首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Larvae of the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae), a generalist species, frequently encounter spatial and temporal variations in diet quality. Such variation favoured the evolution of high behavioural and physiological plasticity which, depending on forest stand composition, enables more or less successful exploitation of the environment. Even in mixed oak stands, a suitable habitat, interspecific and intraspecific host quality variation may provoke significant variation in gypsy moth performance and, consequently, defoliation severity. To elucidate the insufficiently explored relationship between gypsy moth and oaks (Fagaceae), we carried out reciprocal switches between Turkey oaks (Quercus cerris L.) and less nutritious Hungarian oaks (Quercus frainetto Ten.) (TH and HT groups), under controlled laboratory conditions, and compared larval performance between the switched larvae and larvae continuously fed on either Turkey oak (TT) or Hungarian oak (HH). We found that larval traits were most strongly affected by among‐tree variation in oak quality and identity of the host consumed during the fourth instar. Switching from Turkey to Hungarian oak (TH) led to a longer period of feeding, decrease of mass gain, growth, and consumption rate, lower efficiency of food use and nutrient conversion, and increase of protease and amylase activities. Larvae exposed to the reverse switch (HT) attained values of these traits characteristic for TT larvae. It appeared that the lower growth in the TH group than in the TT group was caused by both behavioural (consumption, pre‐ingestive) and metabolic (post‐digestive) effects from consuming oaks. Multivariate analyses of growth, consumption, and efficiency of food use revealed that early diet experience influenced the sensitivity of the most examined traits to less suitable Hungarian oaks, suggesting the development of behavioural and physiological adjustments. Our results indicate that lower risks of defoliation by gypsy moth might be expected in mixed stands with a higher proportion of Hungarian oak.  相似文献   

2.
Transmission plays an integral part in the intimate relationship between a host insect and its pathogen that can be altered by abiotic or biotic factors. The latter include other pathogens, parasitoids, or predators. Ants are important species in food webs that act on various levels in a community structure. Their social behavior allows them to prey on and transport larger prey, or they can dismember the prey where it was found. Thereby they can also influence the horizontal transmission of a pathogen in its host's population. We tested the hypothesis that an ant species like Formica fusca L. (Hymenoptera: Formicidae) can affect the horizontal transmission of two microsporidian pathogens, Nosema lymantriae Weiser (Microsporidia: Nosematidae) and Vairimorpha disparis (Timofejeva) (Microsporidia: Burenellidae), infecting the gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae: Lymantriinae). Observational studies showed that uninfected and infected L. dispar larvae are potential prey items for F. fusca. Laboratory choice experiments led to the conclusion that F. fusca did not prefer L. dispar larvae infected with N. lymantriae and avoided L. dispar larvae infected with V. disparis over uninfected larvae when given the choice. Experiments carried out on small potted oak, Quercus petraea (Mattuschka) Liebl. (Fagaceae), saplings showed that predation of F. fusca on infected larvae did not significantly change the transmission of either microsporidian species to L. dispar test larvae. Microscopic examination indicated that F. fusca workers never became infected with N. lymantriae or V. disparis after feeding on infected prey.  相似文献   

3.
Many aspects of a parasitoid's biology may be affected by its host. Host size, for example, could affect parasitoid fitness, especially in gregarious parasitoids, in which the resource is used by multiple siblings. Oomyzus sokolowskii (Kurdjumov) (Hymenoptera: Eulophidae) is a gregarious larval–pupal endoparasitoid of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), a major pest of crucifers worldwide, and is able to superparasitize the host. This study focuses on the hypothesis that because resource availability is higher in larger hosts, parasitoids developing in larger hosts will fare better. However, superparasitized hosts are expected to yield larger numbers of parasitoid offspring of smaller body size. Results showed that superparasitism increased the number of parasitoid offspring produced per host and increased offspring longevity, but decreased offspring body size. However, developmental time and sex ratio of parasitoid offspring was similar among hosts parasitized once, twice, or three times. Regardless of superparasitism, parasitoids emerging from larger hosts that were fed honey solution lived longer than similarly fed progeny from smaller hosts (36.4 vs. 22.1 days). The results partially support the hypothesis that Oomyzus gained fitness from an increase in host size; moreover, superparasitism seems advantageous for Oomyzus due to increased offspring numbers and longevity.  相似文献   

4.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

5.
Koinobiont parasitoids develop in hosts that continue feeding and growing during the course of parasitism. Here, we compared development of a solitary koinobiont endoparasitoid, Meteorus pulchricornis Westmael (Hymenoptera: Braconidae), in second (L2) and fourth (L4) instars of three host species that are closely related (Lepidoptera: Noctuidae) but which exhibit large variation in growth potential. Two hosts, Mamestra brassicae L. and Spodoptera littoralis Boisduval, may reach 1 g or more when the caterpillars are fully mature, whereas Spodoptera exigua Hübner is much smaller with mature caterpillars rarely exceeding 200 mg. Parasitoid survival (to pupation) in the two host instars was much higher on the larger hosts than on S. exigua. However, other fitness correlates in M. pulchricornis were very similar in the three host species. Development time was fairly uniform in L2 and L4 hosts of the three host species, whereas wasps were larger in L4 than in L2 hosts. However, M. pulchricornis developmentally arrested each of the hosts differently. The mass of dying L2 and L4 hosts after parasitoid larval egression (i.e., when they emerge from the dying caterpillar) varied significantly, with S. littoralis being by far the largest and S. exigua the smallest. These results reveal that M. pulchricornis is able to adjust its own development in response to species‐specific differences in host resources.  相似文献   

6.
Host plant resistance and biological control are vital integrated pest management tools against the diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), but to date no study has investigated this system including the DBM parasitoid Oomyzus sokolowskii (Kurdjumov) (Hymenoptera: Eulophidae). We examined oviposition and development of P. xylostella exposed to two commercial cabbage cultivars (green ‘Chato de quintal’ and red ‘Roxo’) and possible effects upon O. sokolowskii. Under free‐choice tests, DBM females laid significantly more eggs on plants of the green cabbage, even though several population growth parameters showed that DBM developed better on the red cabbage. Furthermore, a laboratory free‐choice test with artificially green‐ and red‐painted kale leaf discs demonstrated a similar oviposition preference pattern, with green colour being preferred over red colour. The preference was apparently visually mediated; olfactometer tests showed similar attraction of moths to both green and red cultivars in choice and non‐choice tests. Host plant cultivar had no statistically significant effect on female parasitoid behaviour towards DBM larvae, nor on parasitoid numbers or longevity. Moreover, wasps parasitizing DBM larvae reared on the green cultivar developed more quickly and in larger numbers per parasitized larva. Thus, feeding on green cabbage rather than red does not hinder, and potentially even enhances, control of DBM by O. sokolowskii. On a practical level, these results suggest that intercalating green cabbage cultivars as a trap crop might help protect more profitable red cultivars in growing fields.  相似文献   

7.
Most attention to size‐time trade‐offs of insects has focused on herbivore risk, with considerably less attention paid to parasitoids. Here, we focus on parasitoid risk, comparing the fates of unparasitised herbivore hosts and parasitised hosts that protect the parasitoids. Success of a koinobiont parasitoid (host grows after parasitisation) depends on maintaining a delicate balance with its host, thereby ensuring its own survival while the host grows. To evaluate growth rate–mortality rate relationships of host and parasitoid, we compared several aspects of the growth, phenology, and behaviour of unparasitised fern moth [Herpetogramma theseusalis (Walker) (Lepidoptera: Crambidae)] larvae and larvae parasitised by Alabagrus texanus (Cresson) (Hymenoptera: Braconidae), a solitary koinobiont (one parasitoid per host) wasp. Host larvae feed and construct shelters on sensitive fern, Onoclea sensibilis L. (Dryopteridaceae). Alabagrus texanus parasitise early‐instar moths in late summer, which overwinter in their host, emerging in mid‐summer to pupate and eclose. During the autumn following hatching and the immediately following spring, parasitised and unparasitised moth larvae did not differ in size, took similar time to choose between satisfactory and unsatisfactory foods, and built similar shelters. Prior to any other changes noted, more parasitised than unparasitised larvae also died when severely starved. Parasitised larvae subsequently grew less and pupated later than unparasitised ones (small size, slow growth), but consumed similar amounts of food. Although the numerically dominant parasitoid of fern moths, we concluded that Atexanus do not efficiently exploit their hosts.  相似文献   

8.
Anagyrus sp. nr. pseudococci is an endoparasitoid which has been used as a biological control agent of mealybug pests. In this study, we compared the suitability of five mealybugs species with different phylogenetic relationships and geographical origins as hosts of this parasitoid. The selected mealybugs were: (1) a Mediterranean-native species, Planococcus ficus, sharing a long co-evolutionary history with the parasitoid; (2) three exotic species, the Afrotropical Planococcus citri, the Australasian Pseudococcus calceolariae and the Neotropical Pseudococcus viburni, with a recent history; and (3) the Neotropical Phenacoccus peruvianus, with no previous common history with the parasitoid. Host suitability was assessed based on different fitness parameters, such as body size, developmental time, emergence rate and sex ratio. The parasitoid was able to complete development in all mealybug species. Nevertheless, its emergence rate significantly varied among mealybug species, with the highest values observed in Pl. ficus and Pl. citri, intermediate values in Ps. calceolariae and the lowest ones in Ps. viburni and Ph. peruvianus. The body size of adult wasp females varied with host suitability and was positively correlated with other measures of parasitoid fitness, including the emergence rate and the sex ratio. The parasitoid developmental time differed among mealybug species but did not correlate with any other measure of fitness. A female biased sex ratio was found in the parasitoid progeny emerged from all mealybug species, except in Ps. viburni and Ph. peruvianus. There was a direct relationship between the proportion of females in the parasitoid progeny and the emergence rate.  相似文献   

9.
Biological control efficiency can be improved by developing effective mass‐rearing systems to produce large numbers of high‐quality parasitoids. This study explored an alternative host for rearing Sclerodermus brevicornis (Kieffer) (Hymenoptera: Bethylidae), a potential biocontrol agent for the suppression of exotic and invasive wood‐boring longhorn beetle (Coleoptera: Cerambycidae) populations in the European agroforestry ecosystems. We tested larvae of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae), as host for the parasitoid. We quantified the probability and timing of host attack and parasitism as well as reproductive success, offspring production, and the characteristics of adult offspring. As S. brevicornis is a quasi‐social species (multiple females, communally produced offspring broods), we also explored the effects of varying the number of females to which individual hosts were presented, with the aim of determining the optimal female‐to‐host ratio. As time to host attack can be a limiting factor in S. brevicornis rearing protocols, we tested the use of adult females of another bethylid species, Goniozus legneri Gordh, to paralyse C. cephalonica larvae prior to presentation. We identified the conditions within our experiment that maximized offspring production per host and offspring production per adult female parasitoid. We found that C. cephalonica is suitable as a factitious host and, as it is considerably more straightforward for laboratory rearing than cerambycid species, it is a good candidate for adoption by future S. brevicornis mass‐rearing and release programmes.  相似文献   

10.
The preference‐performance or ‘mother‐knows‐best’ hypothesis states that female insects choose to oviposit on a host plant that increases the performance of their offspring. This positive link between host plant choice and larval performance is especially important for leaf miners with non‐motile larvae that are entirely dependent upon the oviposition choice of the female for host plant location. Preference and performance of the ash leaf coneroller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae), a specialist on ash trees, Fraxinus spp. (Oleaceae), were tested in a series of laboratory and field experiments. Female C. fraxinella were exposed to two closely related hosts, black ash, Fraxinus nigra Marshall, and green ash, Fraxinus pennsylvanica Marshall var. subintegerrima (Vahl), in oviposition choice and wind tunnel flight experiments to determine which host is most attractive for oviposition. Caloptilia fraxinella females were inconsistent in host choice, yet performance of larvae was greater on green than black ash. In preference studies, C. fraxinella preferred to oviposit on black ash when leaflets were removed from the tree, but preferred intact green ash over black ash seedlings for oviposition and host location in a wind tunnel. In the field, however, more C. fraxinella visited black ash var. ‘Fallgold’ at leaf flush than green ash at the same sites. Age of the ash leaflet also influences oviposition in this leaf miner and females preferred new over old leaflets for oviposition. Performance of C. fraxinella larvae was evaluated in field and laboratory experiments and was greater on green ash than on black ash in both experiments based on larval survival and development time parameters. The stronger oviposition and host location preference in the field for black ash were not linked to enhanced performance of offspring, as green ash was the superior host, supporting higher larval survival and faster development. A stronger host location preference in the wind tunnel for green ash over black ash, however, suggests that under certain circumstances with this moth species, ‘mother (may) know best’.  相似文献   

11.
The solitary larval endoparasitoid Eadya daenerys Ridenbaugh (Hymenoptera: Braconidae) is a proposed biocontrol agent of Paropsis charybdis Stål (Coleoptera: Chrysomelidae, Chrysomelinae), a pest of eucalypts in New Zealand. Eadya daenerys oviposition behaviour was examined in two assay types during host range testing, with the aim of improving ecological host range prediction. No‐choice sequential and two‐choice behavioural observations were undertaken against nine closely related species of New Zealand non‐target beetle larvae, including a native beetle, introduced weed biocontrol agents, and invasive paropsine beetles. No behavioural measure was significantly different between no‐choice and two‐choice tests. In sequential no‐choice assays the order of first presentation (target–non‐target) had no significant effect on the median number of attacks or the attack rate while on the plant. Beetle species was the most important factor. Parasitoids expressed significantly lower on‐plant attack rates against non‐targets compared to target P. charybdis larvae. The median number of attacks was always higher towards target larvae than towards non‐target larvae, except for the phylogenetically closest related non‐target Trachymela sloanei (Blackburn) (Coleoptera: Chrysomelidae, Chrysomelinae). Most non‐target larvae were disregarded upon contact, which suggests that the infrequent attack behaviour observed by two individual E. daenerys against Allocharis nr. tarsalis larvae in two‐choice tests and the frass of Chrysolina abchasica (Weise) was probably abnormal host selection behaviour. Results indicate that E. daenerys is unlikely to attack non‐target species apart from Eucalyptus‐feeding invasive paropsines (Chrysomelinae). Non‐lethal negative impacts upon less preferred non‐target larvae are possible if E. daenerys does attack them in the field; however, this is likely to be rare.  相似文献   

12.
In natural populations of insect herbivores, genetic differentiation is likely to occur due to variation in host plant utilization and selection by the local community of organisms with which they interact. In parasitoids, engaging in intimate associations with their host during immature development, local variation may exist in host quality for parasitoid development. We compared the development of a gregarious endoparasitoid, Cotesia glomerata L. (Hymenoptera: Braconidae), collected in The Netherlands, in three strains and three caterpillar instars (L1–L3) of its main host, Pieris brassicae L. (Lepidoptera: Pieridae). Hosts had been collected in The Netherlands and France, and were reared in the laboratory for one generation. We also used an established Dutch laboratory strain that had not been exposed to parasitoids for at least 24 generations. Parasitoid survival to adulthood was inversely correlated with host instar at parasitism. Adult parasitoid body mass was largest when hosts were parasitized as L1 and smallest when hosts were parasitized as L3, whereas egg‐to‐adult development time was quickest on L3 hosts and slowest on L1 hosts. Higher survival and faster development of C. glomerata on French L2 hosts also showed that there is variation in host‐instar‐related suitability. Many L2 and most L3 caterpillars that were parasitized exhibited signs of pathogen infection and perished within a few days of parasitism, whereas this never happened when hosts were parasitized as L1 or in non‐parasitized control caterpillars. Our results reveal that, irrespective of the host strain, L1 hosts are optimally synchronized with C. glomerata development. By contrast, the high precocious mortality of L3 larvae may be due to stress‐induced regulation by the parasitoid in order to ‘force’ its developmental program into synchrony with the developing parasitoid larvae. Our results underscore a potentially important role played by pathogens in mediating herbivore–parasitoid interactions that are host‐instar‐dependent in their expression.  相似文献   

13.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a significant citrus pest and the parasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae) has been released in various citrus‐producing areas in classical biological control programs targeting D. citri. We investigated the effect of host deprivation on the foraging behavior and patch utilization by T. radiata. In the laboratory, females deprived of hosts for 3 days tended to leave patches of 12 nymphs without parasitizing hosts during the ca. 30 min they spent in the patch before leaving. Moreover, half of these females failed to host feed, and those that did host feed, on average, needed more than 15 min to complete feeding. Conversely, non‐host‐deprived females parasitized on average three nymphs before leaving patches without host feeding during the ca. 39 min they spent in the patch. These laboratory observations were compared to mass‐reared female T. radiata that were released onto colonies of D. citri nymphs infesting citrus in the field. Release vials were provisioned with honey and these females had no opportunities to host feed over the 1‐ to 2‐day containment period prior to release. When introduced onto D. citri colonies, 68% T. radiata females abandoned D. citri patches prior to probing hosts, in part, because Argentine ants, Linepithema humile (Mayr) (Hymenoptera: Formicidae), tending colonies disturbed searching parasitoids. These results from laboratory and field studies are discussed in the context of classical biological control, with the aim of understanding how to manipulate host availability and ant activity so establishment rates and impact of T. radiata can be improved.  相似文献   

14.
Studying the drivers of host specificity can contribute to our understanding of the origin and evolution of obligate pollination mutualisms. The preference–performance hypothesis predicts that host plant choice of female insects is related mainly to the performance of their offspring. Soil moisture is thought to be particularly important for the survival of larvae and pupae that inhabit soil. In the high Himalayas, Rheum nobile and R. alexandrae differ in their distribution in terms of soil moisture; that is, R. nobile typically occurs in scree with well‐drained soils, R. alexandrae in wetlands. The two plant species are pollinated by their respective mutualistic seed‐consuming flies, Bradysia sp1. and Bradysia sp2. We investigated whether soil moisture is important for regulating host specificity by comparing pupation and adult emergence of the two fly species using field and laboratory experiments. Laboratory experiments revealed soil moisture did have significant effects on larval and pupal performances in both fly species, but the two fly species had similar optimal soil moisture requirements for pupation and adult emergence. Moreover, a field reciprocal transfer experiment showed that there was no significant difference in adult emergence for both fly species between their native and non‐native habitats. Nevertheless, Bradysia sp1., associated with R. nobile, was more tolerant to drought stress, while Bradysia sp2., associated with R. alexandrae, was more tolerant to flooding stress. These results indicate that soil moisture is unlikely to play a determining role in regulating host specificity of the two fly species. However, their pupation and adult emergence in response to extremely wet or dry soils are habitat‐specific.  相似文献   

15.
Searching and oviposition behavior and parasitization ability of Anagrus nigriventris Girault (Hymenoptera: Mymaridae), an egg parasitoid of beet leafhopper, Circulifer tenellus (Baker) (Homoptera: Cicadellidae), were examined on five host plant species of beet leafhopper: sugar beet (Beta vulgaris L.), red stem filaree (Erodium cicutarium[L.]), peppergrass (Lepidium nitidum Nuttall), desert plantain (Plantago ovata Forsskal), and London rocket (Sisymbrium irio L.). Beet leafhopper embeds its eggs in the tissues of these plant species. For each plant species, A. nigriventris behavior was examined on plants with and without beet leafhopper eggs. Experimental design was a 5 (plant species) by 2 (host eggs present/absent) factorial. Additionally within each treatment, parasitoid behavior was observed over a 22-h period at five different observation periods: t=0, 3, 6, 9, and 22 h where t=0 h represents initial exposure of the insect with the plant. The behavioral events observed were: `fast walking' (general searching), `slow walking' (intensive searching), ovipositor probing, grooming, feeding, and resting. Significant differences (=0.05) among plant species in time spent on the plant, percentage of host eggs parasitized, and behavioral variables associated with intensive searching and oviposition all indicated that the plant species fell into two groups: `preferred' plants (sugar beet, London rocket, and peppergrass), and `unpreferred' plants (filaree and plantago). These variables also indicated that the parasitoids spent more time on, searched more, probed more, and oviposited more in plants with host eggs than plants without host eggs. Consistent effects of time (over the observation periods from t=0 to t=22 h) generally were detected only in the preferred plant species that had host eggs present. In these cases, intensive searching and probing decreased as time advanced, while variables related to general searching (`fast walking') and abandoning host egg patches (leaving the plant) tended to increase over time.  相似文献   

16.
Parasitoids use herbivore‐induced plant volatiles (HIPVs) to locate their hosts. However, there are few studies in soybean showing the mechanisms involved in the attraction of natural enemies to their hosts and prey. The objective of this study was to evaluate the influence of volatile organic compounds (VOCs) of soybean, Glycine max (L.) Merr. (Fabaceae) (cv. Dowling), that were induced after injury caused by Euschistus heros (Fabricius) (Hemiptera: Pentatomidae), on the searching behavior of the egg parasitoid Telenomus podisi Ashmead (Hymenoptera: Scelionidae). Four HIPVs from soybean, (E,E)‐α‐farnesene, methyl salicylate, (Z)‐3‐hexenyl acetate, and (E)‐2‐octen‐1‐ol, were selected, prepared from standards at various concentrations (10?6 to 10?1 m ), and tested individually and in combinations using a two‐choice olfactometer (type Y). Telenomus podisi displayed a preference only for (E,E)‐α‐farnesene at 10?5 m when tested individually and compared to hexane, but they did not respond to the other compounds tested individually at any concentration or when combinations of these compounds were tested. However, the parasitoids stayed longer in the olfactometer arm with the mixture of (E,E)‐α‐farnesene + methyl salicylate at 10?5 m than in the arm containing hexane. The results suggest that (E,E)‐α‐farnesene and methyl salicylate might help T. podisi to determine the presence of stink bugs on a plant. In addition, bioassays were conducted to compare (E,E)‐α‐farnesene vs. the volatiles emitted by undamaged and E. heros‐damaged plants, to evaluate whether (E,E)‐α‐farnesene was the main cue used by T. podisi or whether other minor compounds from the plants and/or the background might also be used to locate its host. The results suggest that minor volatile compounds from soybean plants or from its surroundings are involved in the host‐searching behavior of T. podisi.  相似文献   

17.
The parasitoid Anaphes flavipes (Foerster) (Hymenoptera: Mymaridae) is a gregarious egg parasitoid which is widely used in biological control against important crop pest beetles of the genus Oulema (Coleoptera: Chrysomelidae). Here, we present the first experimental examination of the influence of adult feeding and timing of host exposure on the longevity and fertility of this parasitoid. We confirmed a positive effect of adult feeding on longevity of both sexes. Fed parasitoids lived 3× longer than unfed ones. On the other hand, adult feeding and feeding time had no effect on female fertility. The number of hatched offspring was not increased by adult feeding, which suggests that the parasitoid emerges with already mature ovaries (proovigenic type). However, the fertility of fed females was strongly influenced by the timing of host egg exposure. By providing distinct groups of parasitoids with host eggs at different times, we were able to show lower fertility of fed females that had been offered host eggs more than 24 h after hatching. Our results thus show that the parasitoid's fertility is determined by her age at the time of parasitization rather than by feeding.  相似文献   

18.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

19.
We examined whether Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae), a quasi‐gregarious egg parasitoid of Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), produces precise sex ratios under a field setting. Under laboratory conditions, previous studies have shown that G. ashmeadi exhibits strongly female‐biased sex ratios with low variance in the number of males produced per host. Field‐collected G. ashmeadi tend to produce much less female‐biased sex ratios with high variance in male numbers. We found significant positive effects of proportion parasitism and host density on sex ratio. Proportion parasitism also had a positive effect on sex ratio variance. The findings of this study are discussed in the context of theoretical predictions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号