首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The paper evaluated the effects of Se application time and rate on physiological traits, grain Se content, and yield of winter wheat by field experiment. Se application significantly increased grain Se content and yield, and the increased amount treated with 20 and 30 mg Se?L?1 was the highest. At blooming–filling stage, Se application significantly increased grain Se content, but did not affect yield. Chlorophyll content was increased by Se application, and the increased amount at heading–blooming stage was higher than that in wheat leaves at the other stages. At four development stages, Se treatments (except for 10 mg Se?L?1 at jointing–heading stage) significantly decreased the rate of superoxide (O2 ?) radical production. At heading–blooming (except for 50 mg Se?L?1) and blooming–filling stages, hydrogen peroxide (H2O2) content was significantly decreased by Se treatments. The rate of O2 ? production and H2O2 content at 20 and 30 mg Se?L?1 was the lowest. Se treatments (except for 10 mg Se?L?1 at regreening–jointing and blooming–filling stages) also induced an evident decrease in malondialdehyde content. Proline content induced by Se treatments at jointing–heading and heading–blooming stages was higher than that in wheat leaves at regreening–jointing and blooming–filling stages. At four development stages, Se treatments all significantly increased glutathione peroxidase activity, and the treatments with 20 and 30 mg Se?L?1 also evidently increased reduced glutathione content. These results suggested that Se application at different development stages increased antioxidant capacity of wheat, reduced oxidant stress to some extent, and the effects of Se treatments was the best if Se concentration ranged between 20 and 30 mg Se?L?1. In addition, Se application time was more beneficial for Se accumulation and yield in wheat grain at heading–blooming stage.  相似文献   

2.

This study assessed the interactive effect of selenium (Se) and farmyard manure (FYM) on soil microbial activities, growth, yield, and Se accumulation by wheat grains. Preliminarily, the effect of Se (0–250 µg kg?1 soil) and FYM (0–12.5 g kg?1 soil) was assessed on soil microflora. Selenium exhibited an adverse impact on soil microflora; respiration was decreased at?≥?10 µg kg?1 soil while dehydrogenase and urease activities were decreased at?≥?125 µg kg?1 soil. At 250 µg Se kg?1 soil, respiration, dehydrogenase and urease activities were decreased by 81, 40 and 35%, respectively, on unamended soil, and by 9, 47 and 22%, respectively, on FYM-amended soil. The subsequent plant experiments were conducted with same Se and FYM rates; one was harvested 42 days after sowing and other at crop maturity. The application of 125 µg Se kg?1 and 12.5 g FYM kg?1 soil improved seedling biomass by 12.6 and 22%, respectively, while their combined use lacked synergistic effect. Similarly, at maturity Se and FYM increased grain yield while their combined effect was not synergistic. The Se-induced suppression in microbial activities was not related to yield which was improved (11% at the highest rate in unamended soil) by Se application. Selenium application increased grain Se content in a rate-dependent manner, it increased from 0 to 1025 µg kg?1 by applying 250 µg Se kg?1 soil. Moreover, FYM application decreased Se accumulation in grains. It is concluded that FYM application increased soil microbial activities and yield but reduced grain Se accumulation in wheat on Se-applied soil.

  相似文献   

3.
A two-year in-situ phytoremediation trial was launched in Shenyang Zhangshi (Sewage) Irrigation Area (SZIA). The phytoremediation efficiency of Solanum nigrum L. was determined, by both monitoring the change of soil Cadmium level in the upper 20 cm of soil, and calculating the plant uptake of soil Cd. After two years experimental, by monitoring the soil Cd concentrations, The Cd concentrations decreased on average from 2.75 mg kg?1to 2.45 mg kg?1 in the first year and from 2.33 mg kg?1 to 1.53 mg kg?1 in the second year, amounting to a decrease by a factor of 10.6% in the first year and 12% in the second year. After two years phytoremediation by S. nigrum, Cd concentrations of the seven experimental plots with S. nigrum growth decreased from 2.75 mg kg?1 to 1.53 mg kg?1, a decrease by a factor of 24.9%. And the soil Cd concentration decreased only 2.1% and 1.7% in the bared experimental plot. And the calculating of Cd uptake by S. nigrum shown that, the plants uptake 4.46% and 5.18% of the total soil Cd in 2008 and 2009, while the soil Cd concentrations decreased by a factor of 10.6% in 2008 and 12.1% in 2009.  相似文献   

4.
The exposure of paddy fields to arsenic (As) through groundwater irrigation is a serious concern that may not only lead to As accumulation to unacceptable levels but also interfere with mineral nutrients in rice grains. In the present field study, profiling of the mineral nutrients (iron (Fe), phosphorous, zinc, and selenium (Se)) was done in various rice genotypes with respect to As accumulation. A significant genotypic variation was observed in elemental retention on root Fe plaque and their accumulation in various plant parts including grains, specific As uptake (29–167 mg kg?1 dw), as well as As transfer factor (4–45%). Grains retained the least level of As (0.7–3%) with inorganic As species being the dominant forms, while organic As species, viz., dimethylarsinic acid and monomethylarsonic acid, were non-detectable. In all tested varieties, the level of Se was low (0.05–0.12 mg kg?1 dw), whereas that of As was high (0.4–1.68 mg kg?1 dw), considering their safe/recommended daily intake limits, which may not warrant their human consumption. Hence, their utilization may increase the risk of arsenicosis, when grown in As-contaminated areas.  相似文献   

5.
Phytoextraction of Risk Elements by Willow and Poplar Trees   总被引:1,自引:0,他引:1  
To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4–2.0 mg Cd.kg?1, 78–313 mg Zn.kg?1, 21.3–118 mg Cu.kg?1). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg?1, 909 mg Zn.kg?1, and 17.7 mg Cu.kg?1) compared to Populus clones (maximum 2.06 mg Cd.kg?1, 463 mg Zn.kg?1, and 11.8 mg Cu.kg?1). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) in the surface urban soils of Shenyang in Northeastern China were investigated. The total concentration of the PAHs ranged from 0.09 to 8.35 mg kg?1, with an average value of 1.51 ± 1.64 mg kg?1. 3–5-ring PAHs accounted for 90% of total PAHs. The functional areas, such as the industrial regions (4.95 mg kg?1) and main roads (1.56 mg kg?1), as well as the administrative divisions, including the districts of Shenhe (1.49 mg kg?1), Heping (2.08 mg kg?1), and Tiexi (2.14 mg kg?1), were heavily polluted by PAHs. The diagnostic ratios and principal component analysis (PCA) for PAHs indicate that the pollutants probably originated primarily from coal combustion and petroleum sources. The Nemerow composite index, used to assess environmental quality, shows that the soil samples were heavily polluted with PAHs, and although 52.8% of the soil sampling sites were safe, 47.2% of the soil sampling sites registered different grades of PAH pollution. The PAH contamination in Shenyang emphasizes the need for controlling fossil fuel combustion and traffic exhaust.  相似文献   

7.
The objective of this research was to use a counter-current leaching process (CCLP) with leachate treatment to develop a remediation process for contaminated soils at a small-arms shooting range (SASR). The soil contaminant concentrations were 245 mg Cu kg?1, 3,368 mg Pb kg?1, 73 mg Sb kg?1, and 177 mg Zn kg?1. The CCLP includes three acid leaching steps (1M H2SO4 + 4M NaCl, t = 1 h, T = 20°C, soil suspension = 100 g L?1), followed by one water rinsing step (1 h). Seven counter-current remediation cycles were completed, and the average resulting metal removals were 93.2 ± 3.5% of Cu, 91.5 ± 5.7% of Pb, 82.2 ± 10.9% of Sb, and 30.0 ± 11.4% of Zn. The metal leaching performances decreased with the number of completed cycles. Soil treated with the CCLP with leachate treatment process met the USEPA threshold criteria of 5 mg Pb L?1 in the TCLP leachate. The CCLP allows a decrease of the water use by 32.9 m3 t?1 and the chemicals’ consumption by approximately 2,650 kg H2SO4, 6,014 kg NaCl, and 1,150 kg NaOH per ton of treated soil, in comparison to standard leaching processes. This corresponds to 78%, 69%, 83%, and 67% of reduction, respectively.  相似文献   

8.
This research presented here, for the first time, elucidates the responses of several antioxidants in Pennisetum leaves exposed to varying concentrations of atrazine (0–200 mgkg?1). Pennisetum has been reported to be resistant to atrazine; however, its physiological response to high concentrations (≥50 mgkg?1) of atrazine is not well documented. The contents of reduced (AsA) and oxidized (DHA) ascorbate increased significantly with increase in atrazine concentration and exposure time; but the increase was more evident under higher (50 and 100 mgkg?1) atrazine concentrations. Increase in atrazine concentration to 200 mgkg?1 significantly decreased AsA, but increased DHA content, throughout the experiment. Seedlings treated with 200 mgkg?1 atrazine showed significantly lowest reduced glutathione (GSH) content, while oxidized glutathione (GSSG) was not significantly affected, after 68 d. Seedlings treated with 100 mgkg?1 atrazine showed increased glutathione-S-transferase (GST) activity after 48 d and 68 d, while treatment with 200 mgkg?1 atrazine significantly increased glutathione reductase (GR) after 58 d. This result suggests that Pennisetum may tolerate lower atrazine concentrations. However, higher concentrations (≥50 mg kg?1), which could have longer residency period in the soil, could induce more physiological damage to the plant.  相似文献   

9.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

10.

Background and aims

The potential use of a metal-tolerant sunflower mutant line for both biomonitoring and phytoremediating a Cu-contaminated soil series was investigated.

Methods

The soil series (21–1,170 mg Cu kg?1) was sampled in field plots at control and wood preservation sites. Sunflowers were cultivated 1 month in potted soils under controlled conditions.

Results

pH and dissolved organic matter influenced Cu concentration in the soil pore water. Leaf chlorophyll content and root growth decreased as Cu exposure rose. Their EC10 values corresponded to 104 and 118 μg Cu L?1 in the soil pore water, 138 and 155 mg Cu kg?1 for total soil Cu, and 16–18 mg Cu kg?1 DW shoot. Biomass of plant organs as well as leaf area, length and asymmetry were well correlated with Cu exposure, contrary to the maximum stem height and leaf water content.

Conclusions

Physiological parameters were more sensitive to soil Cu exposure than the morphological ones. Bioconcentration and translocation factors and distribution of mineral masses for Cu highlighted this mutant as a secondary Cu accumulator. Free Cu2+ concentration in soil pore water best predicted Cu phytoavailability. The usefulness of this sunflower mutant line for biomonitoring and Cu phytoextraction was discussed.  相似文献   

11.
We investigated effect of farm yard manure (FYM) and compost applied to metal contaminated soil at rate of 1% (FYM-1, compost-1), 2% (FYM-2, compost-2), and 3% (FYM-3, compost-3). FYM significantly (P < 0.001) increased dry weights of shoots and roots while compost increased root dry weight compared to control. Amendments significantly increased nickel (Ni) in shoots and roots of maize except compost applied at 1%. FYM-3 and -1 caused maximum Ni in shoots (11.42 mg kg?1) and roots (80.92 mg kg?1), respectively while compost-2 caused maximum Ni (14.08 mg kg?1) and (163.87 mg kg?1) in shoots and roots, respectively. Plants grown in pots amended with FYM-2 and compost-1 contained minimum Cu (30.12 and 30.11 mg kg?1) in shoots, respectively. FYM-2 and compost-2 caused minimum zinc (Zn) (59.08 and 66.0 mg kg?1) in maize shoots, respectively. FYM-2 caused minimum Mn in maize shoots while compost increased Mn in shoots and roots compared to control. FYM and compost increased the ammonium bicarbonate diethylene triamine penta acetic acid (AB-DTPA) extractable Ni and Mn in the soil and decreased Cu and Zn. Lower remediation factors for all metals with compost indicated that compost was effective to stabilize the metals in soil compared to FYM.  相似文献   

12.
Concentrations of four metals (Cu, Zn, Pb, and Cd) in the sediments of the Anzali Lagoon in the northern part of Iran were determined to evaluate the level of contamination and spatial distribution. The sediments were collected from 21 locations in the lagoon. At each lagoon site a core, 60 cm long, was taken. The ranges of the measured concentrations in the sediments are as follows: 17–140 mg kg?1 for Cu, 20–113 mg kg?1 for Zn, 1–37 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in surficial (0-20 cm) and 16–87 mg kg?1 for Cu, 28.5–118 mg kg?1 for Zn, 3–20 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in deep (40–60 cm) sediments. The results of the geoaccumulation index (Igeo) show that Cd causes moderate to heavy pollution in most of the study area. Environmental risk evaluation showed that the pollution in the Anzali Lagoon is moderate to considerable and the ranking of the contaminants followed the order: Cd > Cu > Pb > Zn. Some locations present severe pollution by metals depending on the sources, of which sewage outlets and phosphate fertilizers are the main sources of contaminants to the area.  相似文献   

13.
A pot experiment with acid yellow–brown soil was conducted to investigate the interactive effects of molybdenum (Mo) and phosphorus (P) fertilizers on the photosynthetic characteristics of seedlings and grain yield of Brassica napus which is sensitive to soil P and Mo deficiency. Both Mo and P fertilizers were applied at three levels (0 mg Mo kg?1, 0.15 mg Mo kg?1, 0.30 mg Mo kg?1 soil; 0 mg P kg?1, 80 mg P kg?1, 160 mg P kg?1 soil). The results showed that P fertilizer application increased grain yield, soluble sugar concentrations of seedling leaves, DM and P accumulation of seedling shoots of Brassica napus in the absence or presence of Mo fertilizer. In contrast, Mo fertilizer increased these parameters only in the presence of P fertilizer. Mo accumulation in shoots, chlorophyll concentrations and net photosynthesis rate (P n) of seedling leaves were increased by both Mo and P fertilizers, particularly with the combination of the two fertilizers. The results also showed that the Mo and P fertilizers increased photosynthetic rate through two different mechanisms, with Mo increasing photosynthetic activity of mesophyll cells, and P increasing stomatal conductance. The results demonstrate that there was a synergetic effect on photosynthesis and grain yield between Mo and P fertilizers and it is conducive for Brassica napus growth to co-apply the two fertilizers.  相似文献   

14.

Background and aims

Much attention has focused on the effects of tropospheric ozone (O3) on terrestrial ecosystems and plant growth. Since O3 pollution is currently an issue in China and many parts of the world, understanding the effects of elevated O3 on soil carbon (C) and nitrogen (N) sequestration is essential for efforts to predict C and N cycles in terrestrial ecosystems under predicted increases in O3. Thus the main objective of this study was to determine whether an increases in atmospheric O3 concentration influenced soil organic C (SOC) and N sequestration.

Methods

A free-air O3 enrichment (O3-FACE) experiment was started in 2007 and used continuous O3 exposure from March to November each year during crop growth stage in a rice (Oryza sativa L.)—wheat (Triticum aestivum L.) rotation field in the Jiangsu Province, China. We investigated differences in SOC and N and soil aggregate composition in both elevated and ambient O3 conditions.

Results

Elevated atmospheric O3 (18–80 nmol mol?1 or 50 % above the ambient) decreased the SOC and N concentration in the 0–20 cm soil layer after 5 years. Elevated O3 significantly decreased the SOC concentration by 17 % and 5.6 % in the 0–3 cm and the 10–20 cm layers, respectively. Elevated O3 significantly decreased the N concentration by 8.2–27.8 % in three layers at the 20 cm depth. In addition, elevated O3 influenced the formation and transformation of soil aggregates and the distribution of SOC and N in the aggregates across soil layer classes. Elevated O3 significantly decreased the macro-sized aggregate fraction (16.8 %) and associated C and N (0.5 g kg?1 and 0.32 g kg?1, respectively), and significantly increased the silt+ clay-sized aggregate fraction (61 %) and associated C (1.7 g kg?1) in the 0–3 cm layer. Elevated O3 significantly decreased the macro-sized aggregate fraction (9.6 %) and associated C and N (1.4 g kg?1 and 0.35 g kg?1, respectively), and significantly increased the silt+ clay-sized aggregate fraction (41.8 %) and decreased the corresponding associated N (0.14 g kg?1) in the 3–10 cm layer. Elevated O3 did not significantly effect the formation and transformation of aggregates in the 10–20 cm layer, yet it did significantly increase the C concentration in the macro-sized fraction (1 g kg?1) and decrease the N concentration in the macro- and micro-sized fractions (0.24 g kg?1 and 0.16 g kg?1, respectively).

Conclusion

Long-term exposure to elevated atmospheric O3 negatively affected the physical structure of the soil and impaired soil C and N sequestration.  相似文献   

15.
In this study, quantification of nitrophenol (NP), chlorophenol (CP), and hexachlorocyclohexane (HCH) compounds in agricultural soils in the vicinity of the industrial region in northern Uttar Pradesh, India was carried out for the assessment of human health hazard. The concentration of ∑NP, ∑CP, and ∑HCH compounds ranged 0.33–3.64 mg kg?1, 0.06–3.18 μg kg?1, and 1.23–17.24 mg kg?1, respectively, and were within the soil quality guidelines for the protection of human and environment health. Human health hazard index and cancer risk, on the basis of average daily intake of these compounds through soil for human adults and children, was lower than the acceptable limit. This study suggested low health hazard and risk due to phenolic and HCH compounds to human population.  相似文献   

16.
In the present study, field micro-plot experiments were conducted to investigate the basal and foliar application of a tested organic fertilizer amendment (OFA) for decreasing the risk of Cd accumulating in rice. The results showed that applications of OFA significantly increased rice yields in Cd-polluted soil and reduced the level of Cd in rice plants, especially in rice grain. In addition, three application methods of OFA were investigated (single basal application (B1, B2, and B3), combined basal application (+LM, +D, and +Z), and foliar application (F1, F2)). Treat B, F, +LM, +D were all higher than control on rice yield with 25.03, 28.05, 30.61, 22.50 g pot?1 on average, respectively. Among which, rice cadmium depress to 0.33 mg kg?1 in foliar application is considered to be a more efficient and economical method of heavy metal remediation. The mechanism of foliar application to alleviate the accumulation of Cd in brown rice may be related to the probable Cd sequestration in the leaves and straws. And the doses of the foliar application were 2.25–3.75 kg hm?2, approximately 1.0–2.5% of the basal application amount yet with more effect (0.10 mg kg?1 more than single basal; 0.23 mg kg?1 more than combined basal) on Cd reduction.  相似文献   

17.
Two shrub species (Piliostigma reticulatum (D.C.) Hochst (Caesalpinioideae) and Guiera senegalensis J.F. Gmel (Combretaceae) are commonly found in farmers’ fields at varying densities in semi-arid Senegal and throughout the Sahel where soils have chronically low phosphorus (P) availability. It seems plausible that shrub litter and the rhizospheres could influence P fractions and other chemical soil properties that affect crop productivity. Thus, a study was done at two sites, on the distribution of inorganic and organic soil P pools, organic C levels, and pH in soil beneath and outside the canopies of P. reticulatum and G. senegalensis (0-30 cm depth). Both sites had low total P ranging from 64 mg P kg?1 to 135 mg P kg-1, and low extractable PO4 (resin Pi) (1–6 mg P kg?1) with P fractions dominated by NaOH-P. Organic P (Po) made up about 50% of total P, and most of the organic P (>60%) was found in the NaOH-P fractions. The labile P, particularly bicarb-Po was higher in soil beneath shrub canopies (8.4 mg P kg ?1), than outside the canopy (6.2 mg P kg ?1). Similarly, C, N and P to a lesser extent, were more concentrated beneath shrub canopies. P. reticulatum soil was dominated by the NaOH-Po fraction, whereas G. senegalensis had higher bicarb-Po at one of the study sites. An index of biologically available organic P (Bicarb-Po) / (Bicarb-Po?+?Bicar-Pi?+?Resin Pi) was ?>?60% and indicates that biological processes represent an important part of P cycling in these shrub ecosystems. The differential ability of shrubs in modifying soil chemical properties under their canopies has major implications for biogeochemical cycling of nutrients and C in sandy soils of semi arid Sahelian ecosystems.  相似文献   

18.

Aims

A comparison was performed between plant species to determine if extractable, rather than total soil Se, is more effective at predicting plant Se accumulation over a full growing season.

Methods

Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were sown in potted soil amended with 0, 0.1, 1.0, or 5.0 mg kg?1 Se as SeO4 2? or SeO3 2?. In addition, SeO4 2?-amended soils were amended with 0 or 50 mg kg?1 S as SO4 2?. Soils were analyzed for extractable and total concentration of Se ([Se]). Twice during the growing season plants were harvested and tissue [Se] was determined.

Results

Plants exposed to SeO3 2? accumulated the least Se. Fitted predictive models for whole plant accumulation based on extractable soil [Se] were similar to models based on total [Se] in soil (R2?=?0.73 or 0.74, respectively) and selenium speciation and soil [S] were important soil parameters to consider. As well, soil S amendments limited Se toxicity.

Conclusions

Soil quality guidelines (SQGs) based on extractable Se should be considered for risk assessment, particularly when Se speciation is unknown. Predictive models to estimate plant Se uptake should include soil S, a modifier of Se accumulation.  相似文献   

19.
Soil and house dust collected in and around Hg mines and a processing facility in Horlivka, a mid-sized city in the Donets Basin of southeastern Ukraine, have elevated As and Hg levels. Surface soils collected at a former Hg-processing facility had up to 1300 mg kg?1 As and 8800 mg kg?1 Hg; 1M HCl extractions showed 74–93% of the total As, and 1–13% of the total Hg to be solubilized, suggesting differential environmental mobility between these elements. In general, lower extractability of As and Hg was seen in soil samples up to 12 km from the Hg-processing facility, and the extractable (1M HCl, synthetic precipitation, deionized water) fractions of As are greater than those for Hg, indicating that Hg is present in a more resistant form than As. The means (standard deviation) of total As and Hg in grab samples collected from playgrounds and public spaces within 12 km of the industrial facility were 64 (±38) mg kg?1 As and 12 (±9.4) mg kg?1 Hg; all concentrations are elevated compared to regional soils. The mean concentrations of As and Hg in dust from homes in Horlivka were 5–15 times higher than dust from homes in a control city. Estimates of possible exposure to As and Hg through inadvertent soil ingestion are provided.  相似文献   

20.
Two trials were conducted in a 2?×?2?+?1 factorial arrangement based on a completely randomized design to evaluate the effects of different sources of selenium (Se) on performance, blood metabolites, and nutrient digestibility in male lambs on a barley-based diet. The first trial lasted for 70 days and consisted of 30 lambs (35.6?±?2.6 kg mean body weight, about 4–5 months of age) which were randomly allotted to five treatments including: (1) basal diet (containing 0.06 mg Se/kg DM; control) without supplementary Se, (2) basal diet?+?0.20 mg/kg Se as sodium selenite (SeS 0.20), (3) basal diet?+?0.40 mg/kg Se as sodium selenite (SeS 0.40), (4) basal diet?+?0.20 mg/kg Se as selenium yeast (SeY 0.20), and (5) basal diet?+?0.40 mg/kg Se as selenium yeast (SeY 0.40). For the second trial, four lambs from each group of experiment 1 were randomly allocated to individual metabolic cages for 14 days to measure the effects of dietary Se on nutrient digestibility. The results revealed that there were no significant differences for average daily gain, average daily feed intake, feed/gain ratio, hematological parameters (packed cell volume, red blood cell, white blood cell, and hemoglobin values), serum total protein, albumin, globulin, aspartate amino transferase, alkaline phosphatase, and creatine phosphokinase due to supplementation of different amounts and sources of Se in lambs. Dietary Se supplementation significantly improved (P?<?0.001) glutathione peroxidase activity in blood. Furthermore, at the end of the trial, serum tri-iodothyronine (T3) amount also increased (P?<?0.05), while serum thyroxine (T4) amount decreased (P?<?0.05). Digestibility of dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber increased (P?<?0.05) by Se yeast supplementation. It may be concluded that supplementation of Se in lambs had no significant effect on performance and blood hematology, but increased blood glutathione peroxidase activity and serum T3 amount and decreased serum T4 amount as compared to non-supplemented control lambs. Furthermore, Se yeast improved nutrient digestibility in lambs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号