized CL (maximal emission near 480 nm) and EuT-sensitized CL (maximum at 620 nm); these two CL components reflect, correspondingly, the production rate of oxygen- and lipid-free radicals. Mannitol, the OH radical scavenger, inhibited luminol-dependent component of CL in peroxidized liposomes and did not inhibited EuT sensitized CL in the same system. Apparently, hydroxyl radicals are produced in LPO reactions and responsible for the effect of CL sensitization by luminol, but are not involved in the chain LPO process.  相似文献   

8.
An original representative of the patented by author family of histamine-containing peptidomimetics L-glutamyl-histamine (L-Glu-Hist) was synthesized and characterized as a biologically active compound with a role of cytokine mimic leading to cellular responses of improved specificity. The study assesses the ability of L-Glu-Hist to affect molecular modeling, modulate free radical activity and influence immune cell signaling. The energy-minimized 3D conformations of L-Glu-Hist derived from its chemical structure resulted in stabilization for Fe2+ chelating complexes. L-Glu-Hist accelerated the decrease of ferrous iron in the ferrous sulfate solution in a concentration-dependent mode and showed the ferroxidase-like activity at concentrations less than 3 mM in the phenanthroline assay, whereas in the concentration range 3-20 mM L-Glu-Hist restricted the availability of Fe2+ to phenanthroline due to binding of ferrous ions in chelating complexes. L-Glu-Hist showed stimulatory effect on phosphatidylcholine liposomal peroxidation (LPO) catalyzed by the superoxide anion radical (O2*-)-generating system (Fe2+ + ascorbate) at low (less or about 1 mM) L-Glu-Hist concentrations and both revealed the inhibitory effect on LPO in this system of high (approximately 10 mM) L-Glu-Hist concentration. The stimulation of LPO by L-Glu-Hist was related to the ability of peptidomimetic in small (approximately 0.05 mM) concentrations to release O2*- free radicals as determined by the superoxide dismutase-inhibitable cytochrome c reduction assay. O2*- release by L-Glu-Hist might result from its ferroxidase-like activity, while inhibition of LPO by L-Glu-Hist was caused by its chelating activity to Fe2+ ions, prevention of free radical generation and lipid hydroperoxide-degrading ability of 5-20 mM L-Glu-Hist. L-Glu-Hist released O2*- in concentrations which stimulated [3H]-thymidine incorporation into DNA and proliferation of mouse spleen lymphocytes and mononuclear cells from human blood. L-Glu-Hist modulates the ability of oxygen free radicals to act as signaling agents at low concentrations, influencing gene expression. The structural peptide-like analogues of L-Glu-Hist such as L-Glu-Trp, carcinine (beta-alanylhistamine), but not L-Pro-Glu-Trp were active in stimulating thymidine incorporation and in inducing proliferation of mononuclear cells as compared to mitogen concanavalin A at doses 2.5-25.0 microg/ml. Our data provide evidence that L-Glu-Hist may act as a very fast, specific and sensitive trigger for lymphocyte proliferation and immunoregulation. The cited abilities and further obtained in vivo results make Immudilin ((INCI: glutamylamidoethyl imidazole, aqueous solution), L-Glu-Hist) a useful immunoregulatory agent.  相似文献   

9.
The effects of lipid peroxidation on ADP-induced aggregation of washed rat platelets were examined using a oxygen-radical-generating system consisting of H2O2 and ferrous ion. Lipid peroxidation was assessed by measurement of thiobarbituric acid-reactive substances (TBARS). Incubation of the platelets with various concentrations of H2O2 (2-10 mM) in the presence of 10 microM Fe2+ resulted in a decrease of the aggregating capacity and an increase of TBARS value, depending on the concentrations of H2O2. Addition of catalase (0.1 mg/ml) to the incubation medium containing 10 microM Fe2+ and 10 mM H2O2 effectively protected the aggregating capacity, but superoxide dismutase (0.1 mg/ml) did not protect H2O2/Fe(2+)-induced inhibition of the platelet aggregation. The results of kinetic studies on the platelet aggregation with varying ADP and Ca2+ concentrations suggested that treatment of the platelets with H2O2/Fe2+ causes decreases in the binding affinities of ADP and Ca2+ for the platelets. On the basis of these results, change in the aggregating capacity of the platelets by treatment with H2O2/Fe2+ is discussed in relation to lipid peroxidation.  相似文献   

10.
Nitric oxide as a cellular antioxidant: a little goes a long way   总被引:1,自引:0,他引:1  
Nitric oxide (NO*) is an effective chain-breaking antioxidant in free radical-mediated lipid oxidation (LPO). It reacts rapidly with peroxyl radicals as a sacrificial chain-terminating antioxidant. The goal of this work was to determine the minimum threshold concentration of NO* required to inhibit Fe2+ -induced cellular lipid peroxidation. Using oxygen consumption as a measure of LPO, we simultaneously measured nitric oxide and oxygen concentrations with NO* and O2 electrodes. Ferrous iron and dioxygen were used to initiate LPO in docosahexaenoic acid-enriched HL-60 and U937 cells. Bolus addition of NO* (1.5 microM) inhibited LPO when the NO* concentration was greater than 50 nM. Similarly, using (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate as a NO* donor we found that an average steady-state NO* concentration of at least 72 +/- 9 nM was required to blunt LPO. As long as the concentration of NO* was above 13 +/- 8 nM the inhibition was sustained. Once the concentration of NO* fell below this value, the rate of lipid oxidation accelerated as measured by the rate of oxygen consumption. Our model suggests that a continuous production of NO* that would yield a steady-state concentration of only 10-20 nM is capable of inhibiting Fe2+ -induced LPO.  相似文献   

11.
Intense lipid peroxidation of brain synaptosomes initiated with Fenton's reagent (H2O2 + Fe2+) began instantly upon addition of Fe2+ and preceded detectable OH. formation. Although mannitol or Tris partially blocked peroxidation, concentrations required were 10(3)-fold in excess of OH. actually formed, and inhibition by Tris was pH dependent. Lipid peroxidation also was initiated by either Fe2+ or Fe3+ alone, although significant lag phases (minutes) and slowed reaction rates were observed. Lag phases were dramatically reduced or nearly eliminated, and reaction rates were increased by a combination of Fe3+ and Fe2+. In this instance, lipid peroxidation initiated by optimal concentrations of H2O2 and Fe2+ could be mimicked or even surpassed by providing optimal ratios of Fe3+ to Fe2+. Peroxidation observed with Fe3+ alone was dependent upon trace amounts of contaminating Fe2+ in Fe3+ preparations. Optimal ratios of Fe3+:Fe2+ for the rapid initiation of lipid peroxidation were on order of 1:1 to 7:1. No OH. formation could be detected with this system. Although low concentrations of H2O2 or ascorbate increased lipid peroxidation by Fe2+ or Fe3+, respectively, high concentrations of H2O2 or ascorbate (in excess of iron) inhibited lipid peroxidation due to oxidative or reductive maintenance of iron exclusively in Fe2+ or Fe3+ form. Stimulation of lipid peroxidation by low concentrations of H2O2 or ascorbate was due to the oxidative or reductive creation of Fe3+:Fe2+ ratios. The data suggest that the absolute ratio of Fe3+ to Fe2+ was the primary determining factor for the initiation of lipid peroxidation reactions.  相似文献   

12.
In a previous study (Minotti, G., 1989, Arch. Biochem. Biophys. 268, 398-403) NADPH-supplemented microsomes were found to reduce adriamycin (ADR) to semiquinone free radical (ADR-.), which in turn autoxidized at the expense of oxygen to regenerate ADR and form O2-. Redox cycling of ADR was paralleled by reductive release of membrane-bound nonheme iron, as evidenced by mobilization of bathophenanthroline-chelatable Fe2+. In the present study, iron release was found to increase with concentration of ADR in a superoxide dismutase- and catalase-insensitive manner. This suggested that membrane-bound iron was reduced by ADR-. with negligible contribution by O2-. or interference by its dismutation product H2O2. Following release from microsomes, Fe2+ was reconverted to Fe3+ via two distinct mechanisms: (i) catalase-inhibitable oxidation by H2O2 and (ii) catalase-insensitive autoxidation at the expense of oxygen, which occurred upon chelation by ADR and increased with the ADR:Fe2+ molar ratio. Malondialdehyde formation, indicative of membrane lipid peroxidation, was observed when approximately 50% of Fe2+ was converted to Fe3+. This occurred in presence of catalase and low concentrations of ADR, which prevented Fe2+ oxidation and favored only partial Fe2+ autoxidation, respectively. Lipid peroxidation was inhibited by superoxide dismutase via increased formation of H2O2 from O2-. and excessive Fe2+ oxidation. Lipid peroxidation was also inhibited by high concentrations of ADR, which favored maximum Fe2+ release but also caused excessive Fe2+ autoxidation via formation of very high ADR:Fe2+ molar ratios. These results highlighted multiple and diverging effects of ADR, O2-., and H2O2 on iron release, iron (auto-)oxidation and lipid peroxidation. Stimulation of malondialdehyde formation by catalase suggested that lipid peroxidation was not promoted by reaction of Fe2+ with H2O2 and formation of hydroxyl radical. The requirement for both Fe2+ and Fe3+ was indicative of initiation by some type of Fe2+/Fe3+ complex.  相似文献   

13.
The role of lipid peroxidation (LPO) in the damages of the enzymic system of Ca2+ transport in sarcoplasmic reticulum (SR) membranes of skeletal and cardiac muscles under conditions of vitamin E deficiency, ischemia and limb reoxygenation as well as in emotional-pain stress was investigated. It was shown that these processes are associated with activation of endogenous LPO in SR membranes "in vivo" and with simultaneous inhibition of Ca2+ transport, (i. e. decrease of the Ca2+/ATP ratio) and inactivation of Ca-ATPase. The degree of damage of the Ca2+ transport system was correlated with the concentration of LPO products accumulated in SR membranes "in vivo and during LPO induction by the Fe2+ + ascorbate system 'in vitro". Injection of natural and synthetic free radical scavengers (e. g. 4-methyl-2.6-ditretbutylphenol, alpha-tocopherol) to experimental animals resulted in practically complete suppression of LPO activation "in vivo" and in partial protection of the Ca2+-transporting capacity of SR membranes. A comparison of experimental results allowed to estimate the role of LPO in SR damage under pathological conditions. Model experiments with "contraction-relaxation" cycles including isolated components of muscle fibers (SR fragments and myofibrils) demonstrated that LPO induction in SR membranes by the Fe2+ + ascorbate system results in complete elimination of the relaxation step in myofibrils due to the loss of the SR affinity to decrease the concentration of Ca2+ in the incubation medium. This effect can be removed by free radical scavengers. The role of LPO in pathological changes of muscle contractility is discussed.  相似文献   

14.
The characteristics of hydroperoxide activation of 5-lipoxygenase were examined in the high speed supernatant fraction prepared from rat polymorphonuclear leukocytes. Stimulation of 5-lipoxygenase activity by the 5-hydroperoxyeicosatetraenoic acid (5-HPETE) reaction product was strongly dependent on the presence of thiol compounds. Various reducing agents such as mercaptoethanol and glutathione (0.5-2 mM) inhibited the reaction and increased the concentrations of 5-HPETE (1-10 microM) necessary to achieve maximal arachidonic acid oxidation. The requirement for 5-HPETE was not specific and could be replaced by H2O2 (10 microM) but not by the 5-hydroxyeicosatetraenoic acid (5-HETE) analogue. Furthermore, gel filtration chromatography of the soluble extract from leukocytes resolved different fractions which can increase the hydroperoxide dependence or fully replace the stimulation by 5-HPETE. Maximal activity of the 5-HPETE-stimulated reaction required Ca2+ ions (0.2-1 mM) and ATP with the elimination of the HPETE requirement at high ATP concentrations (2-4 mM). In addition, NADPH (1-2 mM), FAD (1 mM), Fe2+ ions (20-100 microM) and chelated Fe3+ (0.1 mM-EDTA/0.1 mM-FeCl3) all markedly increased product formation by 5-lipoxygenase whereas NADH (1 mM) was inhibitory and Fe3+ (20-100 microM) alone had no effect on the reaction. The stimulation by Fe2+ ions and NADPH was also observed under various conditions which increase the hydroperoxide dependence such as pretreatment of the enzyme preparation with glutathione peroxidase or chemical reduction with 0.015% NaBH4. These results provide evidence for an hydroperoxide activation of 5-lipoxygenase which is not product-specific and is modulated by thiol levels and several soluble components of the leukocytes. They also indicate that stimulation of 5-lipoxygenase activity can contribute to increase lipid peroxidation in iron and nucleotide-promoted reactions.  相似文献   

15.
Chromaffin granules, the catecholaminergic storage granules from adrenal chromaffin cells, lysed in 10(-9)-10(-7) M Fe2+. Lysis was accompanied by the production of malondialdehyde which results from lipid peroxidation. Both chromaffin granule lysis and malondialdehyde production were inhibited by the free radical trapping agent butylated hydroxytoluene but not by catalase and/or superoxide dismutase. The results suggest that lysis resulted from a direct transfer of electrons from Fe2+ to a component of the chromaffin granule membrane without the participation of either superoxide or hydrogen peroxide and may have resulted from lipid peroxidation. In some experiments, ascorbate alone induced chromaffin granule lysis which was inhibited by EDTA, EGTA, or deferoxamine. The lysis was probably caused by trace amounts of reducible polyvalent cation. Lysis sometimes occurred when Ca2+ was added with EGTA (10 microM free Ca2+ concentration) and was consistently observed together with malondialdehyde production in the presence of Ca2+, EGTA, and 10 microM Fe2+ (total concentration). The apparent Ca2+ dependency for chromaffin granule lysis and malondialdehyde production was probably caused by a trace reducible polyvalent ion displaced by Ca2+ from EGTA and not by a Ca2+-dependent reaction involving the chromaffin granule.  相似文献   

16.
Unscheduled DNA synthesis (UDS) and lipid peroxidation (LPO) were measured in human peripheral lymphocytes from healthy volunteers. These processes were induced by the catalytic system Fe2+-sodium ascorbate. The degree of induced LPO was measured spectrophotometrically by the thiobarbituric acid assay. UDS was detected by scintillometric measurement of the incorporation of 3H-thymidine into DNA. The protective action by fat-soluble vitamin E (D,L-alpha-tocopherol) and the artificial antioxidant pyritinol on UDS and LPO was also investigated. The system Fe2+ (2 mumole/l)-sodium ascorbate (30 mumole/l) increased the LPO level in healthy volunteers approximately 2.5 times and the incorporation of 3H-thymidine by 60-70%. alpha-Tocopherol (0.2 mmole/l) very efficiently suppressed LPO processes (p less than 0.01) and the oxidative damage of DNA measured as UDS was also significantly diminished (p less than 0.05). Pyritinol had no effect on LPO and UDS under our experimental conditions.  相似文献   

17.
Ferric nitrilotriacetate, which causes in vivo organ injury, induced lipid peroxidation and cell death in Ehrlich ascites tumor cells in vitro. The process was inhibited by butylated hydroxyanisole and enhanced by vitamin C and linolenic acid, indicating a close relationship between cytotoxicity and the lipid peroxidizing ability of Fe3+ NTA. The cytotoxicity was suppressed by glucose and a temperature below 20 degrees C. Lipid peroxidation of Fe3+ NTA-treated cells was greater at 0 degree C than at 37 degrees C, contrary to results with Fe3+ NTA-treated plasma membranes of Ehrlich ascites tumor cell. These results suggested that metabolism and membrane fluidity are important factors in the expression of the Fe3+ NTA-induced cytotoxicity. H2O2 showed a lower cytotoxicity than did Fe3+ NTA but a greater lipid peroxidizing ability. H2O2 appeared to damage the cells less, and was quenched rapidly by cellular metabolism unlike Fe3+ NTA. In transferrin-free medium, Ehrlich ascites tumor cell readily incorporated Fe3+ NTA, and iron uptake was greater than NTA-uptake in Fe3+ NTA-treated cells, suggesting that Ehrlich ascites tumor cell incorporated iron from Fe3+NTA and metabolized it into an inert form such as ferritin.  相似文献   

18.
The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.  相似文献   

19.
The effect of exogeneous (egg) lecithin on peroxidation of microsomal lipids was studied with the view of elucidating the role of various components of lipid substrate in the overall oxidation rate of the lipids. The following processes were studied a) NADPH-dependent microsomal lipid peroxidation in the presence of lecithin; b) ascorbate-dependent microsomal lipid peroxidation in the presence of lecithin; c) oxidation of lipid mixture, isolated from the microsomes, and that of lecithin in the presence of the Fe2+ + ascorbate system; 4) oxidation of lecithin induced by the Fe2+ + ascorbate system. It was found that in the presence of exogeneous lecithin the oxidation of microsomal lipids in inhibited, which is probably due to the peculiarities of lecithin oxidation. It was shown that the specific rate of lecithin oxidation is decreased with an increase in lecithin concentration. Possible mechanisms of lecithin effect on microsomal lipid peroxidation are discussed.  相似文献   

20.
Using a pulse radiolysis approach to generate and observe superoxide anions (O2-.) in the absence and presence of calcium, we have attempted to verify the recent hypothesis of Babizhayev (Arch. Biochem. Biophys. 266, 446-451, 1988) of a Ca2(+)-O2-. interaction during lipid peroxidation. We could not observe rapid scavenging of O2-. or complex formation with Ca2+ to account for an inhibitory effect of this cation on lipid peroxidation. Neither could we agree that the stimulatory effect is due to liberation of catalytic ferrous iron from weak complexes by Ca2+. Drawing on reports in the literature, we propose an alternate explanation for the apparent stimulation of lipid peroxidation by low Ca2+ concentrations. In our view, this is not a direct effect, but reflects independently initiated processes of lipid peroxidation and Ca2+ translocation, which interact subsequently in a synergistic manner. The reported inhibition at high Ca2+ concentrations is considered an artifact as it was observed at levels far in excess of those relevant to animal systems (but not necessarily in some plant compartments).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号