首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multiunit EMG activity of the triceps brachii was recorded in precollicular decerebrate cats during roll tilt of the animal or neck rotation at the frequencies of 0.026-0.15 Hz and at the peak amplitude of 10 degrees, leading to selective stimulation of labyrinth or neck receptors. The first harmonic component of the EMG responses to labyrinth stimulation was characterized by an increased activity during side-down tilt of the animal and a decreased activity during side-up tilt; however, just the opposite changes were elicited for the same directions of neck rotation. The peak of the responses was closely related to the extreme animal or neck displacement, thus being attributed to stimulation of position-sensitive macular labyrinth and receptors. Moreover, the modulation as well as the gain of the EMG responses were small in amplitude. Intravenous injections of an anticholinesterase at a dose which in some instances slightly decreased the extensor tonus as well as the background activity of the triceps brachii (eserine sulphate, 0.05-0.075 mg/kg), greatly enhanced the response gain of this extensor muscle to animal tilt or neck rotation at the parameters reported above. This finding was also observed in the absence of any decrease in spontaneous EMG activity of the extensor muscle after injection of the anticholinesterase. In no instance did the phase angle of the response change following these injections. The increased gain of the EMG response of the forelimb extensor muscle to sinusoidal stimulation of labyrinth and neck receptors was first observed 5-10 min after the injection and reached the highest value in about one hour. This effect, was not only time-dependent, but also state-dependent. In fact, the increase in response gain described above either did not occur or was negligible during the sudden recovery of the extensor rigidity which occurred either spontaneously or after somatosensory stimulations. The effects elicited by eserine sulphate were reversed within seconds by a 0.1-0.5 mg/kg dose of atropine sulphate, an anticholinergic drug. It is postulated that for the same labyrinthine or neck signal giving rise to excitatory vestibulospinal volleys acting on extensor motoneurons, the amplitude of the EMG modulation of limb extensor muscles depends on the activity of a cholinergic system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Previous experiments had shown that in decerebrate cats activation of limb extensor motoneurons during side-down roll tilt of the animal or side-up neck rotation depends on both an increased discharge of excitatory vestibulospinal (VS) neurons and a reduced discharge of inhibitory reticulospinal (RS) neurons of the medulla, thus leading to disinhibition of limb extensor motoneurons. The present experiments were performed to find out whether the locus coeruleus (LC) complex keeps under its tonic inhibitory control the medullary inhibitory RS neurons and, if so, whether this structure intervenes in the gain regulation of the vestibular and neck reflexes acting on the limb extensor musculature. In precollicular decerebrate cats with good postural rigidity of the four limbs, the amplitude of modulation and thus the response gain of the first harmonic component of multiunit EMG responses of limb extensors to sinusoidal stimulation of labyrinth and neck receptors (at 0.15 Hz, +/- 10 degrees) were quite small in forelimb muscles (triceps brachii) and almost negligible or absent in hindlimb muscles (triceps surae). Electrolytic lesion limited to the LC complex decreased the tonic contraction of limb extensors, but greatly increased in the forelimbs (and brought to the light in the hindlimbs) the response modulation of extensor muscles to the same parameters of labyrinth or neck stimulation. Correspondingly, the response gain increased, but no change in the phase angle of the responses was observed. Both changes in posture, as well as in response gain of the limb extensors to labyrinth and neck stimulation, fully developed some time after the LC lesion. This increase in response gain of the vestibular and neck reflexes acting on the limb extensor muscles did not depend on the decrease in postural activity following the LC lesion, since it was still obtained when an increased static stretch of the extensor muscle following passive flexion of the limb compensated for the reduced EMG activity. Moreover, the slope of the regression line relating the gain of the multiunit EMG response of the triceps brachii to animal tilt with the base frequency greatly increased following lesioning of the LC, thus indicating that for the same background discharge of the muscle the amplitude of modulation, and thus the response gain, increased significantly. The effects described above involved mainly, but not exclusively, the limbs ipsilateral to the side of the lesion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Many secondary vestibular neurons are sensitive to head on trunk rotation during reflex-induced and voluntary head movements. During passive whole body rotation the interaction of head on trunk signals related to the vestibulo-collic reflex with vestibular signals increases the rotational gain of many secondary vestibular neurons, including many that project to the spinal cord. In some units, the sensitivity to head on trunk and vestibular input is matched and the resulting interaction produces an output that is related to the trunk velocity in space. In other units the head on trunk inputs are stronger and the resulting interaction produces an output that is larger during the reflex. During voluntary head movements, inputs related to head on trunk movement combine destructively with vestibular signals, and often cancel the sensory reafferent consequences of self-generated movements. Cancellation of sensory vestibular signals was observed in all of the antidromically identified secondary vestibulospinal units, even though many of these units were not significantly affected by reflexive head on trunk movements. The results imply that the inputs to vestibular neurons related to head on trunk rotation during reflexive and voluntary movements arise from different sources. We suggest that the relative strength of reflexive head on trunk input to different vestibular neurons might reflect the different functional roles they have in controlling the posture of the neck and body.  相似文献   

4.
1. Previous experiments had shown that the medullary inhibitory reticulospinal (mRS) neurons act 180 degrees out-of-phase with respect to the excitatory vestibulospinal (VS) neurons during the vestibular and the neck reflexes involving the limb extensor motoneurons. This finding suggested that the higher the firing rate of the medullary inhibitory RS neurons in the animal at rest, the greater the disinhibition which affects the limb extensor motoneurons during side-down roll tilt of the animal or side-up neck rotation, thus leading to an increased gain of response of limb extensors to sinusoidal stimulation of labyrinth and neck receptors. The gain of these postural reflexes would then represent a sensitive test to evaluate the background discharge of the inhibitory reticulospinal system of the medulla. 2. The discharge of the inhibitory mRS neurons is under the tonic excitatory control of cholinergic pontine reticular formation (pRF) neurons which are also self-excitatory, while these cholinergic pontine neurons are in turn inhibited by the norepinephrine (NE)-containing locus coeruleus (LC) neurons, which are also self-inhibitory due to mechanisms of recurrent and/or lateral inhibition. The present experiments were performed to find out whether cholinergic and cholinoceptive pontine reticular neurons, which are under the inhibitory control of the LC neurons, also send axons to the LC on which they may exert an excitatory influence. This excitatory effect would then counteract the self-inhibitory influence mediated by the NE, which acts on the alpha 2-adrenoceptors distributed on the somatodendritic membrane of the LC neurons. 3. In precollicular decerebrate cats, local injection into the dorsal aspect of the pontine tegmentum of 0.25 microliter of a solution of the muscarinic blocker atropine sulphate at the concentration of 6 micrograms/microliter of sterile saline did neither modify the postural activity in the ipsilateral limbs nor the response gain of the ipsilateral forelimb extensor triceps brachii to sinusoidal stimulation of labyrinth receptors (roll tilt of the animal at 0.15 Hz, +/- 10 degrees). These negative results were attributed to the fact that in these preparations the activity of the cholinergic and cholinoceptive pRF neurons and the related inhibitory mRS neurons is very low, due to the tonic discharge of the NE-containing LC neurons, which exert a prominent inhibitory influence on the underlying reticular structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Convergence of both afferents from the PC and saccular macula, and those from the PC and utricular macula on single vestibular neurons was noted by use of intercellular recording from vestibular neurons. Vestibular neurons were classified VO neurons (vestibulo-ocular proper neurons), VOS (Vestibulo-oculo-spinal neurons sending axon collaterals both to the extraocular motoneuron pools and to the spinal cord), VS neurons (vestibulospinal proper neurons) and V neurons (vestibular neurons without axons to the oculomotor nuclei or the spinal cord) on the basis of whether or not they responded antidromically to stimulation of the oculomotor nuclei and the spinal cord. Of the total 143 vestibular neurons recorded in the series of experiments on convergence of the PC and saccular afferents, 47 neurons (33%) were received inputs from both the PC and saccular nerves. Twenty-six of the 47 convergent neurons were identified as having the nature of VS neurons. Half (13/26) of those were activated monosynaptically from both the PC and saccular nerves. Only one saccular-activated neuron without PC inputs sent an axon to the oculomotor nuclei. In the other series of experiments on the convergence of the PC and utricular afferents, 41 (37%) of 111 vestibular neurons were proved to converge on inputs from both nerves. The majority (35/41) of the neurons received monosynaptic inputs from the PC nerve and polysynaptic EPSP-IPSP sequences from the utricular nerve, or vice versa. The ratio of PC-otolith convergent neurons among utricular-activated neurons (41/54, 76%) was higher than that among saccular activated neurons (47/88, 53%). The percentage of utricular alone neurons without PC inputs (13/111, 12%) was less than that of the saccular alone without PC inputs (41/145, 28%). In conclusion, the convergence of canal and otolith inputs likely contribute mainly to vestibulospinal reflexes including the vestibulocollic reflex, by sending inputs to the neck and other muscles during head inclination which creates the combined stimuli of angular and linear acceleration.  相似文献   

6.
This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.  相似文献   

7.
1. The noradrenergic (NA) afferent system, which originates mainly from the locus coeruleus and projects to the cerebellar cortex, may act on the corresponding neurons by utilizing not only alpha- but also beta-adrenoceptors. Since the vermal cortex of the cerebellar anterior lobe receives a labyrinth input and projects to the lateral vestibular nucleus (LVN), experiments were performed in precollicular decerebrate cats to find out whether the noradrenergic system intervenes in the control of posture as well as of the dynamic characteristics of vestibulospinal (VS) reflexes elicited by recording the multiunit EMG responses of the forelimb extensor triceps brachii of both sides to roll tilt of the animal at 0.15 Hz, +/- 10 degrees. In particular, we used the method of local microinjection into the vermal cortex of the cerebellar anterior lobe of the non-selective beta-adrenergic agonist ((+/-) -isoproterenol hydrochloride) or antagonist (dl-propranolol hydrochloride) to act on both beta 1- and beta 2-adrenoceptors. 2. Unilateral injection into the vermal cortex of the culmen of isoproterenol (0.25-0.50 microliters at the concentration of 8-16 micrograms/microliter of saline stained with pontamine 5%) decreased the extensor tonus in the ipsilateral forelimb, while the postural activity either remained unmodified or slightly increased in the contralateral fore-limb. The same injection significantly increased the gain (imp./sec/deg) of the first harmonic component of the EMG responses of the ipsilateral and to a lesser extent also of the contralateral triceps brachii to animal tilt. This effect was also associated with slight changes in the phase angle of the responses, which remained positional throughout the experiments. The effects described above occurred within 5-10 min after the injection and reached the highest values after 20-30 min; they were then followed for about 2 hours after the injection, before disappearing. 3. In contrast to these findings, injection in other experiments of 0.25-0.50 microliter of a solution of propranolol at the concentration of 16 micrograms/microliter of saline increased the extensor tonus in the ipsilateral limbs, while the decerebrate rigidity either remained unmodified or slightly decreased in the contralateral limbs. In addition, the amplitude of modulation and thus the response gain of the ipsilateral triceps brachii to the same parameters of animal tilt decreased. This effect was associated with slight changes in the phase angle of the responses. There was also a slight but insignificant decrease in gain of the responses recorded contralaterally to the side of the propranolol injection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The effects of pressure stimulation of the body surface on postural activities as well as on the response gain of limb extensors to natural stimulation of labyrinth receptors were investigated in intact, as well as in decerebrate cats. In intact, unanesthetized cats, slight pressure applied symmetrically to the body surface at the chest level decreased the tonic activity of the axial (neck) and limb extensor musculature, as well as the proprioceptive reflexes induced by passive flexion of the limbs. The positive supporting reaction caused by pressure applied to the pad of the foot was also depressed. If the cats were suspended in the air by their nape, slight pressure applied to the upper part of the body greatly reduced the tonic contraction of the forelimb extensors to linear acceleration after downward movement of the animal, a response which can be attributed to stimulation of macular receptors located in the sacculus. Moreover, the prominent myotatic reflexes which occurred in all four limbs as soon as the animal touched the floor were greatly depressed, as shown by the fact that the forelimbs displayed only a slight tonic contraction of the extensor musculature during landing, while the hindlimbs collapsed under the weight of the body. In precollicular decerebrate cats there was a good postural activity in all four limbs. Moreover, the multiunit EMG activity of the medial head of the triceps brachii responded to roll tilt of the animal (at 0.15 Hz, +/- 10 degrees) leading to selective stimulation of labyrinth receptors. These responses, characterized by an increased EMG activity during side-down tilt and a decreased activity during side-up tilt, were related to animal position and not to velocity of animal displacement, and are thus attributable to stimulation of macular, utricular receptors. Slight pressure applied to the chest greatly decreased not only the postural activity of the limbs, but also the amplitude of EMG modulation and then the gain in the first harmonic component of the multiunit EMG responses of the triceps brachii to animal tilt. This reduced gain was due, in particular, to a reduced number of motor units being recruited during labyrinth stimulation, although a reduced modulation of firing rate of the active motor units should not be ruled out. However, no changes in the phase angle of the responses were observed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
To assess the organization and functional development of vestibulospinal inputs to cervical motoneurons (MNs), we have used electrophysiology (ventral root and electromyographic [EMG] recording), calcium imaging, trans‐synaptic rabies virus (RV) and conventional retrograde tracing and immunohistochemistry in the neonatal mouse. By stimulating the VIIIth nerve electrically while recording synaptically mediated calcium responses in MNs, we characterized the inputs from the three vestibulospinal tracts, the separate ipsilateral and contralateral medial vestibulospinal tracts (iMVST/cMVST) and the lateral vestibulospinal tract (LVST), to MNs in the medial and lateral motor columns (MMC and LMC) of cervical segments. We found that ipsilateral inputs from the iMVST and LVST were differentially distributed to the MMC and LMC in the different segments, and that all contralateral inputs to MMC and LMC MNs in each segment derive from the cMVST. Using trans‐synaptic RV retrograde tracing as well as pharmacological manipulation of VIIIth nerve‐elicited synaptic responses, we found that a substantial proportion of inputs to both neck and forelimb extensor MNs was mediated monosynaptically, but that polysynaptic inputs were also significant. By recording EMG responses evoked by natural stimulation of the vestibular apparatus, we found that vestibular‐mediated motor output to the neck and forelimb musculature became more robust during the first 10 postnatal days, concurrently with a decrease in the latency of MN discharge evoked by VIIIth nerve electrical stimulation. Together, these results provide insight into the complexity of vestibulospinal connectivity in the cervical spinal cord and a cogent demonstration of the functional maturation that vestibulospinal connections undergo postnatally. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1061–1077, 2016  相似文献   

10.
Researchers studied the convergence of the vertical posterior semicircular canal (PC), saccular nerves (SAC), utricular nerves (UT), and horizontal semicircular canal nerves (HC) on single vestibular neurons. The vestibular neurons were categorized by their innervating targets. Vestibular neurons were classified as vestibulospinal proper neurons (VS), vestibulo-ocular proper neurons (VO), vestibulo-oculo-spinal neurons sending axon collaterals to the extraocular motoneuron pools and spinal cord (VOS), and vestibular nucleus neurons without axons to the oculomotor nuclei or the spinal cord (V). Results indicate that the percentage of convergence of VS neurons was higher that that of neurons sending axons to the oculomotor nuclei (VO and VOS). They conclude that the convergence of canal and otolith inputs likely contributes mainly to vestibulospinal reflexes by sending inputs to the neck and other muscles during head inclination, which creates the combined stimuli of angular and linear acceleration.  相似文献   

11.
The characteristics of the control exerted by macular and ampullar vestibular receptors on oculomotor neurons (OMN) have been investigated by submitting unanesthetized, encéphale isolé rabbits to sinusoidal lateral tilts of varying frequencies (0.013-0.2 Hz). The phase of the response exhibited a progressive shift towards head velocity with increasing frequencies of tilt. The sensitivity of the OMN significantly increased at frequencies above 0.025 Hz, corresponding to peak accelerations suprathreshold for canals related vestibular neurons. The convergent action of macular and ampullar vestibular receptors in the control of vertical eye movements is discussed in relation with stimulus frequency.  相似文献   

12.
In experiments on the preparation of a frog perfused brain, using recording of intracellular potentials the vestibulospinal neurons were identified on the basis of excitatory postsynaptic potentials evoked by the stimulation of the ipsilateral vestibular nerve and antidromic activation from the stimulation of the cervical and lumbar enlargements of the spinal cord. The average conduction velocity determined for axons of C neurons was 10.67 m/s and for L neurons 15.84 m/s. The ratio of C and L neurons over the vestibular nuclear complex was very stimular to each other: 52% C neurons and 48% L neurons. The majority of both types of neurons were localized in the lateral vestibular nucleus (58.6%), to the lesser extent in the descending vestibular nucleus (30.7%) and very little in the medial vestibular nucleus (10.6%). Fast and slow cells were detected among the vestibulospinal neurons. The fast neurons of L cells did not prevail greatly over the slow ones, whereas the slow neurons of C cells prevailed comparatively largely over the fast neurons. Thus, it became possible to reconstruct spatial distribution of the identified vestibulospinal neurons. The results of spatial distribution of C and L vestibulospinal neurons in the frogs failed to conform to definite somatotopy, which is characteristic for mammalian vestibular nuclei. C and L neurons in the frog's vestibular nuclei as a source of vestibulospinal fibres, are scattered separately or more frequently in groups, so that they establish a "patch-like" somatotopy and do not form a distinctly designed fields as in mammals.  相似文献   

13.
Previous studies in humans showed that genioglossal muscle activity is higher when individuals are supine than when they are upright, and prior experiments in anesthetized or decerebrate animals suggested that vestibular inputs might participate in triggering these alterations in muscle firing. The present study determined the effects of whole body tilts in the pitch (nose-up) plane on genioglossal activity in a conscious feline model and compared these responses with those generated by roll (ear-down) tilts. We also ascertained the effects of a bilateral vestibular neurectomy on the alterations in genioglossal activity elicited by changes in body position. Both pitch and roll body tilts produced modifications in muscle firing that were dependent on the amplitude of the rotation; however, the relative effects of ear-down and nose-up tilts on genioglossal activity were variable from animal to animal. The response variability observed might reflect the fact that genioglossus has a complex organization and participates in a variety of tongue movements; in each animal, electromyographic recordings presumably sampled the firing of different proportions of fibers in the various compartments and subcompartments of the muscle. Furthermore, removal of labyrinthine inputs resulted in alterations in genioglossal responses to postural changes that persisted until recordings were discontinued approximately 1 mo later, demonstrating that the vestibular system participates in regulating the muscle's activity. Peripheral vestibular lesions were subsequently demonstrated to be complete through the postmortem inspection of temporal bone sections or by observing that vestibular nucleus neurons did not respond to rotations in vertical planes.  相似文献   

14.
In experiments on decerebrate guinea pigs, the impulse activity of neurons of the lateral vestibular nucleus evoked by tilting the animal about the longitudinal axis was investigated under conditions of spontaneous and mesencephalon stimulation-evoked locomotor activity. In most investigated neurons, locomotor activity led to changes in their responses to adequate vestibular stimulation. The dominant reaction was intensification of such responses, which was observed in almost all vestibulospinal neurons and in 2/3 of cells not having descending projections. Responses were suppressed only in 1/4 of the neurons not projecting to the spinal cord. The changes in the evoked responses had an amplitude character; the lag of the changes in the discharge frequency relative to the acceleration that caused them was constant. It is suggested that intensification of dynamic reactions of vestibular neurons during locomotion provides maintenance of the animal's equilibrium during movements in space by various gaits and along different trajectories.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 541–549, September–October, 1991.  相似文献   

15.
The parabrachial and adjacent K?lliker-Fuse (PBN/KF) nuclei play a key role in relaying visceral afferent inputs to the hypothalamus and limbic system and are, thus, believed to participate in generating nausea and affective responses elicited by gastrointestinal (GI) signals. In addition, the PBN/KF region receives inputs from the vestibular system and likely mediates the malaise associated with motion sickness. However, previous studies have not considered whether GI and vestibular inputs converge on the same PBN/KF neurons, and if so, whether the GI signals alter the responses of the cells to body motion. The present study, conducted in decerebrate cats, tested the hypothesis that intragastric injection of copper sulfate, which elicits emesis by irritating the stomach lining, modifies the sensitivity of PBN/KF neurons to vertical plane rotations that activate vestibular receptors. Intragastric copper sulfate produced a 70% median change in the gain of responses to vertical plane rotations of PBN/KF units, whose firing rate was modified by the administration of the compound; the response gains for 16 units increased and those for 17 units decreased. The effects were often dramatic: out of 51 neurons tested, 13 responded to the rotations only after copper sulfate was injected, whereas 10 others responded only before drug delivery. These data show that a subset of PBN/KF neurons, whose activity is altered by a nauseogenic stimulus also respond to body motion and that irritation of the stomach lining can either cause an amplification or reduction in the sensitivity of the units to vestibular inputs. The findings imply that nausea and affective responses to vestibular stimuli may be modified by the presence of emetic signals from the GI system.  相似文献   

16.
17.
1. The possibility that vasopressin (VP) acts on the dorsal pontine reticular formation (pRF) and the related medullary inhibitory reticulospinal (RS) system to control posture as well as the vestibulospinal reflexes has been investigated by injecting small doses of VP in precollicular decerebrate cats. 2. Unilateral microinjection of VP (0.25 microliters at the concentration of 10(-11) micrograms/microliters saline) in the pRF decreased the extensor rigidity in the ipsilateral limbs, while that of the contralateral limbs either decreased or increased. The same injection also produced a moderate or a prominent increase in gain of the multiunit EMG responses of the ipsilateral triceps brachii to roll tilt of the animal (t-test, P less than 0.001 for either group of responses). In the first instance the response gain of the contralateral triceps brachii to animal tilt slightly increased, while the pattern of response remained always of the alpha-type, as shown for the ipsilateral responses (increased EMG activity during ipsilateral tilt and decreased activity during contralateral tilt). In the second instance, however, the response gain showed only slight changes, while the pattern of responses reversed from the alpha- to the beta-type. These findings occurred 5-20 min after the injection, fully developed within 30-60 min and disappeared in about 2-3 hours. 3. The structures responsible for the postural and reflex changes described above were located in the dorsal pontine tegmental region immediately ventral to the LC, and included the peri-LC alpha and the surrounding dorsal pRF. The induced effects depended upon the injected neuropeptide, since previous injection of an equal volume of saline stained by the pontamine sky blue dye into the same dorsal pontine area was ineffective. 4. We postulated that VP exerts an excitatory influence on ipsilateral dorsal pRF neurons. The increased discharge of these neurons and the related medullary inhibitory RS neurons would lead to a decreased postural activity in the ipsilateral limbs. However, since these inhibitory RS neurons fire out of phase with respect to the excitatory vestibulospinal neurons, it appears that the higher the firing rate of the RS neurons in the animal at rest, the greater the disinhibition that affects the limb extensor motoneurons during ipsilateral tilt. These motoneurons would then respond more efficiently to the same excitatory volleys elicited by given parameters of stimulation, thus leading to an increased gain of the EMG responses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Masseter muscle activity during vestibular stimulation in man   总被引:6,自引:0,他引:6  
Experimental data report that vestibular afferents affect trigeminal system activity. The aim of this work was to evaluate whether static vestibular stimulation affects the excitability of trigeminal motoneurons in man. In order to assess this, voluntary EMG activity of masseter muscles as well as duration and latency of the early and late components of EMG exteroceptive silent period were evaluated while keeping the subject in vertical position and during 20 degrees static tilt. The experiments were performed on ten adult subjects with no orofacial, neurologic and otologic disorders. Each subject sat on a chair, which kept the complex head-jaw-neck-trunk and the limbs securely fixed, in order to minimize any interference due to the activation of somatosensory and proprioceptive afferents from these districts. The subjects were instructed to contract masseter muscles at 25% of their maximum bite force and the isometric force monitoring was used as visual feedback. Exteroceptive silent period (ESP) of masseter EMG was elicited by electrically stimulating the inferior inter-incisal gum. Results showed that static vestibular stimulation induced asymmetrical responses on voluntary masseter muscle activity, which was reduced to 70.3 +/- 16.1% (mean +/- S.D.) of the control value during ipsilateral tilt and increased to 128.8 +/- 13.0% during contralateral tilt. The duration of the early (ESP1) and late (ESP2) silent periods was also affected: during ipsilateral tilt ESP1 and ESP2 duration increased to 130.0 +/- 3.5% and to 122.1 +/- 2.1% of control, respectively; during contralateral tilt it was reduced to 76.8 +/- 1.2% and to 83.0 +/- 1.7% of control, respectively. On the contrary, changes in latencies were not significant. These data evidenced an asymmetrical effect exerted on trigeminal motor activity by static tilt. Since the influence of all receptors which could be activated by static tilt, except that arising from the macular ones, was minimized in this study, it is likely that the observed effects, induced by static tilt on masseter muscle activity, were of macular origin.  相似文献   

19.
In the thew frog Rana ridibunda, local microphoretic injections of horseradish peroxidase into various parts of spinal cord were used for study of trajectory of retrograde enzyme-labeled fiber systems and topography of labeled neurons in vestibulospinal nuclei, the source of vestibulospinal fibers. The vestibulospinal tracts were shown to be formed by neurons of lateral vestibular nucleus, although descending vestibular nucleus also is partially involved, while medial vestibular nucleus contributes to even lesser degree. Besides, study of spatial distribution of C- and L-vestibulospinal neurons in the frog did not confirm the presence of the definite somatotopy that is characteristic of vestibular nuclei in mammals.  相似文献   

20.
本文观测了Acetyl-DL-leucine对猫单侧前庭神经切断后前庭代偿的影响。结果显示;AL加快术后猎在转动横梁测试中运动平衡能力的恢复,但抑制去传入前庭外侧核神经元静息自发放电频率的恢复。AL促进放电活动与头部左右动体位相关的神经元数量和比例的恢复,从术后的第1周的10%,逐渐提高到术后第3周的60%。第5周的75%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号