首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The phosphorylation level of the Saccharomyces cerevisiae Cdc28 protein remained invariant under conditions that resulted in cell cycle arrest in the G1 phase and loss of Cdc28-specific protein kinase activity when the activity was assayed in vitro. These results are in contrast to the proposed regulation of the homologous Cdc2 protein kinase of Schizosaccharomyces pombe.  相似文献   

2.
Polo kinase is activated as cells enter mitosis and plays a central role in coordinating diverse mitotic events, yet the mechanisms leading to activation of Polo kinase are poorly understood . Work in Xenopus meiotic cell cycles has suggested that Polo kinase functions in a pathway that helps trigger activation of Cdk1 . However, studies in other organisms have suggested that activation of Polo kinase is dependent upon Cdk1 and therefore occurs downstream of Cdk1 activation . In this study, we have investigated the role of Cdk1 in the activation of budding yeast Polo kinase. The budding yeast homologs of Cdk1 and Polo kinase are referred to as Cdc28 and Cdc5. We show that signaling from Cdc28 is required to maintain Cdc5 activity in vivo. Furthermore, purified Cdc28 associated with the mitotic cyclin Clb2 is sufficient to activate purified Cdc5 in vitro. A single Cdc28 consensus phosphorylation site found at threonine 242 in the activation loop segment of Cdc5 is required for Cdc5 function in vivo and for kinase activity in vitro, whereas four other Cdc28 consensus sites are dispensable. Analysis of Cdc5 phosphorylation by mass spectrometry indicates that threonine 242 is phosphorylated in vivo. These results suggest that Cdc28 activates Cdc5 via phosphorylation of threonine 242.  相似文献   

3.
The septins constitute a family of filament-forming proteins ubiquitous in eukaryotic species. We demonstrate here that the Saccharomyces cerevisiae septin, Cdc3, is a substrate of the cell cycle regulatory cyclin-dependent kinase (Cdk), Cdc28. Two serines near the C-terminus of Cdc3 are phosphorylated in a Cdc28-dependent manner. Analysis of a mutant allele that cannot be phosphorylated at these sites revealed an effect of Cdc28 phosphorylation of Cdc3 at the time of budding. Immunofluorescence analysis of wild-type and mutant Cdc3 indicated that prevention of phosphorylation at Cdc28-dependent sites impairs the disassembly of the old septin ring, which is inherited at mitosis but which usually disappears immediately prior to assembly of a new ring. Furthermore, immuno-fluorescence analysis of septin ring dynamics in a G1 cyclin (Cln) mutant suggests that G1 cyclin function is required for efficient ring disassembly. Thus, phosphorylation of Cdc3 by the Cdc28 kinase at the end of G1 may facilitate initiation of a new cell cycle by promoting disassembly of the obsolete septin ring from the previous cell cycle.  相似文献   

4.
Whereas the Cdc28 protein kinase of the budding yeast Saccharomyces cerevisiae plays an essential role in cell cycle progression during the G1 interval, a function in the progression from the G2 interval into M phase has been inferred for its homologs, including the Cdc2Hs protein kinase of humans. To better understand these apparently disparate roles, we constructed a yeast strain in which the resident CDC28 gene was replaced by its human homolog, CDC2Hs. This transgenic yeast strain was able to perform the G1 functions attributed to the Cdc28 protein kinase, including the ability to grow and divide normally, to respond to environmental signals that induce G1 arrest, and to regulate the Cdc2Hs protein kinase appropriately in response to these signals.  相似文献   

5.
In the budding yeast Saccharomyces cerevisiae, Cdc37 is required for the productive formation of Cdc28-cyclin complexes. The cdc37-1 mutant arrests at Start with low levels of Cdc28 protein, which is predominantly unphosphorylated at Thr169, fails to bind cyclin, and has little protein kinase activity. We show here that Cdc28 and not cyclin is specifically defective in the cdc37-1 mutant and that Cdc37 likely does not act as an assembly factor for Cdc28-cyclin complex formation. We have also found that the levels and activity of the protein kinase Cak1 are significantly reduced in the cdc37-1 mutant. Pulse-chase analysis indicates that Cdc28 and Cak1 proteins are both destabilized when Cdc37 function is absent during but not after translation. In addition, Cdc37 promotes the production of Cak1, but not that of Cdc28, when coexpressed in insect cells. We conclude that budding yeast Cdc37, like its higher eukaryotic homologs, promotes the physical integrity of multiple protein kinases, perhaps by virtue of a cotranslational role in protein folding.  相似文献   

6.
BACKGROUND: Exit from mitosis requires inactivation of mitotic cyclin-dependent kinases (CDKs). A key mechanism of CDK inactivation is ubiquitin-mediated cyclin proteolysis, which is triggered by the late mitotic activation of a ubiquitin ligase known as the anaphase-promoting complex (APC). Activation of the APC requires its association with substoichiometric activating subunits termed Cdc20 and Hct1 (also known as Cdh1). Here, we explore the molecular function and regulation of the APC regulatory subunit Hct1 in Saccharomyces cerevisiae. RESULTS: Recombinant Hct1 activated the cyclin-ubiquitin ligase activity of APC isolated from multiple cell cycle stages. APC isolated from cells arrested in G1, or in late mitosis due to the cdc14-1 mutation, was more responsive to Hct1 than APC isolated from other stages. We found that Hct1 was phosphorylated in vivo at multiple CDK consensus sites during cell cycle stages when activity of the cyclin-dependent kinase Cdc28 is high and APC activity is low. Purified Hct1 was phosphorylated in vitro at these sites by purified Cdc28-cyclin complexes, and phosphorylation abolished the ability of Hct1 to activate the APC in vitro. The phosphatase Cdc14, which is known to be required for APC activation in vivo, was able to reverse the effects of Cdc28 by catalyzing Hct1 dephosphorylation and activation. CONCLUSIONS: We conclude that Hct1 phosphorylation is a key regulatory mechanism in the control of cyclin destruction. Phosphorylation of Hct1 provides a mechanism by which Cdc28 blocks its own inactivation during S phase and early mitosis. Following anaphase, dephosphorylation of Hct1 by Cdc14 may help initiate cyclin destruction.  相似文献   

7.
DNA polymerase epsilon (Polepsilon), one of the three major eukaryotic replicative polymerases, is comprised of the essential catalytic subunit, called Pol2 in budding yeast, and three accessory subunits, only one of which, Dpb2, is essential. Polepsilon is recruited to replication origins during late G(1) phase prior to activation of replication. In this work we show that the budding yeast Dpb2 is phosphorylated in a cell cycle-dependent manner during late G(1) phase. Phosphorylation results in the appearance of a lower mobility species. The appearance of that species in vivo is dependent upon the Cdc28 cyclin-dependent protein kinase (CDK), which can directly phosphorylate Dpb2 in vitro. Either G(1) cyclin (Cln) or B-type cyclin (Clb)-associated CDK is sufficient for phosphorylation. Mapping of phosphorylation sites by mass spectrometry using a novel gel-based proteolysis protocol shows that, of the three consensus CDK phosphorylation sites, at least two, Ser-144 and Ser-616, are phosphorylated in vivo. The Cdc28 CDK phosphorylates only Ser-144 in vitro. Using site-directed mutagenesis, we show that Ser-144 is sufficient for the formation of the lower mobility form of Dpb2 in vivo. In contrast, Ser-616 appears not to be phosphorylated by Cdc28. Finally, inactivation of all three CDK consensus sites in Dpb2 results in a synthetic phenotype with the pol2-11 mutation, leading to decreased spore viability, slow growth, and increased thermosensitivity. We suggest that phosphorylation of Dpb2 during late G(1) phase at CDK consensus sites facilitates the interaction with Pol2 or the activity of Polepsilon  相似文献   

8.
9.
Proteins like Rafkinase inhibitory protein (RKIP) that serve as modulators of signaling pathways, either by promoting or inhibiting the formation of productive signaling complexes through protein-protein interactions, have been demonstrated to play an increasingly important role in a number of cell types and organisms. These proteins have been implicated in development as well as the progression of cancer. RKIP is a particularly interesting regulator, as it is a highly conserved, ubiquitously expressed protein that has been shown to play a role in growth and differentiation in a number of organisms and can regulate multiple signaling pathways. RKIP is also the first MAP kinase signaling modulator to be identified as playing a role in cancer metastasis, and identification of the mechanism by which it regulates Raf-1 activation provides new targets for theraoeutic intervention.  相似文献   

10.
C Wittenberg  S I Reed 《Cell》1988,54(7):1061-1072
The Saccharomyces cerevisiae gene CDC28 encodes a protein kinase required for progression from G1 to S phase in the cell cycle. We present evidence that the active form of the Cdc28 protein kinase is a complex of approximately 160 kd containing an endogenous substrate, p40, and possibly other polypeptides. This complex phosphorylates p40 and exogenous histone H1 in vitro. Cell cycle arrest during G1 results in inactivation of the protein kinase accompanied by the disassembly of the complex. Furthermore, assembly of the complex is regulated during the cell cycle, reaching a maximum during G1. Partial complexes thought to be intermediates in the assembly process phosphorylate histone H1 but not p40. Addition of soluble factors to these partial complexes in vitro restores p40 phosphorylation and causes the complex to increase to the mature size. A model is presented in which p40 phosphorylation is required during G1 for cells to initiate a new cell cycle.  相似文献   

11.
Excessive activation of N-methyl-D-aspartate (NMDA) receptors leads to cell death in human embryonic kidney-293 (HEK) cells which have been transfected with recombinant NMDA receptors. To evaluate the role of protein kinase C (PKC) activation in NMDA-mediated toxicity, we have analyzed the survival of transfected HEK cells using trypan blue exclusion. We found that NMDA-mediated death of HEK cells transfected with NR1/NR2A subunits was increased by exposure to phorbol esters and reduced by inhibitors of PKC activation, or PKC down-regulation. The region of NR2A that provides the PKC-induced enhancement of cell death was localized to a discrete segment of the C-terminus. Use of isoform-specific PKC inhibitors showed that Ca(2+)- and lipid-dependent PKC isoforms (cPKCs), specifically PKCbeta1, was responsible for the increase in cell death when phorbol esters were applied prior to NMDA in these cells. PKC activity measured by an in vitro kinase assay was also increased in NR1A/NR2A-transfected HEK cells following NMDA stimulation. These results suggest that PKC acts on the C-terminus of NR2A to accentuate cell death in NR1/NR2A-transfected cells and demonstrate that this effect is mediated by cPKC isoforms. These data indicate that elevation of cellular PKC activity can increase neurotoxicity mediated by NMDA receptor activation.  相似文献   

12.
The Cdc42 GTPase binds to numerous effector proteins that control cell polarity, cytoskeletal remodelling and vesicle transport. In many cases the signalling pathways downstream of these effectors are not known. Here we show that the Cdc42 effectors Borg1 to Borg3 bind to septin GTPases. Endogenous septin Cdc10 and Borg3 proteins can be immunoprecipitated together by an anti-Borg3 antibody. The ectopic expression of Borgs disrupts normal septin organization. Cdc42 negatively regulates this effect and inhibits the binding of Borg3 to septins. Borgs are therefore the first known regulators of mammalian septin organization and provide an unexpected link between the septin and Cdc42 GTPases.  相似文献   

13.
Budding yeast initiates anaphase by activating the Cdc20-dependent anaphase-promoting complex (APC). The mitotic activity of Cdc28 (Cdk1) is required to activate this form of the APC, and mutants that are impaired in mitotic Cdc28 function have difficulty leaving mitosis. This defect can be explained by a defect in APC phosphorylation, which depends on mitotic Cdc28 activity in vivo and can be catalyzed by purified Cdc28 in vitro. Mutating putative Cdc28 phosphorylation sites in three components of the APC, Cdc16, Cdc23, and Cdc27, makes the APC resistant to phosphorylation both in vivo and in vitro. The nonphosphorylatable APC has normal activity in G1, but its mitotic, Cdc20-dependent activity is compromised. These results show that Cdc28 activates the APC in budding yeast to trigger anaphase. Previous reports have shown that the budding yeast Cdc5 homologue, Plk, can also phosphorylate and activate the APC in vitro. We show that, like cdc28 mutants, cdc5 mutants affect APC phosphorylation in vivo. However, although Cdc5 can phosphorylate Cdc16 and Cdc27 in vitro, this in vitro phosphorylation does not occur on in vivo sites of phosphorylation.  相似文献   

14.
The relationship between the morphology and virulence of Candida albicans has aroused interest in the study of the proteins involved in its morphogenesis. We present virulence data for one important element in fungal morphogenesis-septins. We disrupted CaCDC10 and studied the virulence in a mouse infection model and the different steps followed by the fungus during the infection: adherence to epithelial cells, organ colonisation, macrophage phagocytosis, and host survival. We found the altered subcellular localisation of Int1--a C. albicans adhesin- in the septin null mutants. The Int1 mislocalisation and the defects in the cell wall of defective CaCdc10 strains permit us to propose a model for explaining the biological meaning of the absence of virulence presented by these septin mutants.  相似文献   

15.
16.
During purification of recombinant Cdc6 expressed in yeast, we found that Cdc6 interacts with the critical cell cycle, cyclin-dependent protein kinase Cdc28. Cdc6 and Cdc28 can be coimmunoprecipitated from extracts, Cdc6 is retained on the Cdc28-binding matrix p13-agarose, and Cdc28 is retained on an affinity column charged with bacterially produced Cdc6. Cdc6, which is a phosphoprotein in vivo, contains five Cdc28 consensus sites and is a substrate of the Cdc28 kinase in vitro. Cdc6 also inhibits Cdc28 histone H1 kinase activity. Strikingly, Cdc6 interacts preferentially with B-type cyclin/Cdc28 complexes and not Cln/Cdc28 in log-phase cells. However, Cdc6 does not associate with Cdc28 when cells are blocked at the restrictive temperature in a cdc34 mutant, a point in the cell cycle when the B-type cyclin/Cdc28 inhibitor p40Sic1 accumulates and purified p40Sic1 inhibits the Cdc6/Cdc28 interaction. Deletion of the Cdc28 interaction domain from Cdc6 yields a protein that cannot support growth. However, when overproduced, the mutant protein can support growth. Furthermore, whereas overproduction of wild-type Cdc6 leads to growth inhibition and bud hyperpolarization, overproduction of the mutant protein supports growth at normal rates with normal morphology. Thus, the interaction may have a role in the essential function of Cdc6 in initiation and in restraining mitosis until replication is complete.  相似文献   

17.
Multiple surveillance pathways maintain genomic integrity in yeast during mitosis. Although the cyclin-dependent kinase Cdc28 is a well established regulator of mitotic progression, evidence for a direct role in mitotic surveillance has been lacking. We have now implicated a conserved sequence in the Cdc28 carboxyl terminus in maintaining chromosome stability through mitosis. Six temperature-sensitive mutants were isolated via random mutagenesis of 13 carboxyl-terminal residues. These mutants identify a Cdc28 domain necessary for proper mitotic arrest in the face of kinetochore defects or microtubule inhibitors. These chromosome stability-defective cdc28(CST) mutants inappropriately continue mitosis when the mitotic spindle is disrupted at 23 degrees C, display high rates of spontaneous chromosome loss at 30 degrees C, and suffer catastrophic aneuploidy at 35 degrees C. A dosage suppression screen identified Cak1, a kinase known to phosphorylate and activate Cdc28, as a specific high copy suppressor of cdc28(CST) temperature sensitivity and chromosome instability. Suppression is independent of the kinase activity of Cak1, suggesting that Cak1 may bind to the carboxyl terminus to serve a non-catalytic role in assembly and/or stabilization of active Cdc28 complexes. Significantly, these studies implicate Cdc28 and Cak1 in an essential surveillance function required to maintain genetic stability through mitosis.  相似文献   

18.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   

19.
Rare Ig and TCR coding joints can be isolated from mice that have a targeted deletion in the gene encoding the 86-kDa subunit of the Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). However in the coding joints isolated from Ku86-/- animals, there is an extreme paucity of N regions (the random nucleotides added during V(D)J recombination by the enzyme TdT). This finding is consistent with a decreased frequency of coding joints containing N regions isolated from C.B-17 SCID mice that express a truncated form of the catalytic subunit of the DNA-PK (DNA-PKCS). This finding suggests an unexpected role for DNA-PK in addition of N nucleotides to coding ends during V(D)J recombination. In this report, we establish that TdT forms a stable complex with DNA-PK. Furthermore, we show that DNA-PK modulates TdT activity in vitro by limiting both the length and composition of nucleotide additions.  相似文献   

20.
BACKGROUND: Cdc28p, the major cyclin-dependent kinase in budding yeast, prevents re-replication within each cell cycle by preventing the reassembly of Cdc6p-dependent pre-replicative complexes (pre-RCs) once origins have fired. Cdc6p is a rapidly degraded protein that must be synthesised in each cell cycle and is present only during the G1 phase. RESULTS: We found that, at different times in the cell cycle, there are distinct modes of Cdc6p proteolysis. Before Start, Cdc6p proteolysis did not require either the anaphase-promoting complex (APC/C) or the SCF complex, which mediate the major cell cycle regulated ubiquitination pathways, nor did it require Cdc28p activity or any of the potential Cdc28p phosphorylation sites in Cdc6p. In fact, the activation of B cyclin (Clb)-Cdc28p kinase inactivated this pathway of Cdc6p degradation later in the cell cycle. Activation of the G1 cyclins (Clns) caused Cdc6p degradation to become extremely rapid. This degradation required the SCF(CDC4) and Cdc28p consensus sites in Cdc6p, but did not require Clb5 and Clb6. Later in the cell cycle, SCF(CDC4)-dependent Cdc6p proteolysis remained active but became less rapid. CONCLUSIONS: Levels of Cdc6p are regulated in several ways by the Cdc28p cyclin-dependent kinase. The Cln-dependent elimination of Cdc6p, which does not require the S-phase-promoting cyclins Clb5 and Clb6, suggests that the ability to assemble pre-RCs is lost before, not concomitant with, origin firing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号