首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have established an in vitro reconstitution/splicing complementation system which has allowed the investigation of the role of mammalian U1 snRNP components both in splicing and at the early stages of spliceosome formation. U1 snRNPs reconstituted from purified, native snRNP proteins and either authentic or in vitro transcribed U1 snRNA restored both early (E) splicing complex formation and splicing-activity to U1-depleted extracts. In vitro reconstituted U1 snRNPs possessing an m3G or ApppG cap were equally active in splicing, demonstrating that a physiological cap structure is not absolutely required for U1 function. However, the presence of an m7GpppG or GpppG cap was deleterious to splicing, most likely due to competition for the m7G cap binding proteins. No significant reduction in splicing or E complex formation was detected with U1 snRNPs reconstituted from U1 snRNA lacking the RNA binding sites of the U1-70K or U1-A protein (i.e., stem-loop I and II, respectively). Complementation studies with purified HeLa U1 snRNPs lacking subsets of the U1-specific proteins demonstrated a role for the U1-C, but not U1-A, protein in the formation and/or stabilization of early splicing complexes. Studies with recombinant U1-C protein mutants indicated that the N-terminal domain of U1-C is necessary and sufficient for the stimulation of E complex formation.  相似文献   

2.
The function of conserved regions of the metazoan U5 snRNA was investigated by reconstituting U5 small nuclear ribonucleoprotein particles (snRNPs) from purified snRNP proteins and HeLa or Xenopus U5 snRNA mutants and testing their ability to restore splicing to U5-depleted nuclear extracts. Substitution of conserved nucleotides comprising internal loop 2 or deletion of internal loop 1 had no significant effect on the ability of reconstituted U5 snRNPs to complement splicing. However, deletion of internal loop 2 abolished U5 activity in splicing and spliceosome formation. Surprisingly, substitution of the invariant loop 1 nucleotides with a GAGA tetraloop had no effect on U5 activity. Furthermore, U5 snRNPs reconstituted from an RNA formed by annealing the 5' and 3' halves of the U5 snRNA, which lacked all loop 1 nucleotides, complemented both steps of splicing. Thus, in contrast to yeast, loop 1 of the human U5 snRNA is dispensable for both steps of splicing in HeLa nuclear extracts. This suggests that its function can be compensated for in vitro by other spliceosomal components: for example, by proteins associated with the U5 snRNP. Consistent with this idea, immunoprecipitation studies indicated that several functionally important U5 proteins associate stably with U5 snRNPs containing a GAGA loop 1 substitution.  相似文献   

3.
U2 snRNA, a key player in nuclear pre-mRNA splicing, contains a 5'-terminal m3G cap and many internal modifications. The latter were shown in vertebrates to be generally required for U2 function in splicing, but precisely which residues are essential and their role in snRNP and/or spliceosome assembly is presently not clear. Here, we investigated the roles of individual modified nucleotides of HeLa U2 snRNA in pre-mRNA splicing, using a two-step in vitro reconstitution/complementation assay. We show that the three pseudouridines and five 2'O-methyl groups within the first 20 nucleotides of U2 snRNA, but not the m3G cap, are required for efficient pre-mRNA splicing. Individual pseudouridines were not essential, but had cumulative effects on U2 function. In contrast, four of five 2'O-methylations (at positions 1, 2, 12, and 19) were individually required for splicing. The in vitro assembly of 17S U2 snRNPs was not dependent on the presence of modified U2 residues. However, individual internal modifications were required for the formation of the ATP-independent early spliceosomal E complex. Our data strongly suggest that modifications within the first 20 nucleotides of U2 play an important role in facilitating the interaction of U2 with U1 snRNP and/or other factors within the E complex.  相似文献   

4.
The interaction of the U5-specific polypeptides with U5 snRNA was investigated by comparison of the differential accessibility towards nucleases and dimethylsulfate of defined regions of U5 snRNA in purified 20S and 10S U5 snRNPs. While 20S U5 snRNPs contain eight U5-specific proteins in addition to the common proteins, the 10S U5 snRNPs contain only the latter proteins. The results indicate that only the central part of stem/loop I of U5 snRNA including internal loops IL2 and IL2', contains binding sites for U5-specific proteins, suggesting that several U5-specific proteins may be bound to U5 snRNP via protein-protein interactions. Moreover, they show that the core polypeptides do not interact with stem/loop I.  相似文献   

5.
In this paper we describe a method for preparing native, RNA-free, proteins from anti-m3G purified snRNPs (U1, U2, U4/U6 and U5) and the subsequent quantitative reconstitution of U1 and U2 snRNPs from purified proteins and snRNA. Reconstituted U1 and U2 snRNPs contained the full complement of core proteins, B, B, D1, D2, D3, E, F and G. Both the U1 and U2 reconstituted particles were stable in CsCl gradients and had the expected buoyant density of 1.4 g/cm3. Reconstituted RNP particle formation was not competited by a 50 fold molar excess of tRNA, as determined by gel retardation assays. However, U1 and U2 particle formation was reduced in the presence of an excess of cold U1 or U2 snRNA demonstrating a specific RNA-protein interaction. U1 and U2 snRNPs were also efficiently reconstituted in vitro, utilizing proteins prepared from mono Q purified U1 and U2 snRNPs. This suggests that for the assembly of snRNPs in vitro no auxiliary proteins other than bona fide snRNP proteins appear to be required. The potential of this reconstitution technique for investigating snRNP assembly and snRNA-protein interactions is discussed.Abbreviations PEG Polyethelene glycol - PMSF Phenylmethyl sulfonylfluoride - TP total proteins - mAb monoclonal antibody  相似文献   

6.
We have developed an in vitro complementation assay to analyse the functions of U6 small nuclear RNA (snRNA) in splicing and in the assembly of small nuclear ribonucleoproteins (snRNPs) and spliceosomes. U6-specific, biotinylated 2'-OMe RNA oligonucleotides were used to deplete nuclear extract of the U4/U6 snRNP and to affinity purify functional U4 snRNP. The addition of affinity purified U4 snRNP together with U6 RNA efficiently restored splicing activity, spliceosome assembly and U4/U5/U6 multi-snRNP formation in the U4/U6-depleted extract. Through a mutational analysis we have obtained evidence for multiple sequence elements of U6 RNA functioning during U4/U5/U6 multi-snRNP formation, spliceosome assembly and splicing. Surprisingly, the entire 5' terminal domain of U6 RNA is dispensable for splicing function. In contrast, two regions in the central and 3' terminal domain are required for the assembly of a functional U4/U5/U6 multi-snRNP. Another sequence in the 3' terminal domain plays an essential role in spliceosome assembly; a model is strongly supported whereby base pairing between this sequence and U2 RNA plays an important role during assembly of a functional spliceosome.  相似文献   

7.
Several lines of evidences indicate that U1 and U2 snRNPs become interacting during pre-mRNA splicing. Here we present data showing that an U1-U2 snRNPs interaction can be mediated by an RNA only containing the consensus 5' splice site of all of the sequences characteristic of pre-mRNAs. Using monospecific antibodies (anti-(U1) RNP and anti-(U2) RNP), we have found that a tripartite complex comprising U1 and U2 snRNPs is immunoprecipitated in the presence of a consensus 5' splice site containing RNA, either from a crude extract or from an artificial mixture enriched in U1 and U2 snRNPs. This complex does not appear in the presence of an RNA lacking the sequence complementary to the 5' terminus of U1 snRNA. Moreover, RNAse T1 protection coupled to immunoprecipitation experiments have demonstrated that only the 5' end sequence of U1 snRNA contacts the consensus 5' splice site containing RNA, arguing that U2 snRNP binding in the tripartite complex is mediated by U1 snRNP.  相似文献   

8.
The four major nucleoplasmic small nuclear ribonucleoprotein particles U1, U2, U4/U6 and U5 can be extensively purified from HeLa cells by immunoaffinity chromatography using a monoclonal anti-trimethylguanosine antibody. The snRNP particles in active splicing extracts are selectively bound to the immunoaffinity matrix, and are then gently eluted by competition with an excess of free nucleoside. Biochemical complementation studies show that the purified snRNPs are active in pre-mRNA splicing, but only in the presence of additional non-snRNP protein factors. All the RNPs that are necessary for splicing can be purified in this manner. The active snRNPs are characterized with respect to their polypeptide composition, and shown to be distinct from several other activities implicated in splicing.  相似文献   

9.
The 17S U2 snRNP plays an essential role in branch point selection and catalysis during pre-mRNA splicing. Much remains to be learned about the molecular architecture of the U2 snRNP, including which proteins contact the functionally important 5' end of the U2 snRNA. Here, RNA-protein interactions within immunoaffinity-purified human 17S U2 snRNPs were analyzed by lead(II)-induced RNA cleavage and UV cross-linking. Contacts between the U2 snRNA and SF3a60, SF3b49, SF3b14a/p14 and SmG and SmB were detected. SF3b49 appears to make multiple contacts, interacting with the 5' end of U2 and nucleotides in loops I and IIb. SF3a60 also contacted different regions of the U2 snRNA, including the base of stem-loop I and a bulge in stem-loop III. Consistent with it contacting the pre-mRNA branch point adenosine, SF3b14a/p14 interacted with the U2 snRNA near the region that base pairs with the branch point sequence. A comparison of U2 cross-linking patterns obtained with 17S U2 snRNP versus purified spliceosomal A and B complexes revealed that RNA-protein interactions with stem-loop I and the branch site-interacting region of U2 are dynamic. These studies provide important insights into the molecular architecture of 17S U2 snRNPs and reveal U2 snRNP remodeling events during spliceosome assembly.  相似文献   

10.
We have purified the yeast U5 and U6 pre-mRNA splicing small nuclear ribonucleoproteins (snRNPs) by affinity chromatography and analyzed the associated polypeptides by mass spectrometry. The yeast U5 snRNP is composed of the two variants of U5 snRNA, six U5-specific proteins and the 7 proteins of the canonical Sm core. The U6 snRNP is composed of the U6 snRNA, Prp24, and the 7 Sm-Like (LSM) proteins. Surprisingly, the yeast DEAD-box helicase-like protein Prp28 is stably associated with the U5 snRNP, yet is absent from the purified U4/U6 x U5 snRNP. A novel yeast U5 and four novel yeast U4/U6 x U5 snRNP polypeptides were characterized by genetic and biochemical means to demonstrate their involvement in the pre-mRNA splicing reaction. We also show that, unlike the human tri-snRNP, the yeast tri-snRNP dissociated upon addition of ATP or dATP.  相似文献   

11.
Z Q Pan  H Ge  X Y Fu  J L Manley    C Prives 《Nucleic acids research》1989,17(16):6553-6568
We have investigated the roles of U1 and U2 snRNP particles in SV40 pre-mRNA splicing by oligonucleotide-targeted degradation of U1 or U2 snRNAs in Xenopus laevis oocytes. Microinjection of oligonucleotides complementary to regions of U1 or U2 RNAs either in the presence or absence of SV40 DNA resulted in specific cleavage of the corresponding snRNA. Unexpectedly, degradation of U1 or U2 snRNA was far more extensive when the oligonucleotide was injected without, or prior to, introduction of viral DNA. In either co-injected or pre-injected oocytes, these oligonucleotides caused a dramatic reduction in the accumulation of spliced SV40 mRNA expressed from the viral late region, and a commensurate increase in unspliced late RNA. When pre-injected, two different U2 specific oligonucleotides also inhibited the formation of both large and small tumor antigen spliced early mRNAs. However, even when, by pre-injection of a U1 5' end-specific oligonucleotide, greater than 95% degradation of the U1 snRNA 5' ends occurred in oocytes, no reduction in early pre-mRNA splicing was observed. In contrast, the same U1 5' end oligonucleotide, when added to HeLa splicing extracts, substantially inhibited the splicing of SV40 early pre-mRNA, indicating that U1 mRNP is not totally dispensable for early splicing. These findings confirm and extend our earlier observations which suggested that different pre-mRNAs vary in their requirements for snRNPs.  相似文献   

12.
Binding of U2 small nuclear ribonucleoprotein (snRNP) to the pre-mRNA is an early and important step in spliceosome assembly. We searched for evidence of cooperative function between yeast U2 small nuclear RNA (snRNA) and several genetically identified splicing (Prp) proteins required for the first chemical step of splicing, using the phenotype of synthetic lethality. We constructed yeast strains with pairwise combinations of 28 different U2 alleles with 10 prp mutations and found lethal double-mutant combinations with prp5, -9, -11, and -21 but not with prp3, -4, -8, or -19. Many U2 mutations in highly conserved or invariant RNA structures show no phenotype in a wild-type PRP background but render mutant prp strains inviable, suggesting that the conserved but dispensable U2 elements are essential for efficient cooperative function with specific Prp proteins. Mutant U2 snRNA fails to accumulate in synthetic lethal strains, demonstrating that interaction between U2 RNA and these four Prp proteins contributes to U2 snRNP assembly or stability. Three of the proteins (Prp9p, Prp11p, and Prp21p) are associated with each other and pre-mRNA in U2-dependent splicing complexes in vitro and bind specifically to synthetic U2 snRNA added to crude splicing extracts depleted of endogenous U2 snRNPs. Taken together, the results suggest that Prp9p, -11p, and -21p are U2 snRNP proteins that interact with a structured region including U2 stem loop IIa and mediate the association of the U2 snRNP with pre-mRNA.  相似文献   

13.
The U1 small nuclear ribonucleoprotein particle (snRNP)-specific 70K and A proteins are known to bind directly to stem-loops of the U1 snRNA, whereas the U1-C protein does not bind to naked U1 snRNA, but depends on other U1 snRNP protein components for its association. Focusing on the U1-70K and U1-C proteins, protein-protein interactions contributing to the association of these particle-specific proteins with the U1 snRNP were studied. Immunoprecipitation of complexes formed after incubation of naked U1 snRNA or purified U1 snRNPs lacking their specific proteins (core U1 snRNP) with in vitro translated U1-C protein, revealed that both common snRNP proteins and the U1-70K protein are required for the association of U1-C with the U1 snRNP. Binding studies with various in vitro translated U1-70K mutants demonstrated that the U1-70K N-terminal domain is necessary and sufficient for the interaction of U1-C with core U1 snRNPs. Surprisingly, several N-terminal fragments of the U1-70K protein, which lacked the U1-70K RNP-80 motif and did not bind naked U1 RNA, associated stably with core U1 snRNPs. This suggests that a new U1-70K binding site is generated upon association of common U1 snRNP proteins with U1 RNA. The interaction between the N-terminal domain of U1-70K and the core RNP domain was specific for the U1 snRNP; stable binding was not observed with core U2 or U5 snRNPs, suggesting essential structural differences among snRNP core domains. Evidence for direct protein-protein interactions between U1-specific proteins and common snRNP proteins was supported by chemical crosslinking experiments using purified U1 snRNPs. Individual crosslinks between the U1-70K and the common D2 or B'/B protein, as well as between U1-C and B'/B, were detected. A model for the assembly of U1 snRNP is presented in which the complex of common proteins on the RNA backbone functions as a platform for the association of the U1-specific proteins.  相似文献   

14.
Monospecific antibodies directed against several U small nuclear ribonucleoprotein (U snRNP) particle proteins were affinity purified from a patient's anti-(U1,U2)RNP serum. These were used to demonstrate that: (i) proteins equivalent to the mammalian U2 snRNP-specific A' and B" proteins are present in Xenopus laevis oocytes; (ii) both proteins A' and B" have the same structural requirements for binding to U2 snRNA; (iii) proteins B, B' and D have the same structural requirement for binding to U2 snRNA; (iv) using very high specific activity RNA probes it is possible to detect a fraction of either U1 or U2 snRNA precipitable by antibodies directed against proteins specific for the other U snRNP, indicating an interaction between U1 and U2 snRNPs. The structural requirements of this interaction were studied for the U2 snRNP. All changes made to U2 snRNA or snRNP structure resulted in loss of the interaction with U1 snRNP.  相似文献   

15.
Functional reconstitution of U1 small nuclear ribonucleoprotein particle (U1 snRNP) was performed using in vitro transcribed U1 snRNA. Hela cell nuclear extract was depleted of its constituent snRNPs by centrifugation at 100,000 X g. The supernatant was devoid of snRNAs and lacked cleavage activity in splicing reactions using in vitro transcribed beta-globin pre-mRNA as substrate. The resulting pellet which contained the snRNAs, retained 5' splice site cleavage activity in a similar splicing reaction. Supplementation of the inactive supernatant fraction with in vitro transcribed U1 snRNA, partially restored 5' splice site cleavage activity thereby demonstrating the specific requirement of U1 snRNP in the initial stage of pre-mRNA splicing.  相似文献   

16.
A novel small nuclear ribonucleoprotein (snRNP) complex containing both U11 and U12 RNAs has been identified in HeLa cell extracts. This U11/U12 snRNP complex can be visualized on glycerol gradients, on native polyacrylamide gels, and by selection with antisense 2'-O-methyl oligoribonucleotides. RNase H-mediated degradation of the U12 snRNA confirmed a direct interaction between the U11 and U12 snRNPs. This snRNP complex is the first to be identified involving low-abundance snRNPs. Selection of the U11/U12 snRNP complex is sensitive to high salt, suggestive of a protein-mediated interaction. Secondary structure analyses revealed several regions of the U11 snRNP accessible for interaction with other RNAs or proteins but no detectable difference between the accessibility of these regions in the U11 monoparticle compared with the U11/U12 snRNP complex. There are also several accessible single-stranded regions in the U12 snRNP, and oligonucleotide-directed RNase H digestion identified nucleotides 28 to 36 of U12 as containing sequences required for the U11/U12 interaction. Both the U12 snRNP and the U11/U12 snRNP complex can be disrupted without altering the cleavage/polyadenylation activity of a nuclear extract.  相似文献   

17.
Small nuclear (sn) ribonucleoprotein (RNP) U2 functions in the splicing of mRNA by recognizing the branch site of the unspliced pre-mRNA. When HeLa nuclear splicing extracts are centrifuged on glycerol gradients, U2 snRNPs sediment at either 12S (under high salt concentration conditions) or 17S (under low salt concentration conditions). We isolated the 17S U2 snRNPs from splicing extracts under nondenaturing conditions by using centrifugation and immunoaffinity chromatography and examined their structure by electron microscope. In addition to common proteins B', B, D1, D2, D3, E, F, and G and U2-specific proteins A' and B", which are present in the 12S U2 snRNP, at least nine previously unidentified proteins with apparent molecular masses of 35, 53, 60, 66, 92, 110, 120, 150, and 160 kDa bound to the 17S U2 snRNP. The latter proteins dissociate from the U2 snRNP at salt concentrations above 200 mM, yielding the 12S U2 snRNP particle. Under the electron microscope, the 17S U2 snRNPs exhibited a bipartite appearance, with two main globular domains connected by a short filamentous structure that is sensitive to RNase. These findings suggest that the additional globular domain, which is absent from 12S U2 snRNPs, contains some of the 17S U2-specific proteins. The 5' end of the RNA in the U2 snRNP is more exposed for reaction with RNase H and with chemical probes when the U2 snRNP is in the 17S form than when it is in the 12S form. Removal of the 5' end of this RNA reduces the snRNP's Svedberg value from 17S to 12S. Along with the peculiar morphology of the 17S snRNP, these data indicate that most of the 17S U2-specific proteins are bound to the 5' half of the U2 snRNA.  相似文献   

18.
The U6 small nuclear RNA (snRNA) undergoes major conformational changes during the assembly of the spliceosome and catalysis of splicing. It associates with the specific protein Prp24p, and a set of seven LSm2p-8p proteins, to form the U6 small nuclear ribonucleoprotein (snRNP). These proteins have been proposed to act as RNA chaperones that stimulate pairing of U6 with U4 snRNA to form the intermolecular stem I and stem II of the U4/U6 duplex, whose formation is essential for spliceosomal function. However, the mechanism whereby Prp24p and the LSm complex facilitate U4/U6 base-pairing, as well as the exact binding site(s) of Prp24p in the native U6 snRNP, are not well understood. Here, we have investigated the secondary structure of the U6 snRNA in purified U6 snRNPs and compared it with its naked form. Using RNA structure-probing techniques, we demonstrate that within the U6 snRNP a large internal region of the U6 snRNA is unpaired and protected from chemical modification by bound Prp24p. Several of these U6 nucleotides are available for base-pairing interaction, as only their sugar backbone is contacted by Prp24p. Thus, Prp24p can present them to the U4 snRNA and facilitate formation of U4/U6 stem I. We show that the 3' stem-loop is not bound strongly by U6 proteins in native particles. However, when compared to the 3' stem-loop in the naked U6 snRNA, it has a more open conformation, which would facilitate formation of stem II with the U4 snRNA. Our data suggest that the combined association of Prp24p and the LSm complex confers upon U6 nucleotides a conformation favourable for U4/U6 base-pairing. Interestingly, we find that the open structure of the yeast U6 snRNA in native snRNPs can also be adopted by human U6 and U6atac snRNAs.  相似文献   

19.
We have developed an in vitro splicing complementation assay to investigate the domain structure of the mammalian U4 small nuclear RNA (snRNA) through mutational analysis. The addition of affinity-purified U4 snRNP or U4 RNA to U4-depleted nuclear extract efficiently restores splicing activity. In the U4-U6 interaction domain of U4 RNA, only stem II was found to be essential for splicing activity; the 5' loop is important for spliceosome stability. In the central domain, we have identified a U4 RNA sequence element that is important for splicing and spliceosome assembly. Surprisingly, an intact Sm domain is not essential for splicing in vitro. Our data provide evidence that several distinct regions of U4 RNA contribute to snRNP assembly, spliceosome assembly and stability, and splicing activity.  相似文献   

20.
Mass spectrometry was used to identify novel proteins associated with the human 17S U2 snRNP and one of its stable subunits, SF3b. Several additional proteins were identified, demonstrating that 17S U2 snRNPs are significantly more complex than previously thought. Two of the newly identified proteins, namely the DEAD-box proteins SF3b125 and hPrp5 (a homologue of Saccharomyces cerevisiae Prp5p) were characterized further. Immunodepletion experiments with HeLa nuclear extract indicated that hPrp5p plays an important role in pre-mRNA splicing, acting during or prior to prespliceosome assembly. The SF3b-associated protein SF3b125 dissociates at the time of 17S U2 formation, raising the interesting possibility that it might facilitate the assembly of the 17S U2 snRNP. Finally, immunofluorescence/FISH studies revealed a differential subnuclear distribution of U2 snRNA, hPrp5p and SF3b125, which were enriched in Cajal bodies, versus SF3b155 and SF3a120, which were not; a model for 17S U2 snRNP assembly based on these findings is presented. Taken together, these studies provide new insight into the composition of the 17S U2 snRNP and the potential function of several of its proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号