首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bZip proteins GCN4 and C/EBP differ in their DNA binding specificities: GCN4 binds well to the pseudopalindromic AP1 site 5'-A4T3G2A1C0T1C2'A3'T4'-3' and to the palindromic ATF/CREB sequence 5'-A4T3G2A1-C0*G0'T1'C2'A3'T4'-3'; C/EBP preferentially recognizes the palindromic sequence 5'-A4T3T2G1C0*G0'C1'A2'-A3'T4'-3'. According to the X-ray structures of GCN4-DNA complexes, five residues of the basic region of GCN4 are involved in specific base contacts: asparagine -18, alanine -15, alanine -14, serine -11 and arginine -10 (numbered relative to the start point of the leucine zipper, which we define as +1). In the basic region of C/EBP position -14 is occupied by valine instead of alanine, the other four residues being identical. Here we analyse the role of valine -14 in C/EBP-DNA complex formation. Starting from a C/EBP-GCN4 chimeric bZip peptide which displays C/EBP specificity, we systematically mutated position -14 of its basic region and characterized the DNA binding specificities of the 20 possible different peptides by gel mobility shift assays with various target sites. We present evidence that valine -14 of C/EBP interacts more strongly with thymine 2 than with cytosine 1' of the C/EBP binding site, unlike the corresponding alanine -14 of GCN4, which exclusively contacts thymine 1' of the GCN4 binding sites.  相似文献   

2.
3.
4.
5.
6.
ACR1, a yeast ATF/CREB repressor.   总被引:7,自引:3,他引:4       下载免费PDF全文
  相似文献   

7.
8.
9.
10.
A 12 bp long GCN4-binding, self-complementary duplex DNA d(CATGACGTCATG)2 has been investigated by NMR spectroscopy to study the structure and dynamics of the molecule in aqueous solution. The NMR structure of the DNA obtained using simulated annealing and iterative relaxation matrix calculations compares quite closely with the X-ray structure of ATF/CREB DNA in complex with GCN4 protein (DNA-binding domain). The DNA is also seen to be curved in the free state and this has a significant bearing on recognition by the protein. The dynamic characteristics of the molecule have been studied by 13C relaxation measurements at natural abundance. A correlation has been observed between sequence-dependent dynamics and recognition by GCN4 protein.  相似文献   

11.
Emerging evidence suggests that dysregulated translation through phosphorylation of eukaryotic initiation factor-2α (eIF2α) may contribute to Alzheimer’s disease (AD) and related memory impairments. However, the underlying mechanisms remain unclear. Here, we crossed knockout mice for an eIF2α kinase (GCN2: general control nonderepressible-2 kinase) with 5XFAD transgenic mice, and investigated whether GCN2 deletion affects AD-like traits in this model. As observed in AD brains, 5XFAD mice recapitulated significant elevations in the β-secretase enzyme BACE1 and the CREB repressor ATF4 concomitant with a dramatic increase of eIF2α phosphorylation. Contrary to expectation, we found that GCN2−/− and GCN2+/− deficiencies aggravate rather than suppress hippocampal BACE1 and ATF4 elevations in 5XFAD mice, failing to rescue memory deficits as tested by the contextual fear conditioning. The facilitation of these deleterious events resulted in exacerbated β-amyloid accumulation, plaque pathology and CREB dysfunction in 5XFAD mice with GCN2 mutations. Notably, GCN2 deletion caused overactivation of the PKR-endoplasmic reticulum-related kinase (PERK)-dependent eIF2α phosphorylation pathway in 5XFAD mice in the absence of changes in the PKR pathway. Moreover, PERK activation in response to GCN2 deficiency was specific to 5XFAD mice, since phosphorylated PERK levels were equivalent between GCN2−/− and wild-type control mice. Our findings suggest that GCN2 may be an important eIF2α kinase under the physiological condition, whereas blocking the GCN2 pathway under exposure to significant β-amyloidosis rather aggravates eIF2α phosphorylation leading to BACE1 and ATF4 elevations in AD.  相似文献   

12.
Aizawa Y  Sugiura Y  Ueno M  Mori Y  Imoto K  Makino K  Morii T 《Biochemistry》1999,38(13):4008-4017
The basic region peptide derived from the basic leucine zipper protein GCN4 bound specifically to the native GCN4 binding sequences in a dimeric form when the beta-cyclodextrin/adamantane dimerization domain was introduced at the C-terminus of the GCN4 basic region peptide. We describe here how the structure and stability of the dimerization domain affect the cooperative formation of the peptide dimer-DNA complex. The basic region peptides with five different guest molecules were synthesized, and their equilibrium dissociation constants with a peptide possessing beta-cyclodextrin were determined. These values, ranging from 1.3 to 15 microM, were used to estimate the stability of the complexes between the dimers with various guest/cyclodextrin dimerization domains and GCN4 target sequences. An efficient cooperative formation of the dimer complexes at the GCN4 binding sequence was observed when the adamantyl group was replaced with the norbornyl or noradamantyl group, but not with the cyclohexyl group that formed a beta-cyclodextrin complex with a stability that was 1 order of magnitude lower than that of the adamantyl group. Thus, cooperative formation of the stable dimer-DNA complex appeared to be effected by the stability of the dimerization domain. For the peptides that cooperatively formed dimer-DNA complexes, there was no linear correlation between the stability of the inclusion complex and that of the dimer-DNA complex. With the beta-cyclodextrin/adamantane dimerization domain, the basic region peptide dimer preferred to bind to a palindromic 5'-ATGACGTCAT-3' sequence over the sequence lacking the central G.C base pair and that with an additional G.C base pair in the middle. Changing the adamantyl group into a norbornyl group did not alter the preferential binding of the peptide dimers to the palindromic sequence, but slightly affected the selectivity of the dimer for other nonpalindromic sequences. The helical contents of the peptides in the DNA-bound dimer with the adamantyl group were decreased by reducing the stability of the dimer-DNA complex, which was possibly caused by deformation of the helical structure proximal to the dimerization domain.  相似文献   

13.
Pseudoisocytidine, a C-nucleoside analogue of cytosine, has two possible isomers of the H1- and H3-forms. Enzymatic incorporation experiments confirmed the existence of the two isomers in solution, and the 2'-deoxyribonucleoside triphosphate of pseudoisocytosine (PIC) was incorporated into DNA opposite both guanine and 6-methoxypurine (M) by the Klenow fragment of Escherichia coli DNA polymerase I. In addition to the PIC*M pairing in replication, M also functioned as an A analogue and T was efficiently incorporated opposite M. Thus, the PIC*M pair is regarded as a base pair between a C analogue and an A analogue, and can mediate the interconversion between the G*C and A*T base pairs. The combination of PIC and M could be used as a G*C<-->A*T transition mutagen.  相似文献   

14.
15.
The aim of the present study was to establish the gene frequency of six polymorphisms of the ABCB1, CYP3A5, CYP2C19, and P2RY12 genes in a population resident of Mexico City. The proteins encoded by these genes have been associated with the absorption, and biotransformation of clopidogrel. The ABCB1 T3435C, CYP3A5 V3* A6986G, P2RY12 G52T, P2RY12 C34T, CYP2C19 V2* and V3* (positions G681A and G636A, respectively), polymorphisms were analyzed by 5′ exonuclease TaqMan genotyping assays in a group of 269 healthy unrelated Mexican Mestizo individuals. The CYP2C19 V3* G636A polymorphism was not detected in the Mexican Mestizos population. However, the studied population presented significant differences (P < 0.05) in the distribution of the T3435C, A6986G, G681A, G52T and C34T polymorphisms when compared to reported frequencies of Amerindian of South America, Caucasian, Asian, and African populations. In summary, the distribution of the ABCB1, CYP3A5, CYP2C19, and P2RY12 gene polymorphisms distinguishes to the Mexican Mestizos population from other ethnic groups.  相似文献   

16.
The crystal structure of a self-complementary RNA duplex r(GGGCGCUCC)2with non-adjacent G*U and U*G wobble pairs separated by four Watson-Crick base pairs has been determined to 2.5 A resolution. Crystals belong to the space group R3; a = 33.09 A,alpha = 87.30 degrees with a pseudodyad related duplex in the asymmetric unit. The structure was refined to a final Rworkof 17.5% and Rfreeof 24.0%. The duplexes stack head-to-tail forming infinite columns with virtually no twist at the junction steps. The 3'-terminal cytosine nucleosides are disordered and there are no electron densities, but the 3' penultimate phosphates are observed. As expected, the wobble pairs are displaced with guanine towards the minor groove and uracil towards the major groove. The largest twist angles (37.70 and 40.57 degrees ) are at steps G1*C17/G2*U16 and U7*G11/C8*G10, while the smallest twist angles (28.24 and 27.27 degrees ) are at G2*U16/G3*C15 and C6*G12/U7*G11 and conform to the pseudo-dyad symmetry of the duplex. The molecule has two unequal kinks (17 and 11 degrees ) at the wobble sites and a third kink at the central G5 site which may be attributed to trans alpha (O5'-P), trans gamma (C4'-C5') backbone conformations. The 2'-hydroxyl groups in the minor groove form inter-column hydrogen bonding, either directly or through water molecules.  相似文献   

17.
18.
The proximal promoter of the C/EBPbeta gene possesses dual cis regulatory elements (TGA1 and TGA2), both of which contain core CREB binding sites. Comparison of the activities of C/EBPbeta promoter-reporter genes with 5'-truncations or site-directed mutations in the TGA elements showed that both are required for maximal promoter function. Electrophoretic mobility shift and chromatin immunoprecipitation (ChIP) analyses with antibodies specific to CREB and ATF1 showed that these CREB family members associate with the proximal promoter both in vitro and ex vivo. Immunoblotting and ChIP analysis revealed that other CREB family members, CREM and ATF1, are up-regulated and associate with the proximal C/EBPbeta promoter in mouse embryonic fibroblasts (MEFs) from CREB(-/-) mice. ChIP analysis of wild-type MEFs and 3T3-L1 preadipocytes revealed that interaction of phospho-CREB, the active form of CREB, with the C/EBPbeta gene promoter occurs only after induction of differentiation of 3T3-L1 preadipocytes and MEFs. Consistent with the interaction of CREB and ATF1 at the TGA regulatory elements, expression of constitutively active CREB strongly activated C/EBPbeta promoter-reporter genes, induced expression of endogenous C/EBPbeta, and caused adipogenesis in the absence of the hormonal inducers normally required. Conversely, expression of a dominant-negative CREB blocked promoter-reporter activity, expression of C/EBPbeta, and adipogenesis. When subjected to the standard adipocyte differentiation protocol, wild-type MEFs differentiate into adipocytes at high frequency, whereas CREB(-/-) MEFs exhibit greatly reduced expression of C/EBPbeta and differentiation. The low level of expression of C/EBPbeta and differentiation in CREB(-/-) MEFs appears to be due to up-regulation of other CREB protein family members, i.e. ATF1 and CREM.  相似文献   

19.
We have carried out NMR and molecular mechanics studies on a complex formed when a palindromic homopyrimidine dodecamer (d-CTTCTCCTCTTC) and a homopurine hexamer (d-GAAGAG) are mixed in 1:1 molar ratio in aqueous solutions. Such studies unequivocally establish that two strands of each oligomer combine to form a triple-stranded DNA structure with a palindromic symmetry and with six T.A:T and six C+. G:C hydrogen-bonded base triads. The two purine strands are placed head to head, with their 3' ends facing each other in the center of the structure. One-half of each pyrimidine strand contains protonated and the other half contains non-protonated cytosines. The two half segments containing protonated cytosines are hydrogen bonded to each of the two purine hexamers through Hoogsteen T.A and C+.G base pairing. The segments containing non-protonated cytosines are involved in Watson-Crick (A:T and G:C) base pairing. This leads to a palindromic triplex with a C2-dyad symmetry with respect to the center of the structure. The complex is less stable at neutral pH, but the cytosines involved in Hoogsteen base pairing remain protonated even under these conditions. Molecular mechanics calculations using NMR constraints have provided a detailed three-dimensional structure of the complex. The entire stretches of purine, and the pyrimidine nucleotides have a conformation close to B-DNA.  相似文献   

20.
The energetic basis of GCN4-bZIP complexes with the AP-1 and ATF/CREB sites was investigated by optical methods and scanning and isothermal titration microcalorimetry. The dissociation constant of the bZIP dimer was found to be significantly higher than that of its isolated leucine zipper domain: at 20 degrees C it is 1.45microM and increases with temperature. To avoid complications from dissociation of this dimer, DNA binding experiments were carried out using an SS crosslinked version of the bZIP. The thermodynamic characteristics of the bZIP/DNA association measured at different temperatures and salt concentrations were corrected for the contribution of refolding the basic segment upon binding, determined from the scanning calorimetric experiments. Fluorescence anisotropy titration experiments showed that the association constants of the bZIP at 20 degrees C with the AP-1 and ATF/CREB binding sites do not differ much, being 1.5nM and 6.4nM, corresponding to Gibbs energies of -49kJmol(-1) and -46kJmol(-1), respectively. Almost half of the Gibbs energy is attributable to the electrostatic component, resulting from the entropic effect of counterion release upon DNA association with the bZIP and is identical for both sites. In contrast to the Gibbs energies, the enthalpies of association of the fully folded bZIP with the AP-1 and ATF/CREB sites, and correspondingly the entropies of association, are very different. bZIP binding to the AP-1 site is characterized by a substantially larger negative enthalpy and non-electrostatic entropy than to the ATF/CREB site, implying that the AP-1 complex incorporates significantly more water molecules than the ATF/CREB complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号