首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human disturbances in the alpine region can have long-lasting ecosystem effects because biological recovery in harsh environments proceeds slowly. As a by-product of the exploitation of hydroelectricity, surplus masses from tunnel excavations are deposited as spoil heaps in the alpine landscape. The typical management goal for such spoil heaps is that their species composition converges towards that of their undisturbed surroundings. At present we lack knowledge of the rate as well as the direction of these successions. We examined the species composition of five alpine spoil heaps in western Norway at two points in time, after 6-16, and 24-34 years of succession, with regard to vegetation cover, species richness, species composition and soil conditions. We also compared the vegetation of spoil heaps with that of their surroundings. After ca. 30 years, bryophyte and lichen cover and species richness were similar to those of their surroundings, while cover of vascular plants and species richness recovered more slowly. The vegetation development of spoil heaps appears safe-site limited rather than dispersal limited. Topsoil development was slow, but some accumulation of organic matter was observed. The species composition followed a successional trajectory in direction of the vegetation of the surroundings. Estimated linear successional rates indicate that 35-48 years are needed from construction of spoil heaps till a species composition more or less similar to their surroundings has been reached. However, these estimates are likely to be over-optimistic because successional rates tend to decrease with time. Based on our results we propose three changes to the current spoil-heap construction practice that will improve their restoration: (1) to increase surface unevenness, by which the number of safe sites will increase and germination and establishment success will be enhanced; (2) to increase substrate variability, by adding more of fine-grained materials more species will establish in shorter time; and (3) to use seed from local sources or to let the spoil heaps regenerate naturally.  相似文献   

2.
Abstract Vegetation samples from either spontaneously revegetated or technically reclaimed spoil heaps of different ages in one of the largest active brown coal mining districts in Europe were analyzed and compared. The spoil heaps are located in the northwestern part of the Czech Republic and represent ages between 0 and 45 years. Ordination analysis (detrended correspondence analysis) showed that vegetation on technically reclaimed spoil heaps developed in a different way than that on spontaneously revegetated ones. The latter exhibited much higher species diversity in the oldest stages with the number of species doubled that of technically reclaimed sites. The oldest stages were also more advanced along an expected successional gradient as indicated by the ordination. Accelerating the vegetation development by technical reclamation was only of temporal character, whereas spontaneous succession proceeded further over the longer time scale. Spontaneous succession is advocated as an inexpensive and easy alternative to technical reclamation, because it leads to a more natural and rich vegetation cover. Unfortunately, technical reclamation is still the only approach considered in the present reclamation activities for this region.  相似文献   

3.
Spoil heaps of surplus rock from hydropower tunnel construction negatively impact alpine landscapes unless restored. Such spoil heaps have been created for more than 100 years, but we still lack knowledge about the relative importance of compensatory mitigation (seeding and fertilization), spoil‐heap construction method, local environmental factors, and regional climatic factors for restoration success. We studied the species composition of 19 alpine spoil heaps in Western Norway and their undisturbed surroundings using ordination and statistical modeling. Substrate grain size was the principal factor explaining differences in species composition between spoil heaps and their surroundings. Soil characteristics, that is, organic matter content and pH, and reutilization of topsoil were also important. Seeding and fertilization had negligible effects on restoration success. Slow recovery was observed for total vegetation cover and species richness of vascular plants and lichens while bryophyte cover recovered rapidly. Lower bryophyte cover and bryophyte and vascular plant species richness on older than on younger spoil heaps indicated recent changes in spoil‐heap construction practices that favor plant colonization. Our results indicate that spoil‐heap design is more important for restoration success than compensatory mitigation. We therefore suggest spoil heaps designed with a fine‐grained top substrate preferably from stockpiled local topsoil, with uneven surface topography that mimics natural topographic variation, and recommend discontinuation of seeding and fertilization.  相似文献   

4.
We sampled the diversity of epiphytes (lichens, bryophytes, vascular plants) and moths (Geometridae, Arctiidae) in mature and recovering forest and in open vegetation in the montane belt in Ecuador. No uniform pattern of change in species richness was detected among the different taxonomic groups with increasing disturbance. Species richness of epiphytic bryophytes and vascular plants declined significantly from mature forest towards open vegetation. In contrast, species richness of epiphytic lichens did not change with increasing forest alteration, while that of geometrid moths was significantly higher in recovering forest compared with mature forest and open habitats. Arctiidae were significantly more species-rich in recovering forest and open vegetation than mature forest. Hence, for some organisms, modified habitats may play an important role for biodiversity conservation in the Andes, whereas others suffer from habitat disturbance. However, trends of changes in species composition following deforestation were surprisingly concordant across most studied epiphyte and moth taxa.  相似文献   

5.
We investigated the composition of the vegetation in two former mining regions in Central Slovakia: Banská Štiavnica with predominant Pb-Zn contamination and Staré Hory with a very high Cu content in the soil. Old heaps rich in heavy metals are covered with specific vegetation. On the Cu-rich spoil heaps, species-poor plant communities with prevailing Agrostis stolonifera, Avenella flexuosa, Acetosella vulgaris, Arabidopsis arenosa, Silene dioica, and S. vulgaris occur. Species such as Agrostis capillaris, Acetosella vulgaris, Arabidopsis arenosa, and Thlaspi caerulescens appear frequently on Pb-Zn mine wastes. Several differences in the vegetation structure were detected between the Pb-Zn and Cu mine heaps; higher amounts of vascular plants and fewer lichen species covered the Pb-Zn mine heaps. For the Cu mine heaps, on the contrary a small number of vascular species but a high number and coverage of lichen species, especially Ceratodon purpureus and Cladonia arbuscula subsp. mitis were typical. The non-metalliferous meadows in the vicinity of the mines showed uniform structure but a higher species diversity.  相似文献   

6.
以喀斯特峰丛洼地不同植被恢复阶段灌丛、次生林、原生林为研究对象,采用全挖法分析了各阶段4个优势种的根系构型参数,探讨该特殊生境条件下植物根系构型的差异性、相似性以及资源合理高效的利用方式。结果表明:(1)各个植被恢复阶段优势种拓扑指数TI均趋向于0.5,呈叉状分支结构,并表现为次生林(0.57)原生林(0.49)灌丛(0.46),有利于根系在贫瘠且浅薄的土壤环境中拓展生存空间。(2)3种植被恢复阶段优势种的根系平均连接长度在34.29cm以上,平均为37.01cm,增加连接长度对植物在养分贫瘠的喀斯特土壤环境的生存有利。(3)次生林根系分支率低于灌丛和原生林,这是不同植被恢复阶段优势种对环境所采取的不同适应策略。(4)3种植被恢复阶段优势种根系的横截面积比均符合Leonardo da Vinci法则,且不随直径的变化而变化。(5)3种植被恢复阶段优势种在土壤养分、水分获取及土壤空间拓展方面没有显著差异性。研究认为,在喀斯特峰丛洼地异质性很强的生境下,3种植被恢复阶段优势种的根系均为叉状分支结构,且均以较长的连接长度和较低的分支率策略适应其特殊的生态环境。  相似文献   

7.
The history of coal mining in South Poland has left a legacy of many spoil heaps across the landscape. These have presented the opportunity to study their colonisation and spontaneous successional sequences over a long time period. We use the plant functional group (PFG) approach to characterize and compare species diversity on spoil heaps of different ages by utilising the ecological characteristics (PFG categories) of the species recorded during the course of spontaneous vegetation development. By changing species frequency into functional group frequency it was possible to find the significant differences in the functional composition of the studied vegetation and to analyze the dataset using non-parametric statistics. There was a small increase in the number of species over time, while the frequency of geophytes, nanophanerophytes and megaphanerophytes increased significantly. A significant increase was also recorded for the frequency of competitors, stress-tolerators and stress-tolerant competitors and for native species. We found that the significant differences in species composition measured as PFG diversity occurred between the youngest and the oldest age classes. The PFG approach provided valuable insights into the nature of the species composition of the developing vegetation on hard-coal mine spoil heaps. We suggest that it could be usefully applied in restoration practice in the future by facilitating the natural colonization of native species adapted to local conditions and thus retaining the local gene pool in these areas.  相似文献   

8.
The understorey vegetation in a lichen–Scots pine forest was monitored during 20 years before and after clear-felling. Plots with and without logging residues were compared concerning the general pattern of the vegetation dynamics and changes in species composition, dominance, richness, evenness and diversity. The succession of both treatments had a clear principal component analysis (PCA) pattern of a 'stepwise arch-shaped diverging' trend mainly driven by 'pioneer' lichens, 'reindeer' lichens and Calluna vulgaris. The difference between the residue treatments was significant regarding succession of vascular plants, bryophytes and 'reindeer' lichens. The nitrogen indicators Epilobium angustifolium and Deschampsia flexuosa were favoured on plots with logging residues.  相似文献   

9.
The effects of soil disturbance caused by the uprooting of a single or a few canopy trees on species richness and composition of vascular plant species and bryophytes were examined in a temperate beech forest (Fagus sylvatica) in northern Germany. We recorded the vegetation in 57 pairs of disturbed and adjacent undisturbed plots and established a chronosequence of mound ages to study the effect of time since microsite formation on plant species richness and composition. We found significant differences in plant species richness and composition between disturbed and adjacent undisturbed plots. Species richness of both vascular plants and bryophytes was higher in the disturbed than in the undisturbed plots, but these differences were more pronounced for bryophytes. We suggest that three main factors are responsible for this differential response. The availability of microsites on the forest floor that are suitable for the recruitment of bryophytes is lower than for vascular plants. Establishment of bryophytes in disturbed microsites is favoured by a greater abundance of propagules in the close vicinity and in the soil of the disturbed microsites, as well as by a greater variety of regeneration strategies in bryophytes than in vascular plants. Time since mound formation was a major factor determining plant species richness and composition. A significant decrease in the mean number of species was found from young mounds to intermediate and old mounds. However, differences were observed between vascular plants and bryophytes in the course of changes through time in species richness and composition. A large number of exclusive and infrequent vascular plant species was observed on young mounds, among them several disturbance specialists. We suggest that the establishment of many vascular plant species was infrequent and short-lived due to unfavourable light conditions and a low abundance of propagules. By contrast, the development of a litter layer was the main reason for the decreased mean number of bryophytes on old mounds. Our study supports the view that groups of species differing in important life history traits exhibit different responses to soil disturbance.  相似文献   

10.
The definition of biogeographic regions provides a fundamental framework for a range of basic and applied questions in biogeography, evolutionary biology, systematics and conservation. Previous research suggested that environmental forcing results in highly congruent regionalization patterns across taxa, but that the size and number of regions depends on the dispersal ability of the taxa considered. We produced a biogeographic regionalization of European bryophytes and hypothesized that (1) regions defined for bryophytes would differ from those defined for other taxa due to the highly specific eco-physiology of the group and (2) their high dispersal ability would result in the resolution of few, large regions. Species distributions were recorded using 10,000 km2 MGRS pixels. Because of the lack of data across large portions of the area, species distribution models employing macroclimatic variables as predictors were used to determine the potential composition of empty pixels. K-means clustering analyses of the pixels based on their potential species composition were employed to define biogeographic regions. The optimal number of regions was determined by v-fold cross-validation and Moran’s I statistic. The spatial congruence of the regions identified from their potential bryophyte assemblages with large-scale vegetation patterns is at odds with our primary hypothesis. This reinforces the notion that post-glacial migration patterns might have been much more similar in bryophytes and vascular plants than previously thought. The substantially lower optimal number of clusters and the absence of nested patterns within the main biogeographic regions, as compared to identical analyses in vascular plants, support our second hypothesis. The modelling approach implemented here is, however, based on many assumptions that are discussed but can only be tested when additional data on species distributions become available, highlighting the substantial importance of developing integrated mapping projects for all taxa in key biogeographically areas of Europe, and the Mediterranean peninsulas in particular.  相似文献   

11.
The Wood River watershed, a small well-defined drainage basin in Rhode Island was monitored seasonally for all macrophytic vegetation and various physical variables. Twenty-four segments, 20 m in length were sampled. Mean stream depth, width and current velocity increased by 3 to 8 fold from 1st- to 4th-order segments. Light penetration was positively correlated with the above variables (p < 0.05) and increased by 11 fold from the headwaters to the mouth during September when the riparian canopy was maximum. 74 subgeneric taxa of macrophytes were collected in the Wood River basin, 36% algae, 13% bryophytes, 4% vascular cryptograms and 45% angiosperms. The highest diversity occurred in the 4th-order segments throughout the year. Species numbers were positively correlated with depth, width and light penetration (p < 0.05). Vascular plants dominated all orders, but their proportion doubled from 1st- to 4th-order streams. Macrophyte cover was twice as high in the 4th-order segments in June and September as in the other orders. Macrophyte abundance was positively correlated to light penetration and negatively correlated to the ratio of nonvascular: vascular plants (p < 0.05). Two distinct clusters were found for the predominant species. The first cluster contained mostly large angiosperms, which were rooted in sediments, while the second cluster was composed of small epilithic algae and bryophytes. The moss, Fontinalis antipyretica, was the most frequent species, occurring in 51% of the samples and in all 4 orders throughout the year.  相似文献   

12.
The objective of this study was to clarify the taxon surrogacy hypothesis relative to vascular plants and bryophytes. A literature review was conducted to obtain papers that met the following criteria: (i) they examined species richness values; or (ii) they evaluated the species richness within the same study sites, or under the same spatial variation conditions. Twenty-seven papers were accessed. The richness of the two taxa, compared in 32 cases, positively co-varied in about half of the comparisons. The response to the spatial variation in environmental or human-induced factors of the two taxa in terms of species richness was rather variable. Based on current knowledge, the main documented findings regard forest habitats and nival gradients. In forest habitats, co-variation in species richness is likely when similar environments are analysed and seems to be strengthened for boreal forests. Along the nival gradient, a different response in terms of richness of the two taxa suggests that vascular plants cannot be considered good surrogates for bryophytes.  相似文献   

13.
We studied the relative importance of local habitat conditions and landscape structure for species richness of vascular plants, bryophytes and lichens in dry grasslands on the Baltic island of Öland (Sweden). In addition, we tested whether relationships between species richness and vegetation cover indicate that competition within and between the studied taxonomic groups is important. We recorded species numbers of vascular plants, bryophytes and lichens in 4 m2 plots (n=452), distributed over dry grassland patches differing in size and degree of isolation. Structural and environmental data were collected for each plot. We tested effects of local environmental conditions, landscape structure and vegetation cover on species richness using generalized linear mixed models. Different environmental variables explained species richness of vascular plants, bryophytes and lichens. Environmental effects, particularly soil pH, were more important than landscape structure. Interaction effects of soil pH with other environmental variables were significant in vascular plants. Plot heterogeneity enhanced species richness. Size and degree of isolation of dry grassland patches significantly affected bryophyte and lichen species richness, but not that of vascular plants. We observed negative relationships between bryophyte and lichen species richness and the cover of vascular plants. To conclude, effects of single environmental variables on species richness depend both on the taxonomic group and on the combination of environmental factors on a whole. Dispersal limitation in bryophytes and lichens confined to dry grasslands may be more common than is often assumed. Our study further suggests that competition between vascular plants and cryptogams is rather asymmetric.  相似文献   

14.
We compare species richness of bryophytes and vascular plants in Estonian moist forests and mires. The material was collected from two wetland nature reserves. Bryophyte and vascular plant species were recorded in 338 homogeneous stands of approximately 1 ha in nine forest and two mire types. Regional species pools for bryophytes and vascular plants were significantly correlated. The correlations between the species richnesses of bryophytes and vascular plants per stand were positive in all community types. The relative richnesses (local richness divided by the regional species pool size) were similar for bryophyte species and for vascular plant species. This shows that on larger scales, conservation of the communities rich in species of one taxonomic plant group, maintains also the species richness of the other. The minimum number of stands needed for the maintenance of the regional species pool of typical species for the every community type was calculated using the species richness accumulation curves. Less stands are needed to maintain the bryophyte species pools (300–5300 for bryophytes and 400–35 000 for vascular plants).  相似文献   

15.
E. Aude  R. Ejrnæs 《Oikos》2005,109(2):323-330
A three-year multi-factorial microcosm experiment simulating fertilisation, defoliation and the composition of vascular vegetation in a dry grassland succession was used to test four hypotheses concerning the establishment and survival of bryophytes in grassland vegetation. H1: bryophyte cover may be used to predict bryophyte species richness. H2: bryophyte richness is suppressed at high nutrient levels and promoted by defoliation of vascular plants. H3: species richness of bryophytes is influenced by the species composition of the vascular vegetation. H4: bryophyte species richness is negatively correlated with vascular plant biomass.
The relationship between bryophyte richness and bryophyte cover was found to follow the classical species-area richness curve. Bryophyte species richness responded positively to defoliation and negatively to fertilisation. The species composition of vascular vegetation had no significant effect on bryophyte richness. Bryophyte species richness was lower at high vascular plant biomass and vascular plant dry weight above 400 g m−2 appeared fatal to bryophytes. At high nutrient levels, defoliation increased bryophyte richness, but defoliation did not fully compensate for the negative effect of fertilisation. The study reinforces the concern for short lived shuttle bryophytes in the agricultural landscape.  相似文献   

16.
We examined effects of abandonment on species diversity and species composition by comparing 21 calcareous fen meadows in the pre-alpine zone of central and northeastern Switzerland. Meadows were divided into three classes of successional stages (mown: annually mown in late summer, young fallow: 4–15 years, and old fallow: >15 years of abandonment). In each fen, we measured litter mass in four 20 cm×20 cm plots, as well as (aboveground) biomass and species density (number of species per unit area) of bryophytes and vascular plants. Bryophyte biomass was reduced in abandoned fens, whereas litter mass and aboveground biomass of vascular plants increased. Species density of both taxonomic groups was lower in abandoned than in mown fens. Young and old successional stages were not different except for bryophytes, for which old successional stages had higher species density than young stages. We used litter mass and aboveground biomass of vascular plants as covariables in analyses of variance to reveal their effects on species density of both taxonomic groups. For bryophytes, litter mass was more important than vascular plant biomass in explaining variance of species density. This indicates severe effects of burying by litter on bryophyte species density. For species density of vascular plants, both vascular plant biomass and litter mass were of similar importance in explaining the decreased species density. Canonical correspondence analyses showed that abandonment also had an effect on species composition of both bryophytes and vascular plants. However, young and old successional stages were not different indicating fast initial changes after abandonment, but slow secondary succession afterwards. Furthermore, indicator species analysis showed that there was no establishment of new species after abandonment that might dramatically alter fen communities. Re-introduction of mowing as a nature conservation strategy may thus be very promising – even for old fallows.  相似文献   

17.
It has been proposed that the interaction between life–history attributes of different organisms and distrbance characteristics play an important role in determining the successional pattern following a disturbance event. We compared the responses of vascular plants and bryophytes (mosses and hepatics) to variation in disturbance size and severity in an old-growth boreal forest during a four–year period. The experiment included two patch sizes (0.25 and 2.5 m2) and two levels of severity: humus patches (removal of vegetation) and mineral soil patches (removal of both vegetation and humus layer). Treatments were chosen to reflect some aspects of disturbance by uprooting. Species richness was significantly affected by both disturbance size and severity but the response differed among plant groups. In vascular plants, species numbers were highest in humus patches while mosses were more numerous in mineral soil patches, the most severe disturbance. In contrast, severity had no effect on hepatics. Plant recovery was more rapid in bryophytes than in vascular plants. Species richness of bryophytes had exceeded that of adjacent, undisturbed vegetation after 2-3 yr. We attribute the contrasting response of the plant groups to differences in regeneration strategies. As a group, bryophytes had a greater variety of regeneration methods than vascular plants, with several types of asexual propagules and abundant production of spores in some species. In contrast, clonal ingrowth dominated in vascular plants while seedlings were rare. Thus, our analysis supports the view that plant response to patchy disturbance is strongly dependent on the interplay among disturbance traits and specific attribtites of different plant groups.  相似文献   

18.
Abstract. We studied revegetation patterns after experimental fine-scale disturbance (e.g. uprooting) in an old-growth Picea abies forest in southeastern Norway. An experimental severity gradient was established by manipulation of the depth of soil disturbance; two types of disturbed areas were used. Species recovery was recorded in the disturbed patches in three successive years after disturbance. The cover of vascular plants and, even more so the cover of bryophytes and lichens, recovered slowly after disturbance. The least severe treatments (removal of vegetation and removal of vegetation and the litter layer) was followed by the fastest recovery. The mean number of vascular plant species was usually higher three years after disturbance than before disturbance, while the opposite was true for bryophytes. Several vascular plant species that were abundant in intact forest floor vegetation (Vaccinium myrtillus, V. vitis-idaea and Deschampsia flexuosa) recovered during a three-year period primarily by resprouting from intact rhizomes and clonal in-growth. Other important recovery mechanisms included germination from a soil-buried propagule bank (e.g. Luzula pilosa, Plagiothecium laetum agg., Pohlia nutans and Polytrichum spp.) and dispersal of propagules into the disturbed patches (e.g. Betula pubescens and Picea abies). Microsite limitation seemed to occur in several species that were abundant in the soil propagule bank (e.g. the ferns Athyrium filix-femina, Gymnocarpium dryopteris and Phegopteris connectilis) but which did not appear in disturbed patches. Disturbance severity influenced revegetation patterns, recorded both as trajectories of vegetation composition in a DCA ordination space and as change in floristic dissimilarity. The length of the successional path (compositional change measured in β-diversity units) increased with increasing disturbance severity, and was also influenced by the area of the disturbed patch and the distance to intact vegetation. The rate of succession depended on the method by which it was measured; decreasing year by year in floristic space, while first decreasing and then increasing in ordination space. The reason for this difference is explained.  相似文献   

19.
Abstract. The composition of the bryophyte diaspore bank in an old-growth Picea abies forest was studied before and after experimental disturbance of forest-floor patches. 40 species, both hepatics and mosses, emerged from spores, and probably also from gemmae and moss fragments, in greenhouse cultivations of soil samples. The three most abundant taxa were Pohlia nutans, Sphagnum spp. and Polytrichum commune/longisetum. Initially, the number of species from the diaspore bank in mineral soil, 9.9 species/sample, was higher than that in humus, 6.6. Four years after the disturbance took place, the reverse was found. Several species that are typical colonisers of disturbed soil were very common in the diaspore bank. By contrast, some of the most abundant forest floor species appeared to be absent. The diaspore bank of bryophytes appears to play a role similar to that of the seed bank in vascular plants: (1) it allows species to survive unfavourable periods (temporal dispersal); (2) it facilitates rapid colonisation after disturbance; (3) it influences the post-disturbance species composition and diversity. The results emphasise that the understanding of vegetation succession patterns is, to a large extent, dependent on quantitative data on the relative importance of spatial and temporal dispersal.  相似文献   

20.
赤水河上游主要森林植被中苔藓物种多样性研究   总被引:1,自引:0,他引:1  
对赤水河上游典型森林植被中苔藓植物多样性调查分析。(1)苔藓植物有15科19属28种(含变种、亚种);生活型有3种:交织型(64.29%)、矮丛集型(28.57%)和平铺型(7.14%)。(2)丰富度以竹叶林中最大(2.131),残存阔叶林中次之(0.687),针叶林中最小(-1.444)。(3)α多样性呈现一定的规律,竹叶林(3.170)>残存阔叶林(3.000)>人工植被地(2.807)>灌木林(2.322)>针叶林=谷顶区(1.585),α多样性的排序规律与丰富度基本保持一致,均出现在竹叶林中最大。(4)β多样性出现灌木林—残存阔叶林生境中最高(1.000),竹叶林—残存阔叶林中次之(0.938),灌木林—针叶林(0.857)中最小的变化差异趋势。分析得出了植被型、湿度和荫蔽度是制约着该地区苔藓植物多样性的主要生态因素。通过苔藓植物多样性的探究,为保护该流域生态环境和生物多样性提供参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号