首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular identity and pharmacological properties of mechanically gated ion channels in sensory neurons are poorly understood. We show that FM1-43, a styryl dye used to fluorescently label cell membranes, permeates mechanosensitive ion channels in cultured dorsal root ganglion neurons, resulting in blockade of three previously defined subtypes of mechanically activated currents. Blockade and dye uptake is voltage dependent and regulated by external Ca2+. The structurally related larger dye FM3-25 inhibited mechanically activated currents to a lesser degree and did not permeate the channels. In vivo, FMI-43 decreases pain sensitivity in the Randall-Selitto test and increases the withdrawal threshold from von Frey hairs, together suggesting that the channels expressed at the cell body in culture mediate mechanosensation in the intact animal. These data give further insight into the mechanosensitive ion channels expressed by somatosensory neurons and suggest FM dyes are an interesting tool for studying them.  相似文献   

2.
Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC(50) 1 microM) sustained mechanically activated currents in a subset of sensory neurons. Biotinylated NMB-1 retains activity and binds selectively to peripherin-positive nociceptive sensory neurons. The selectivity of NMB-1 was confirmed by the fact that it has no inhibitory effects on voltage-gated sodium and calcium channels, or ligand-gated channels such as acid-sensing ion channels or TRPA1 channels. Conversely, the tarantula toxin, GsMTx-4, which inhibits stretch-activated ion channels, had no effects on mechanically activated currents in sensory neurons. In behavioral assays, NMB-1 inhibits responses only to high intensity, painful mechanical stimulation and has no effects on low intensity mechanical stimulation or thermosensation. Unexpectedly, NMB-1 was found to also be an inhibitor of rapid FM1-43 loading (a measure of mechanotransduction) in cochlear hair cells. These data demonstrate that pharmacologically distinct channels respond to distinct types of mechanical stimuli and suggest that mechanically activated sustained currents underlie noxious mechanosensation. NMB-1 thus provides a novel diagnostic tool for the molecular definition of channels involved in hearing and pressure-evoked pain.  相似文献   

3.
Acetic acid produces an irritating sensation that can be attributed to activation of nociceptors within the trigeminal ganglion that innervate the nasal or oral cavities. These sensory neurons sense a diverse array of noxious agents in the environment, allowing animals to actively avoid tissue damage. Although receptor mechanisms have been identified for many noxious chemicals, the mechanisms by which animals detect weak acids, such as acetic acid, are less well understood. Weak acids are only partially dissociated at neutral pH and, as such, some can cross the cell membrane, acidifying the cell cytosol. The nociceptor ion channel TRPA1 is activated by CO(2), through gating of the channel by intracellular protons, making it a candidate to more generally mediate sensory responses to weak acids. To test this possibility, we measured responses to weak acids from heterologously expressed TRPA1 channels and trigeminal neurons with patch clamp recording and Ca(2+) microfluorometry. Our results show that heterologously expressed TRPA1 currents can be induced by a series of weak organic acids, including acetic, propionic, formic, and lactic acid, but not by strong acids. Notably, the degree of channel activation was predicted by the degree of intracellular acidification produced by each acid, suggesting that intracellular protons are the proximate stimulus that gates the channel. Responses to weak acids produced a Ca(2+)-independent inactivation that precluded further activation by weak acids or reactive chemicals, whereas preactivation by reactive electrophiles sensitized TRPA1 channels to weak acids. Importantly, responses of trigeminal neurons to weak acids were highly overrepresented in the subpopulation of TRPA1-expressing neurons and were severely reduced in neurons from TRPA1 knockout mice. We conclude that TRPA1 is a general sensor for weak acids that produce intracellular acidification and suggest that it functions within the pain pathway to mediate sensitivity to cellular acidosis.  相似文献   

4.
Summary The activity of the mechanosensitive (MS) ion channels in membrane patches, excised fromE. coli spheroplasts, was analyzed using the patch-clamp technique. Outer membranes from a mutant lacking the major lipoprotein (Lpp) and its wildtype parent were examined. The MS-channel activities in the wild-type membrane rarely revealed substates at the time resolution used. These channels showed a stretch sensitivity indicated by the IISP (the suction for ane-fold increase in channel open probability) of 4.9 mm Hg suction. The MS-channel activities oflpp included a prominent substate and showed a weaker mechano-sensitivity with an 1/S p of 10.0 mm Hg. Whereas small amphipaths (chlorpromazine, trinitrophenol) or a larger amphipath (lysolecithin) all activated the MS channel in the wild-type membrane under minimal suction, only the larger lysolecithin could activate the MS channel in thelpp membranes. After lysolecithin addition, thelpp membrane became more effective in transmitting the stretch force to the MS channel, as indicated by a steepening of the Boltzmann curve. We discuss one interpretation of these results, in which the major lipoprotein serves as a natural amphipath inserted in the inner monolayer and the loss of this natural amphipath makes the bilayer less able to transmit the gating force.  相似文献   

5.
Transient receptor potential (TRP) ankyrin 1 (TRPA1) is a Ca(2+)-permeant, nonselective cationic channel. It is predominantly expressed in the C afferent sensory nerve fibers of trigeminal and dorsal root ganglion neurons and is highly coexpressed with the nociceptive ion channel transient receptor potential vanilloid 1 (TRPV1). Several physical and chemical stimuli have been shown to activate the channel. In this study, we have used electrophysiological techniques and behavioral models to characterize the properties of TRPA1. Whole cell TRPA1 currents induced by brief application of lower concentrations of N-methyl maleimide (NMM) or allyl isothiocyanate (AITC) can be reversed readily by washout, whereas continuous application of higher concentrations of NMM or AITC completely desensitized the currents. The deactivation and desensitization kinetics differed between NMM and AITC. TRPA1 current amplitude increased with repeated application of lower concentrations of AITC, whereas saturating concentrations of AITC induced tachyphylaxis, which was more pronounced in the presence of extracellular Ca(2+). The outward rectification exhibited by native TRPA1-mediated whole cell and single-channel currents was minimal as compared with other TRP channels. TRPA1 currents were negatively modulated by protons and polyamines, both of which activate the heat-sensitive channel, TRPV1. Interestingly, neither protein kinase C nor protein kinase A activation sensitized AITC-induced currents, but each profoundly sensitized capsaicin-induced currents. Current-clamp experiments revealed that AITC produced a slow and sustained depolarization as compared with capsaicin. TRPA1 is also expressed at the central terminals of nociceptors at the caudal spinal trigeminal nucleus. Activation of TRPA1 in this area increases the frequency and amplitude of miniature excitatory or inhibitory postsynaptic currents. In behavioral studies, intraplantar and intrathecal administration of AITC induced more pronounced and prolonged changes in nociceptive behavior than those induced by capsaicin. In conclusion, the characteristics of TRPA1 we have delineated suggest that it might play a unique role in nociception.  相似文献   

6.
Mechanosensitive ion channels have been described in many types of cells. These channels are believed to transduce pressure signals into intracellular biochemical and physiological events. In this study, the patch-clamp technique was used to identify and characterize a mechanosensitive ion channel in rat atrial cells. In cell-attached patches, negative pressure in the pipette activated an ion channel in a pressure-dependent manner. The pressure to induce half-maximal activation was 12 +/- 3 mmHg at +40 mV, and nearly full activation was observed at approximately 20 mmHg. The probability of opening was voltage dependent, with greater channel activity at depolarized potentials. The mechanosensitive channel was identical to the K+ channel previously shown to be activated by arachidonic acid and other lipophilic compounds, as judged by the outwardly rectifying current-voltage relation, single channel amplitude, mean open time (1.4 +/- 0.3 ms), bursty openings, K+ selectivity, insensitivity to any known organic inhibitors of ion channels, and pH sensitivity. In symmetrical 140 mM KCl, the slope conductance was 94 +/- 11 pS at +60 mV and 64 +/- 8 pS at -60 mV. Anions and cations such as Cl-, glutamate, Na+, Cs+, Li+, Ca2+, and Ba2+ were not permeant. Extracellular Ba2+ (1 mM) blocked the inward K+ current completely. GdCl3 (100 microM) or CaCl2 (100 microM) did not alter the K+ channel activity or amplitude. Lowering of intracellular pH increased the pressure sensitivity of the channel. The K+ channel could be activated in the presence of 5 mM intracellular [ATP] or 10 microM glybenclamide in inside-out patches. In the absence of ATP, when the ATP-sensitive K+ channel was active, the mechanosensitive channel could further be activated by pressure, suggesting that they were two separate channels. The ATP-sensitive K+ channel was not mechanosensitive. Pressure activated the K+ channel in the presence of albumin, a fatty acid binding protein, suggesting that pressure and arachidonic acid activate the K+ channel via separate pathways.  相似文献   

7.
TRPA1 and TRPM8 are transient receptor potential (TRP) channels involved in sensory perception. TRPA1 is a non‐selective calcium permeable channel activated by irritants and proalgesic agents. TRPM8 reacts to chemical cooling agents such as menthol. The human neuroblastoma cell line IMR‐32 undergoes a remarkable differentiation in response to treatment with 5‐bromo‐2‐deoxyuridine. The cells acquire a neuronal morphology with increased expression of N‐type voltage gated calcium channels and neurotransmitters. Here we show using RT‐PCR, that mRNA for TRPA1 and TRPM8 are strongly upregulated in differentiating IMR‐32 cells. Using whole cell patch clamp recordings, we demonstrate that activators of these channels, wasabi, allyl‐isothiocyanate (AITC) and menthol activate membrane currents in differentiated cells. Calcium imaging experiments demonstrated that AITC mediated elevation of intracellular calcium levels were attenuated by ruthenium red, spermine, and HC‐030031 as well as by siRNA directed against the channel. This indicates that the detected mRNA level correlate with the presence of functional channels of both types in the membrane of differentiated cells. Although the differentiated IMR‐32 cells responded to cooling many of the cells showing this response did not respond to TRPA1/TRPM8 channel activators (60% and 90% for AITC and menthol respectively). Conversely many of the cells responding to these activators did not respond to cooling (30%). This suggests that these channels have also other functions than cold perception in these cells. Furthermore, our results suggest that IMR‐32 cells have sensory characteristics and can be used to study native TRPA1 and TRPM8 channel function as well as developmental expression. J. Cell. Physiol. 221: 67–74, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

8.
In this article we compare electrical conductance events from single channel recordings of three TRP channel proteins (TRPA1, TRPM2 and TRPM8) expressed in human embryonic kidney cells with channel events recorded on synthetic lipid membranes close to melting transitions. Ion channels from the TRP family are involved in a variety of sensory processes including thermo- and mechano-reception. Synthetic lipid membranes close to phase transitions display channel-like events that respond to stimuli related to changes in intensive thermodynamic variables such as pressure and temperature. TRP channel activity is characterized by typical patterns of current events dependent on the type of protein expressed. Synthetic lipid bilayers show a wide spectrum of electrical phenomena that are considered typical for the activity of protein ion channels. We find unitary currents, burst behavior, flickering, multistep-conductances, and spikes behavior in both preparations. Moreover, we report conductances and lifetimes for lipid channels as described for protein channels. Non-linear and asymmetric current–voltage relationships are seen in both systems. Without further knowledge of the recording conditions, no easy decision can be made whether short current traces originate from a channel protein or from a pure lipid membrane.  相似文献   

9.
Mechanosensitive channels serve as essential sensors for cells to interact with their environment. The identity of mechanosensitive channels that underlie somatosensory touch transduction is still a mystery. One promising mechanotransduction candidate is the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel. To determine the role of TRPA1 in the generation of mechanically-sensitive currents, we used dorsal root ganglion (DRG) neuron cultures from adult mice and applied rapid focal mechanical stimulation (indentation) to the soma membrane. Small neurons (diameter <27 µm) were studied because TRPA1 is functionally present in these neurons which largely give rise to C-fiber afferents in vivo. Small neurons were classified by isolectin B4 binding.Mechanically-activated inward currents were classified into two subtypes: Slowly Adapting and Transient. First, significantly more IB4 negative neurons (84%) responded to mechanical stimulation than IB4 positive neurons (54%). Second, 89% of Slowly Adapting currents were present in IB4 negative neurons whereas only 11% were found in IB4 positive neurons. Third, Slowly Adapting currents were completely absent in IB4 negative neurons from TRPA1−/− mice. Consistent with this, Slowly Adapting currents were abolished in wild type IB4 negative neurons stimulated in the presence of a TRPA1 antagonist, HC-030031. In addition, the amplitude of Transient mechanically-activated currents in IB4 positive neurons from TRPA1−/− mice was reduced by over 60% compared to TRPA1+/+ controls; however, a similar reduction did not occur in wild-type neurons treated with HC-030031. Transfection of TRPA1 in HEK293 cells did not significantly alter the proportion or magnitude of mechanically-activated currents in HEK293 cells, indicating that TRPA1 alone is not sufficient to confer mechanical sensitivity.These parallel genetic and pharmacological data demonstrate that TRPA1 mediates the Slowly Adapting mechanically-activated currents in small-diameter IB4 negative neurons from adult mice. The TRPA1 protein may also contribute to a complex that mediates Transient mechanically-activated currents in small IB4 positive C fiber type neurons.  相似文献   

10.
Substantial progress in understanding thermal transduction in peripheral sensory nerve endings was achieved with the recent cloning of six thermally gated ion channels from the TRP (transient receptor potential) super-family. Two of these channels, TRP melastatin 8 (TRPM8) and TRP ankyrin 1 (TRPA1), are expressed in dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons, are activated by various degrees of cooling, and are candidates for mediating gentle cooling and noxious cold, respectively. However, accumulating evidence suggests that more than just these two channels are involved in cold sensing in mammals. A recent report described a critical role of the voltage-gated tetrodotoxin-resistant sodium channel Nav1.8 in perceiving intense cold and noxious stimuli at cold temperatures. Other ion channels, such as two-pore domain background potassium channels (K2P), are known to be expressed in peripheral nerves, have pronounced temperature dependence, and may contribute to cold sensing and/or cold hypersensitivity in pain states. This article reviews the evidence supporting a role for each of these channels in cold transduction, focusing on their biophysical properties, expression pattern, and modulation by pro-inflammatory mediators.  相似文献   

11.
Members of the superfamily of transient receptor potential (TRP) channels are proposed to play important roles in sensory physiology. As an excitatory ion channel TRPA1 is robustly activated by pungent irritants in mustard and garlic and is suggested to mediate the inflammatory actions of environmental irritants and proalgesic agents. Here, we demonstrate that, in addition to pungent natural compounds, Ca(2+) directly gates heterologously expressed TRPA1 in whole-cell and excised-patch recordings with an apparent EC(50) of 905 nm. Pharmacological experiments and site-directed mutagenesis indicate that the N-terminal EF-hand calcium-binding domain of the channel is involved in Ca(2+)-dependent activation. Furthermore, we determine Ca(2+) as prerequisite for icilin activity on TRPA1.  相似文献   

12.
Oxidation products of the naturally occurring phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), which are known as OxPAPC, accumulate in atherosclerotic lesions and at other sites of inflammation in conditions such as septic inflammation and acute lung injury to exert pro- or anti-inflammatory effects. It is currently unknown whether OxPAPC also contributes to inflammatory pain and peripheral neuronal excitability in these conditions. Here, we observed that OxPAPC dose-dependently and selectively activated human TRPA1 nociceptive ion channels expressed in HEK293 cells in vitro, without any effect on other TRP channels, including TRPV1, TRPV4 and TRPM8. OxPAPC agonist activity was dependent on essential cysteine and lysine residues within the N-terminus of the TRPA1 channel protein. OxPAPC activated calcium influx into a subset of mouse sensory neurons which were also sensitive to the TRPA1 agonist mustard oil. Neuronal OxPAPC responses were largely abolished in neurons isolated from TRPA1-deficient mice. Intraplantar injection of OxPAPC into the mouse hind paw induced acute pain and persistent mechanical hyperalgesia and this effect was attenuated by the TRPA1 inhibitor, HC-030031. More importantly, we found levels of OxPAPC to be significantly increased in inflamed tissue in a mouse model of chronic inflammatory pain, identified by the binding of an OxPAPC-specific antibody. These findings suggest that TRPA1 is a molecular target for OxPAPC and OxPAPC may contribute to chronic inflammatory pain through TRPA1 activation. Targeting against OxPAPC and TRPA1 signaling pathway may be promising in inflammatory pain treatment.  相似文献   

13.
Transient receptor potential type A1 (TRPA1) channels are cation permeable channels activated by irritant chemicals and pungent natural compounds. Their location in peptidergic sensory terminals innervating the skin and blood vessels makes them important effectors of vasodilator responses of neural origin. 1,4-dihydropyridines are a class of L-type calcium channel antagonists commonly used in the treatment of hypertension and ischemic heart disease. Here we show that four different 1,4-dihydropyridines (nifedipine, nimodipine, nicardipine and nitrendipine), and the structurally related L-type calcium channel agonist BayK8644, exert powerful excitatory effects on TRPA1 channels. The activation does not depend on elevated Ca2+ levels and cross-desensitizes with that produced by other TRPA1 agonists. The activation produced by nifedipine was reduced by camphor and the selective TRPA1 antagonist HC03001. In a subclass of mouse nociceptors expressing TRPA1 channels, assessed by responses to the TRPA1 agonist mustard oil, nifedipine also produced large elevations in [Ca2+](i). These responses were fully abrogated in TRPA1(-/-) mice. These findings identify TRPA1 channels as a new molecular target for the 1,4-dihydropyridine class of calcium channel modulators.  相似文献   

14.
The gating of ion channels by mechanical force underlies the sense of touch and pain. The mode of gating of mechanosensitive ion channels in vertebrate touch receptors is unknown. Here we show that the presence of a protein link is necessary for the gating of mechanosensitive currents in all low‐threshold mechanoreceptors and some nociceptors of the dorsal root ganglia (DRG). Using TEM, we demonstrate that a protein filament with of length ~100 nm is synthesized by sensory neurons and may link mechanosensitive ion channels in sensory neurons to the extracellular matrix. Brief treatment of sensory neurons with non‐specific and site‐specific endopeptidases destroys the protein tether and abolishes mechanosensitive currents in sensory neurons without affecting electrical excitability. Protease‐sensitive tethers are also required for touch‐receptor function in vivo. Thus, unlike the majority of nociceptors, cutaneous mechanoreceptors require a distinct protein tether to transduce mechanical stimuli.  相似文献   

15.
TRPA1, a member of the transient receptor potential (TRP) family of ion channels, is expressed by dorsal root ganglion neurons and by cells of the inner ear, where it has proposed roles in sensing sound, painful cold, and irritating chemicals. To test the in vivo roles of TRPA1, we generated a mouse in which the essential exons required for proper function of the Trpa1 gene were deleted. Knockout mice display behavioral deficits in response to mustard oil, to cold ( approximately 0 degrees C), and to punctate mechanical stimuli. These mice have a normal startle reflex to loud noise, a normal sense of balance, a normal auditory brainstem response, and normal transduction currents in vestibular hair cells. TRPA1 is apparently not essential for hair-cell transduction but contributes to the transduction of mechanical, cold, and chemical stimuli in nociceptor sensory neurons.  相似文献   

16.
Oxygen (O(2)) is a prerequisite for cellular respiration in aerobic organisms but also elicits toxicity. To understand how animals cope with the ambivalent physiological nature of O(2), it is critical to elucidate the molecular mechanisms responsible for O(2) sensing. Here our systematic evaluation of transient receptor potential (TRP) cation channels using reactive disulfides with different redox potentials reveals the capability of TRPA1 to sense O(2). O(2) sensing is based upon disparate processes: whereas prolyl hydroxylases (PHDs) exert O(2)-dependent inhibition on TRPA1 activity in normoxia, direct O(2) action overrides the inhibition via the prominent sensitivity of TRPA1 to cysteine-mediated oxidation in hyperoxia. Unexpectedly, TRPA1 is activated through relief from the same PHD-mediated inhibition in hypoxia. In mice, disruption of the Trpa1 gene abolishes hyperoxia- and hypoxia-induced cationic currents in vagal and sensory neurons and thereby impedes enhancement of in vivo vagal discharges induced by hyperoxia and hypoxia. The results suggest a new O(2)-sensing mechanism mediated by TRPA1.  相似文献   

17.
The article concentrates on the concepts of mechanosensitive ion channels that are present in practically all cells of an organism. Considered are kinetic scheme and activation principles of mechanic-sensitive ion channels. The forces affecting those channels are discussed in detail. The qualities of the channels in lipid monolayer, bilayer and real cell membrane are under consideration. Discussed are various models that analyze possibilities of channel opening depending on the membrane tension. Under discussion are the data received from studying single channels, currents in whole-cell configuration and cloned channels built into bilayer, liposomes and membrane blebs. Problems of transmitting mechanic energy to the channel through the bilayer and through the cytoskeleton are investigated. Inhibitors and activators of mechanosensitive ion channels are mentioned and their effects are considered. The functional classification of mechanosensitive ion channels is given. Described are cation SACs, potassium SACs, Ca(2+)-sensitive and Ca(2+)-insensitive SACs, anion SACs, nonselective SACs and SICs. It is proved that mechanosensitive ion channels can produce considerable currents enough to change the cell electrogenesis.  相似文献   

18.
Painful channels in sensory neurons   总被引:3,自引:0,他引:3  
Lee Y  Lee CH  Oh U 《Molecules and cells》2005,20(3):315-324
Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as Aa, -b, -d and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.  相似文献   

19.

Background

Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. ?? and ??ENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epithelial or voltage-gated sodium channels are involved in transduction of mechanical stimuli is unclear.

Results

Here we show that deleting ?? and ??ENaC sodium channels in sensory neurons does not result in mechanosensory behavioural deficits. We had shown previously that Nav1.7/Nav1.8 double knockout mice have major deficits in behavioural responses to noxious mechanical pressure. However, all classes of mechanically activated currents in DRG neurons are unaffected by deletion of the two sodium channels. In contrast, the ability of Nav1.7/Nav1.8 knockout DRG neurons to generate action potentials is compromised with 50% of the small diameter sensory neurons unable to respond to electrical stimulation in vitro.

Conclusion

Behavioural deficits in Nav1.7/Nav1.8 knockout mice reflects a failure of action potential propagation in a mechanosensitive set of sensory neurons rather than a loss of primary transduction currents. DEG/ENaC sodium channels are not mechanosensors in mouse sensory neurons.  相似文献   

20.
Mechanosensitive and voltage-gated ion channels are known to perform important roles in mechanotransduction in a number of connective tissues, including bone and muscle. It is hypothesized that voltage-gated and mechanosensitive ion channels also may play a key role in some or all initial responses of human tenocytes to mechanical stimulation. However, to date there has been no direct investigation of ion channel expression by human tenocytes. Human tenocytes were cultured from patellar tendon samples harvested from five patients undergoing routine total knee replacement surgery (mean age: 66 yr; range: 63-73 yr). RT-PCR, Western blotting, and whole cell electrophysiological studies were performed to investigate the expression of different classes of ion channels within tenocytes. Human tenocytes expressed mRNA and protein encoding voltage-operated calcium channel (VOCC) subunits (Ca alpha(1A), Ca alpha(1C), Ca alpha(1D), Ca alpha(2)delta(1)) and the mechanosensitive tandem pore domain potassium channel (2PK(+)) TREK-1. They exhibit whole cell currents consistent with the functional expression of these channels. In addition, other ionic currents were detected within tenocytes consistent with the expression of a diverse array of other ion channels. VOCCs and TREK channels have been implicated in mechanotransduction signaling pathways in numerous connective tissue cell types. These mechanisms may be present in human tenocytes. In addition, human tenocytes may express other channel currents. Ion channels may represent potential targets for the pharmacological management of chronic tendinopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号