首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A promising biotechnological strategy in the management of phosphorus (P) fertilization is the use of phosphate-solubilizing fungi to solubilize rock phosphates and allow the recovery of unavailable P fixed to soil particles. Phosphate-solubilizing rhizosphere fungus, Talaromyces funiculosus SLS8, isolated from Neem (Azadirachta indica) on saline soil, was tolerant to environmental stressors, salinity and agricultural systemic fungicides. Phosphate solubilization under different nutritional conditions was investigated by culturing T. funiculosus SLS8 in Pikovskaya liquid medium containing different nitrogen sources (ammonium sulfate, casein, urea, potassium nitrate or sodium nitrate) and carbon sources (glucose, fructose, galactose or sucrose), NaCl, and three systemic fungicides. The highest concentration of solubilised phosphate (187 mg P L?1) was achieved after 5 days of incubation in the medium with glucose and ammonium sulphate. The culture pH decreased from 6.5 to 4.2 and HPLC demonstrated organic acid production. Phosphate solubilized was highly negatively correlated with pH (r?=??0.96). Increasing salinity had no effect on phosphate solubilization. The maximum tolerance limits to systemic fungicides carbendazim, mancozeb, and hexaconazole were 12.5 μg mL?1, 2,000 μg mL?1 and 250 μl mL?1 respectively. At these concentrations carbendazim, mancozeb and hexaconazole were found to decrease phosphate solubilization by 55 %, 37 %, and 30 %, respectively. Our results indicate that T. funiculosus SLS8 may be a potential candidate for the development of a biofertilizer for maintaining available phosphate levels in environmentally stressed soils such as saline agricultural soils impacted by systemic fungicide application or seed treatment.  相似文献   

2.
The present work evaluated biomass productivity, carbon dioxide fixation rate, and biochemical composition of two microalgal species, Phaeodactylum tricornutum (Bacillariophyta) and Tetradesmus obliquus (Chlorophyta), cultivated indoors in high-technology photobioreactors (HT-PBR) and outdoors both in pilot ponds and low-technology photobioreactors in a greenhouse in southern Italy. Microalgae were grown in standard media, under nitrogen starvation, and in two liquid digestates obtained from anaerobic digestion of agro-zootechnical and vegetable biomass. P. tricornutum, cultivated in semi-continuous mode in indoor HT-PBRs with standard medium, showed a biomass productivity of 21.0?±?2.3 g m?2 d?1. Applying nitrogen starvation, the lipid productivity increased from 2.3 up to 4.5?±?0.5 g m?2 d?1, with a 24 % decrease of biomass productivity. For T. obliquus, a biomass productivity of 9.1?±?0.9 g m?2 d?1 in indoor HT-PBR was obtained using standard medium. Applying liquid digestates as fertilizers in open ponds, T. obliquus gave a biomass productivity (10.8?±?2.0 g m?2 d?1) not statistically different from complete medium such as P. tricornutum (6.5?±?2.2 g m?2 d?1). The biochemical data showed that the fatty acid composition of the microalgal biomass was affected by the different cultivation conditions for both microalgae. In conclusion, it was found that the microalgal productivity in standard medium was about doubled in HT-PBR compared to open ponds for P. tricornutum and was about 20 % higher for T. obliquus.  相似文献   

3.
Dioscorea spp. is an important food crop in many countries and the source of the phytochemical diosgenin. Efficient microtuber production could provide source materials for farm-planting stock, for food markets, and for the production of high-diosgenin-producing cultivars. The first step in this study was optimizing the plant growth regulators for plantlet production, followed by a study of the effects of sucrose concentration on microtuber induction and diosgenin production. Significantly, more shoots (3.5) were produced at 4.65 μM (1 mg L?1) kinetin (KIN), longer shoots (4.1 cm) were obtained at 2.46 μM (0.5 mg L?1) indole-3-butyric acid (IBA), and root number (3.9) was significantly higher at 5.38 μM (1 mg L?1) naphthalene acetic acid (NAA) than in other treatments. Increased sucrose concentrations in the optimized growth medium with 4.65 μM KIN and 5.38 μM NAA had significant effects on microtuber production (p < 0.01) and diosgenin content (p < 0.05). The most microtubers (6.2) were obtained with 100 g L?1 sucrose, while those on 80 g L?1 sucrose were the heaviest (0.7 g) and longest (7.4 mm). Microtubers formed in medium with 80 g L?1 sucrose had significantly higher diosgenin content (3.64% [w/w]) than those in other sucrose treatments (< 2%) and was similar to that of field-grown parent tubers (3.79%). This result indicates an important role for sucrose in both microtuber growth and diosgenin production. Medium containing 4.65 μM KIN and 5.38 μM NAA is recommended for plantlet production, and medium containing 80 g L?1 sucrose is recommended for microtuber and diosgenin production.  相似文献   

4.

Objectives

N-Acetyl-d-neuraminic acid (Neu5Ac) is often synthesized from exogenous N-acetylglucosamine (GlcNAc) and excess pyruvate. We have previously constructed a recombinant Escherichia coli strain for Neu5Ac production using GlcNAc and intracellular phosphoenolpyruvate (PEP) as substrates (Zhu et al. Biotechnol Lett 38:1–9, 2016).

Results

PEP synthesis-related genes, pck and ppsA, were overexpressed within different modes to construct PEP-supply modules, and their effects on Neu5Ac production were investigated. All the PEP-supply modules enhanced Neu5Ac production. For the best module, pCDF-pck-ppsA increased Neu5Ac production to 8.6 ± 0.15 g l?1, compared with 3.6 ± 0.15 g l?1 of the original strain. Neu5Ac production was further increased to 15 ± 0.33 g l?1 in a 1 l fermenter.

Conclusions

The PEP-supply module can improve the intracellular PEP supply and enhance Neu5Ac production, which benefited industrial Neu5Ac production.
  相似文献   

5.
Clostridium beijerinckii optinoii is a Clostridium species that produces butanol, isopropanol and small amounts of ethanol. This study compared the performances of batch and continuous immobilized cell fermentations, investigating how media flow rates and nutritional modification affected solvent yields and productivity. In 96-h batch cultures, with 80 % of the 30 g L?1 glucose consumed in synthetic media, solvent concentration was 9.45 g L?1 with 66.0 % as butanol. In a continuous fermentation using immobilized C. beijerinckii optinoii cells, also with 80 % of 30 g L?1 glucose utilization, solvent productivity increased to 1.03 g L?1 h?1. Solvent concentration reached 12.14 g L?1 with 63.0 % as butanol. Adjusting the dilution rate from 0.085 to 0.050 h?1 to allow extended residence time in column was required when glucose concentration in fresh media was increased from 30 to 50 g L?1. When acetate was used to improve the buffer capacity in media, the solvent concentration reached 12.70 on 50 g L?1 glucose. This continuous fermentation using immobilized cells showed technical feasibility for solvent production.  相似文献   

6.
Phosphate depletion is one of the favorable ways to enhance the sewage water treatment with the algae, however, detailed information is essential with respect to internal phosphate concentration and physiology of the algae. The growth rate of the phosphate-starved Scenedesmus cells was reduced drastically after 48 h. Indicating cells entered in the stationary phase of the growth cycle. Fourier Transform Infrared analysis of phosphate-starved Scenedesmus cells showed the reduction in internal phosphate concentration and an increase in carbohydrate/phosphate and carbohydrate/lipid ratio. The phosphate-starved Scenedesmus cells, with an initial cell density of, 1 × 106 cells mL?1 shows 87% phosphate and 100 % nitrogen removal in 24 h. The normal Scenedesmus cells need approximately 48 h to trim down the nutrients from wastewater up to this extent. Other microalgae, Ankistrodesmus, growth pattern was not affected due to phosphate starvation. The cells of Ankistrodesmus was able to reduce 71% phosphate and 73% nitrogen within 24 h, with an initial cell density of, 1 × 106 cells mL?1.  相似文献   

7.
Camptothecin (CPT) is mainly produced and extracted from Camptotheca acuminata and Nothapodytes foetida for pharmaceutical use, i.e., the starting material for chemical conversion to the clinical CPT-type drugs. As the third largest plant anticancer drug, the heavy demand on CPT from global market leads to many research efforts to identify new sources for CPT production. Herein we report the isolation and characterization of a CPT-producing endophytic bacterium Paenibacillus polymyxa LY214 from Camptotheca acuminata. A 10.7 μg l?1 of CPT was presented in the fermentation broth of P. polymyxa LY214. Its CPT production decreased sharply when the strain of the 2nd generation of P. polymyxa LY214 was cultured and fermented. However, the CPT production remained relatively constant from 2.8 μg l?1 of the 2nd generation to 0.8 μg l?1 of the 8th generation of P. polymyxa LY214 under optimized fermentation conditions. A 15- to 30-fold increase of CPT yield was observed when the optimized fermentation conditions, together with the addition of putative biosynthetic precursors of CPT and adsorbent resin XAD16, were applied to ferment the strains of the 7th and 8th generation of P. polymyxa LY214. Bioinformatics analysis of the relative species of P. polymyxa LY214 indicates its potential to produce CPT, which will be helpful to decipher the mysteries of CPT biosynthesis.  相似文献   

8.
The aim was to isolate, characterize, and explore potentials of gut bacteria from the earthworm (Metaphire posthuma) and imply these bacteria for remediation of Cu(II) and Zn(II). An extracellular polymeric substance (EPS) producing gut bacteria (Bacillus licheniformis strain KX657843) was isolated and identified based on 16S rRNA sequencing and phylogenetic analysis. The strain showed maximum tolerance of 8 and 6 mM for Cu(II) and Zn(II) respectively. It removed 34.5% of Cu(II) and 54.4% of Zn(II) at 25 mg L?1 after 72 and 96 h incubation respectively. The bacteria possessed a great potential to produce indole acetic acid (38.49 μg mL?1) at 5 mg mL?1 l-tryptophan following 12 days incubation. The sterilized seeds of mung beans (Vigna radiata) displayed greater germination and growth under bacterium enriched condition. We observed that the bacterial strain phosphate solubilization ability with a maximum of 204.2 mg L?1 in absence of Cu(II) and Zn(II). Endowed with biosurfactant property the bacterium exhibited 24% emulsification index. The bacterium offered significant potential of plant growth promotion, Cu(II) and Zn(II) removal, and as such this study is the first report on EPS producing B. licheniformis KX657843 from earthworm which can be applied as powerful tool in remediation programs of Cu(II) and Zn(II) contaminated sites.  相似文献   

9.
10.

Background

Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol.

Results

The Aspergillus tubingensis T8.4 α-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnuα1. The recombinant AmyA and GlaA displayed protein sizes of 110–150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnuα1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnuα1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1).

Conclusions

In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis α-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases.
  相似文献   

11.
Continuous, anaerobic fermentations of D-xylose were performed by Actinobacillus succinogenes 130Z in a custom, biofilm reactor at dilution rates of 0.05, 0.10 and 0.30 h?1. Succinic acid yields on xylose (0.55–0.68 g g?1), titres (10.9–29.4 g L?1) and productivities (1.5–3.4 g L?1 h?1) were lower than those of a previous study on glucose, but product ratios (succinic acid/acetic acid = 3.0–5.0 g g?1) and carbohydrate consumption rates were similar. Also, mass balance closures on xylose were up to 18.2 % lower than those on glucose. A modified HPLC method revealed pyruvic acid excretion at appreciable concentrations (1.2–1.9 g L?1) which improved the mass balance closure by up to 16.8 %. Furthermore, redox balances based on the accounted xylose consumed and the excreted metabolites, indicated an overproduction of reducing power. The oxidative pentose phosphate pathway was shown to be a plausible source of the additional reducing power.  相似文献   

12.
The plasticity response of Quercus variabilis and Quercus mongolica seedlings to combined nitrogen (N) deposition and drought stress was evaluated, and their performance in natural niche overlaps was predicted. Seedlings in a greenhouse were exposed to four N deposition levels (0, 4, 8, and 20 g N m?2 year?1) and two water levels (80 and 50 % field-water capacity). Plant traits associated with growth, biomass production, leaf physiology, and morphology were determined. Results showed that drought stress inhibited seedling performance, altered leaf morphology, and decreased fluorescence parameters in both species. By contrast increased N supply had beneficial effects on the nutritional status and activity of the PSII complex. The two species showed similar responses to drought stress. Contrary to the effects in Q. mongolica, N deposition promoted leaf N concentration, PSII activity, leaf chlorophyll contents, and final growth of Q. variabilis under well-watered conditions. Thus, Q. variabilis was more sensitive to N deposition than Q. mongolica. However, excessive N supply (20 g N m?2 year?1) did not exert any positive effects on the two species. Among the observed plasticity of the plant traits, plant growth was the most plastic, and leaf morphology was the least plastic. Therefore, drought stress played a primary role at the whole-plant level, but N supply significantly alleviated the adverse effects of drought stress on plant physiology. A critical N deposition load around 20 g N m?2 year?1 may exist for oak seedlings, which may more adversely affect Q. variabilis than Q. mongolica.  相似文献   

13.
The aim of this work was to evaluate the effects of co-inoculation with phosphate-solubilizing and nitrogen-fixing rhizobacteria on growth promotion, yield, and nutrient uptake by wheat. Out of twenty-five bacteria isolated from the rhizosphere soils of cereal, vegetable, and agro-forestry plants in eastern Uttar Pradesh, three superior most plant growth-promoting (PGP) isolates were characterized as Serratia marcescens, Microbacterium arborescens, and Enterobacter sp. based on their biochemical and 16S rDNA gene sequencing data and selected them for evaluating their PGP effects on growth and yield of wheat. Among them, Enterobacter sp. and M. arborescens fixed significantly higher amounts (9.32?±?0.57 and 8.89?±?0.58 mg Ng?1 carbon oxidized, respectively) of atmospheric nitrogen and produced higher amounts (27.06?±?1.70 and 26.82?±?1.63 TP 100 µg mL?1, respectively) of IAA in vitro compared to S. marcescens (8.32?±?0.39 mg Ng?1 carbon oxidized and 21.29?±?0.99 TP 100 µg mL?1). Although both M. arborescens and S. marcescens solubilized remarkable amounts of phosphate from tricalcium phosphate likely through production of organic acids, however, Enterobacter sp. was inactive. The effects of these three rhizobacteria were evaluated on wheat in alluvial soils of the Indo-Gangetic Plain by inoculation of plants with bacterial isolates either alone or in combinations in both pot and field conditions for two successive years. Rhizobacterial inoculation either alone or in consortium of varying combinations significantly (P?≤?0.05) increased growth and yield of wheat compared to mock inoculated controls. A consortium of two or three rhizobacterial isolates also significantly increased plant height, straw yield, grain yield, and test weight of wheat in both pot and field trials compared to single application of any of these isolates. Among the rhizobacterial treatment, co-inoculation of three rhizobacteria (Enterobacter, M. arborescens and S. marcescens) performed best in promotion of growth, yield, and nutrient (N, P, Cu, Zn, Mn, and Fe) uptake by wheat. Taken together, our results suggest that co-inoculation of Enterobacter with S. marcescens and M. arborescens could be used for preparation of an effective formulation of PGP consortium for eco-friendly and sustainable production of wheat.  相似文献   

14.
Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L?1 ethanol with a productivity of 0.17 ± 0.00 g L?1 h?1, while xylose plus 3 g L?1 CaCO3 resulted in the production of 24.68 ± 0.75 g L?1 ethanol with a productivity of 0.21 ± 0.01 g L?1 h?1. Use of xylose plus glucose in combination with 3 g L?1 CaCO3 resulted in the production of 47.37 ± 0.55 g L?1 ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L?1 h?1. These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L?1 CaCl2 resulted in the production of 44.84 ± 0.28 g L?1 ethanol with a productivity of 0.37 ± 0.02 g L?1 h?1. Use of glucose plus 3 g L?1 CaCO3 resulted in the production of 57.39 ± 1.41 g L?1 ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.  相似文献   

15.
The present research focused on enhancing the production of wedelolactone through cell suspension culture (CSC) in Eclipta alba (L.) Hassk. With an aim of attaining a sustainable CSC, various plant growth regulators, elicitors and agitation speed were examined. Nodal segments of in vitro propagated plantlets induced the maximum percentage (93.47?±?0.61%) of callus inoculated on Murashige and Skoog (MS) medium fortified with picloram (2 mg L?1). The growth kinetics of CSC exhibited a sigmoid pattern with a lag phase (0–6 days), a log phase (6–18 days), a stationary phase (18–24 days) and then death phase thereafter. The highest biomass accumulation in CSC with 7.09?±?0.06 g 50 mL?1 fresh weight, 1.52?±?0.02 g 50 mL?1 dry cell weight, 1.34?±?0.01?×?106 cell mL?1 total cell count and 57.00?±?0.58% packed cell volume was obtained in the liquid MS medium supplemented with 1.5 mg L?1 picloram plus 0.5 mg L?1 kinetin at 120 rpm. High performance thin layer chromatography confirmed that yeast extract (biotic elicitor) at 150 mg L?1 accumulated more CSC biomass with 1.22-fold increase in wedelolactone (288.97?±?1.94 µg g?1 dry weight) content in comparison to the non-elicited CSC (237.78?±?0.04 µg g?1 dry weight) after 120 h of incubation. Contrastingly, methyl jasmonate (abiotic elicitor) did not alter the biomass but increased the wedelolactone content (259.32?±?1.06 µg g?1 dry weight) to an extent of 1.09-fold at 100 µM. Complete plantlet regeneration from CSC was possible on MS medium containing N6-benzyladenine (0.75 mg L?1) and abscisic acid (0.5 mg L?1). Thus, the establishment of protocol for CSC constitutes the bases for future biotechnological improvement studies in this crop.  相似文献   

16.
In vitro plantlets of sugarcane cultivar NCo310 were maintained in slow growth conditions at both 18 and 24°C and on four semi-solid media: SG1—Murashige and Skoog (MS) salts and vitamins with 20 g L?1 sucrose, SG2—½ MS with 10 g L?1 sucrose, SG3—MS with 20 g L?1 sucrose and 1 mg L?1 abscisic acid (ABA), and SG4—½ MS with 10 g L?1 sucrose and 1 mg L?1 ABA. After 8, 12, 24, 36, and 48 mo shoot multiplication rates were recorded, shoots were removed from storage and subcultured every 2 wk on SG1 with 0.015 mg L?1 kinetin and 0.1 mg L?1 benzyl aminopurine for 2 mo. At 18°C, all media supported storage for 48 mo with subculturing every 12 mo. Shoot multiplication post-retrieval was significantly higher on the SG2 medium compared with the non-stored control (362 ± 84 and 126 ± 26 shoots per recovered shoot after 2 mo, respectively). In addition, shoots could be maintained for 48 mo on SG2 medium with one subculture without compromising post-storage multiplication ability. At 24°C, storage on all four media supported recovery and multiplication of shoots for 8 mo and only SG2 medium facilitated survival for 12 mo. There was no advantage to incorporating ABA into the storage media, regardless of the temperature and storage time. Cryopreservation of cultivar NCo376 in vitro-derived shoot meristems using the V-cryo-plate method demonstrated that the sucrose concentration in the loading solution (0.8–1.8 M) had no significant effect on survival of the meristems, which ranged from 41.7 ± 4.8 to 69.4 ± 10%.  相似文献   

17.
The seaweed genus Gracilaria is a potential candidate for the production of bioethanol due to its high carbohydrate content. Gracilaria is abundant throughout the world and can be found in both wild and cultivated forms. Differences in the ecological factors such as temperature, salinity, and light intensity affecting wild and cultivated specimens may influence the biochemical content of seaweeds, including the carbohydrate content. This study aimed to investigate the proximate composition and potential bioethanol production of wild and cultivated G. gigas and G. verrucosa. Bioethanol was produced using separate hydrolysis fermentation (SHF), employing a combination of enzymatic and acid hydrolysis, followed by fermentation with Saccharomyces cerevisiae ATCC 200062. The highest carbohydrate content was found in wild G. gigas. The highest galactose and glucose contents (20.21 ± 0.32 and 9.70 ± 0.49 g L?1, respectively), as well as the highest production of bioethanol (3.56 ± 0.02 g L?1), were also found in wild G. gigas. Thus, we conclude that wild G. gigas is the most promising candidate for bioethanol production. Further research is needed to optimize bioethanol production from wild G. gigas. Domestication of wild G. gigas is a promising challenge for aquaculture to avoid overexploitation of this wild seaweed resource.  相似文献   

18.
In this study, after the expression of a pyruvate carboxylase gene (PYC) cloned from Meyerozyma guilliermondii in a marine-derived yeast Yarrowia lipolytica SWJ-1b, a transformant PG86 obtained had much higher PYC activity than Y. lipolytica SWJ-1b. At the same time, the PYC gene expression and citric acid (CA) production by the transformant PG86 were also greatly enhanced. When glucose concentration in the medium was 60.0 g L?1, CA concentration formed by the transformant PG86 was 34.02 g L?1, leading to a CA yield of 0.57 g g?1 of glucose. During a 10-L fed-batch fermentation, the final concentration of CA was 101.0 ± 1.3 g L?1, the yield was 0.89 g g?1 of glucose, the productivity was 0.42 g L?1 h?1 and only 5.93 g L?1 reducing sugar was left in the fermented medium within 240 h of the fed-batch fermentation. HPLC analysis showed that most of the fermentation products were CA.  相似文献   

19.
The effect of rutin and gallic acid on growth, phytochemical and defense gene activation of rice (Oryza sativa L.) was investigated. The seeds of rice were primed with different concentrations of rutin and gallic acid (10–60 µg mL?1) to explicate the effect on germination on water agar plates. Further, to study the effect of most effective concentrations of gallic acid (60 µg mL?1) and rutin (50 µg mL?1), greenhouse pot experiment was set up to determine the changes in growth, antioxidant and defense parameters. The results revealed more pronounced effect of gallic acid on total chlorophyll and carotenoids as well as on total flavonoid content and free radical scavenging activities. Gene expression analysis of OsWRKY71, PAL, CHS and LOX genes involved in strengthening the plant defense further validated the results obtained from the biochemical analysis. Microscopic analysis also confirmed reduction in total reactive oxygen species, free radicals like H2O2 and O2 ? by exogenous application of gallic acid and rutin. The data obtained thus suggest that both gallic acid and rutin can affect the growth and physiology of rice plants and therefore can be used to develop effective plant growth promoters and as substitute of biofertilizers for maximizing their use in field conditions.  相似文献   

20.
Fucoxanthin is a carotenoid that exerts multiple beneficial effects on human health. However, reports comparing microalgae culture conditions and their effect on growth and fucoxanthin production are still limited. Isochrysis galbana and Phaeodactylum tricornutum cultures in different light (62.0, 25.9, 13.5, or 9.1 μmol photons m-2 s-1), mixing conditions (1 vvm aeration or 130 rpm agitation), and media compositions (F/2 and Conway medium) were studied for comparison of cellular growth and fucoxanthin production on F/2 medium. I. galbana showed a better adaptation to tested culture conditions in comparison with P. tricornutum, reaching 2.15?×?107?±?4.07?×?106 cells mL-1 and a specific growth rate (μ) of 1.12?±?0.05 day-1 under aerated conditions and 62.0 μmol photons m-2 s-1 light intensity. Fucoxanthin concentration was about 25 % higher in P. tricornutum cultures under 13.5 μmol photons m-2 s-1 light intensity and aerated conditions, but the highest fucoxanthin total production was higher in I. galbana, where 3.32 mg can be obtained from 1 L batch cultures at the 16th day under these conditions. Moreover, higher cell densities (~32.41 %), fucoxanthin concentration (~42.46 %), and total production (~50.68 %) were observed in I. galbana cultures grown in Conway medium, if compared with cultures grown in F/2 medium. The results show that the best growth conditions did not result in the best fucoxanthin production for either microalgae, implying that there is not a direct relationship between cellular growth and fucoxanthin production. Moreover, the results suggest that I. galbana cultures on Conway medium are strong candidates for fucoxanthin production, where 1.2 to 15 times higher fucoxanthin concentration are observed in comparison to macroalgal sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号