首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
Iron is essential for normal brain function and its uptake in the developing rat brain peaks during the first two weeks after birth, prior to the formation of the blood–brain barrier (BBB). The first step of iron transport from the blood to the brain is transferrin receptor (TfR)-mediated endocytosis in the capillary endothelial cells. However, the subsequent step from the endothelium into interstitium has not been fully described. The goal of this study was to examine the expression of iron transport proteins by immunodetection and RT–PCR in the developing rat brain. Tf and TfR are transiently expressed in perivascular NG2+ cells of the capillary wall during the early postnatal weeks in the rat brain. However, MTP-1 and hephaestin were expressed in endothelial cells, but not in the NG2+ perivascular cells. Immunoblot analysis for these iron transfer proteins in the developing brain generally confirmed the immunochemical findings. Furthermore, the expression of Tf and TfR in the blood vessels precedes its expression in oligodendrocytes, the main iron-storing cells in the vertebrate brain. RT–PCR analysis for the primary culture of endothelial cells and pericytes revealed that Tf and TfR were highly expressed in the pericytes while MTP-1 and hephaestin were expressed in the endothelial cells. The specific expression of Tf and TfR in brain perivascular cells and MTP-1 and hephaestin in endothelial cells suggest the possibility that trafficking of elemental iron through perivascular cells may be instrumental in the distribution of iron in the developing central nervous system.  相似文献   

2.
Mesenchymal stem/stromal cells (MSC) are currently the best candidate therapeutic cells for regenerative medicine related to osteoarticular, muscular, vascular and inflammatory diseases, although these cells remain heterogeneous and necessitate a better biological characterization. We and others recently described that MSC originate from two types of perivascular cells, namely pericytes and adventitial cells and contain the in situ counterpart of MSC in developing and adult human organs, which can be prospectively purified using well defined cell surface markers. Pericytes encircle endothelial cells of capillaries and microvessels and express the adhesion molecule CD146 and the PDGFRβ, but lack endothelial and haematopoietic markers such as CD34, CD31, vWF (von Willebrand factor), the ligand for Ulex europaeus 1 (UEA1) and CD45 respectively. The proteoglycan NG2 is a pericyte marker exclusively associated with the arterial system. Besides its expression in smooth muscle cells, smooth muscle actin (αSMA) is also detected in subsets of pericytes. Adventitial cells surround the largest vessels and, opposite to pericytes, are not closely associated to endothelial cells. Adventitial cells express CD34 and lack αSMA and all endothelial and haematopoietic cell markers, as for pericytes. Altogether, pericytes and adventitial perivascular cells express in situ and in culture markers of MSC and display capacities to differentiate towards osteogenic, adipogenic and chondrogenic cell lineages. Importantly, adventitial cells can differentiate into pericyte‐like cells under inductive conditions in vitro. Altogether, using purified perivascular cells instead of MSC may bring higher benefits to regenerative medicine, including the possibility, for the first time, to use these cells uncultured.  相似文献   

3.
Identification of cell types in tumor-associated stroma that are involved in the development of melanoma is hampered by their heterogeneity. The authors used flow cytometry and immunohistochemistry to demonstrate that anti-MART-1 antibodies can discriminate between melanoma and stroma cells. They investigated the cellular composition of the MART-1-, non-hematopoietic melanoma-associated stroma, finding it consisted mainly of Sca-1+ and CD146+ cells. These cell types were also observed in the skin and muscle adjacent to developing melanomas. The Sca-1+ cell population was observed distributed in the epidermis, hair follicle bulges, and tumor capsule. The CD146+ population was found distributed within the tumor, mainly associated with blood vessels in a perivascular location. In addition to a perivascular distribution, CD146+ cells expressed α-smooth muscle actin, lacked expression of endothelial markers CD31 and CD34, and were therefore identified as pericytes. Pericytes were found to be associated with CD31+ endothelial cells; however, some pericytes were also observed associated with CD31-, MART-1+ B16 melanoma cells that appeared to form blood vessel structures. Furthermore, the authors observed extensive nuclear expression of HIF-1α in melanoma and stroma cells, suggesting hypoxia is an important factor associated with the melanoma microenvironment and vascularization. The results suggest that pericytes and Sca-1+ stroma cells are important contributors to melanoma development.  相似文献   

4.
A method for isolating the microvessels of the human placental villi has been developed in order to culture perivascular cells. It consists of an initial selection of the villi by serial sieving. The villi retained by the 75 μm sieve were digested by collagenase-dispase. A Percoll gradient permitted the isolation of microvessels still surrounded by stromal fibres and cells. Another digestion by collagenase-dispase eliminated the contaminant elements and allowed, after a new Percoll gradient, microvessels with endothelium, basement membrane and a few perivascular cells to be obtained. Each step of the isolation of microvessels was monitored by light or electron microscopy. Our study confirms the isolation of microvessels embedded in their basement membrane and the preservation of endothelial and perivascular cells after digestion. This method, which has permitted the culture of placental endothelial cells and pericytes, appears of interest for studying microvascular angiogenesis and permeability.  相似文献   

5.
The microvasculature consists of endothelial cells and their surrounding pericytes. Few studies on the regulatory mechanisms of tumour angiogenesis have focused on pericytes. Here we report the identification of tumour-derived PDGFRbeta (+) (platelet-derived growth factor receptor beta) progenitor perivascular cells (PPCs) that have the ability to differentiate into pericytes and regulate vessel stability and vascular survival in tumours. A subset of PDGFRbeta (+) PPCs is recruited from bone marrow to perivascular sites in tumours. Specific inhibition of PDGFRbeta signalling eliminates PDGFRbeta (+) PPCs and mature pericytes around tumour vessels, leading to vascular hyperdilation and endothelial cell apoptosis in pancreatic islet tumours of transgenic Rip1Tag2 mice.  相似文献   

6.
A perivascular origin for mesenchymal stem cells in multiple human organs   总被引:4,自引:0,他引:4  
Mesenchymal stem cells (MSCs), the archetypal multipotent progenitor cells derived in cultures of developed organs, are of unknown identity and native distribution. We have prospectively identified perivascular cells, principally pericytes, in multiple human organs including skeletal muscle, pancreas, adipose tissue, and placenta, on CD146, NG2, and PDGF-Rbeta expression and absence of hematopoietic, endothelial, and myogenic cell markers. Perivascular cells purified from skeletal muscle or nonmuscle tissues were myogenic in culture and in vivo. Irrespective of their tissue origin, long-term cultured perivascular cells retained myogenicity; exhibited at the clonal level osteogenic, chondrogenic, and adipogenic potentials; expressed MSC markers; and migrated in a culture model of chemotaxis. Expression of MSC markers was also detected at the surface of native, noncultured perivascular cells. Thus, blood vessel walls harbor a reserve of progenitor cells that may be integral to the origin of the elusive MSCs and other related adult stem cells.  相似文献   

7.
The involvement of the metalloprotease-2 (MMP-2) in vessel development was investigated in the human telencephalon by double immunoreactions with antibodies to the enzyme, latent (proMMP-2) and active (aMMP-2) forms, and an antibody against collagen type IV, a constitutive component of the extracellular matrix (ECM) of the vessel basal lamina. MMP-2 is expressed in both 12- and 18-week telencephalic vessels, the proenzyme being mainly localised in endothelial cells and the active form prevailing in -actin-reactive periendothelial cells identified as pericytes. Endothelial cells intensely positive for aMMP-2 were revealed in some microvessels and appeared locally associated with discontinuities of the collagen basal lamina. No detectable expression of MMP-2 was observed in perivascular glial processes revealed by vimentin/glial fibrillary acidic protein immunostainings. Double immunoreactions performed to further investigate telencephalon angiogenesis have demonstrated that both the endothelial cells and pericytes strongly express vascular endothelial growth factor (VEGF). Taken together, the results indicate that MMP-2 is largely involved in human brain angiogenesis and suggest that endothelial cells and pericytes tightly interplay in both angiogenesis mechanisms, by ECM proteolysis, and angiogenesis regulation, by local (autocrine/juxtacrine) VEGF action.Francesco Girolamo and Daniela Virgintino contributed equally to this work  相似文献   

8.
The blood-brain barrier consists of the cerebral microvascular endothelium, pericytes, astrocytes and neurons. In this study we analyzed the differentiation stage dependent influence of primary porcine brain capillary pericytes on the barrier integrity of primary porcine brain capillary endothelial cells. At first, we were able to induce two distinct differentiation stages of the primary pericytes in vitro. TGFβ treated pericytes expressed more α-SMA and actin while desmin, vimentin and nestin expression was decreased when compared to bFGF induced cells. Further analysis of α-SMA revealed that most of the pericytes differentiated with TGFβ expressed functional α-SMA while only few cells expressed functional α-SMA in the presence of bFGF. In addition the permeability factors VEGF, MMP-2 and MMP-9 were higher secreted by the α-SMA positive phenotype indicating a proangiogenic role of this TGFβ induced pericyte differentiation stage. Higher level of VEGF, MMP-2 and MMP-9 were as well detected in the TGFβ pretreated pericyte coculture with endothelial cells when compared to the influence of the bFGF pretreated pericytes. The TEER measurement of the barrier integrity of endothelial cells revealed that bFGF induced α-SMA negative pericytes stabilize the barrier integrity while α-SMA positive pericytes differentiated by TGFβ decrease the barrier integrity. These results together reveal the potential of pericytes to regulate the endothelial barrier integrity in a differentiation stage dependant pathway.  相似文献   

9.
Plasminogen-related protein B (PRP-B) closely resembles the N-terminal plasminogen activation peptide, which is released from plasminogen during conversion to plasmin. We have previously demonstrated that the steady-state level of mRNA encoding PRP-B is increased within tumor tissues, and that recombinant PRP-B antagonizes neoplastic growth when administered systemically to mice harboring tumors, but no insights into the cell targets of PRP-B have been presented. Employing serum-free medium optimized for culturing human endothelial or smooth muscle cells, we show that recombinant PRP-B inhibits basic fibroblast growth factor-dependent cell migration for both cell types, as well as tube formation of endothelial cells. Comparison with the angiogenesis inhibitors angiostatin and endostatin revealed similar results. Recombinant PRP-B is effective in promoting cell attachment of endothelial and smooth muscle cells, and antibody interference experiments reveal that the interaction of recombinant PRP-B with endothelial cells is mediated at least in part by alpha(v)-containing integrins. Inhibition of angiogenesis in vivo by PRP-B was demonstrated in the chicken chorioallantoic membrane assay. PRP-B and other antiangiogenic molecules may elicit metabolic perturbations in endothelial cells as well as perivascular mesenchymal cells such as smooth muscle cells and pericytes.  相似文献   

10.
Development of a vascular system involves the assembly of two principal cell types - endothelial cells and vascular smooth muscle cells/pericytes (vSMC/PC) - into many different types of blood vessels. Most, if not all, vessels begin as endothelial tubes that subsequently acquire a vSMC/PC coating. We have previously shown that PDGF-B is critically involved in the recruitment of pericytes to brain capillaries and to the kidney glomerular capillary tuft. Here, we used desmin and alpha-smooth muscle actin (ASMA) as markers to analyze vSMC/PC development in PDGF-B-/- and PDGFR-beta-/- embryos. Both mutants showed a site-specific reduction of desmin-positive pericytes and ASMA-positive vSMC. We found that endothelial expression of PDGF-B was restricted to immature capillary endothelial cells and to the endothelium of growing arteries. BrdU labeling showed that PDGFR-beta-positive vSMC/PC progenitors normally proliferate at sites of endothelial PDGF-B expression. In PDGF-B-/- embryos, limb arterial vSMC showed a reduced BrdU-labeling index. This suggests a role of PDGF-B in vSMC/PC cell proliferation during vascular growth. Two modes of vSMC recruitment to newly formed vessels have previously been suggested: (1) de novo formation of vSMC by induction of undifferentiated perivascular mesenchymal cells, and (2) co-migration of vSMC from a preexisting pool of vSMC. Our data support both modes of vSMC/PC development and lead to a model in which PDGFR-beta-positive vSMC/PC progenitors initially form around certain vessels by PDGF-B-independent induction. Subsequent angiogenic sprouting and vessel enlargement involves PDGF-B-dependent vSMC/PC progenitor co-migration and proliferation, and/or PDGF-B-independent new induction of vSMC/PC, depending on tissue context.  相似文献   

11.
Angiogenesis in situ includes coordinated interactions of various microvascular cell types, i.e., endothelial cells, pericytes and perivascular fibroblasts. To study the cellular interactions of microvascular cells in vitro, we have developed a microcarrier-based cocultivation system. The technical details of this method include seeding of endothelial cells on unstained cytodex-3 microcarriers and seeding of pericytes, fibroblasts or vascular smooth muscle cells on microcarriers which have been labeled by trypan blue staining. A mixture of both unstained and trypan blue-stained microcarriers was subsequently embedded in a three-dimensional fibrin clot. The growth characteristics of each cell type could be conveniently observed since the majority of cells left their supporting microcarriers in a horizontal direction to migrate into the transparent fibrin matrix. As differently stained microcarriers were randomly arranged in the fibrin matrix, the characteristic patterns of the microcarriers allowed location of particular points of interest at different developmental stages, facilitating the observation of cellular growth over the course of time. One further advantage of this microcarrier-based system is the possibility of reliably quantifying capillary growth by determination of average numbers of capillary-like formations per microcarrier. Thus, this model allows convenient evaluation of the effects of non-endothelial cells on angiogenesis in vitro. By using this coculture system, we demonstrate that endothelial capillary-like structures in vitro do not become stabilized by contacting vascular smooth muscle cells or pericytes during the initial stages of capillary formation.  相似文献   

12.
(1) The blood–brain barrier (BBB) characteristics of cerebral endothelial cells are induced by organ-specific local signals. Brain endothelial cells lose their phenotype in cultures without cross-talk with neighboring cells. (2) In contrast to astrocytes, pericytes, another neighboring cell of endothelial cells in brain capillaries, are rarely used in BBB co-culture systems. (3) Seven different types of BBB models, mono-culture, double and triple co-cultures, were constructed from primary rat brain endothelial cells, astrocytes and pericytes on culture inserts. The barrier integrity of the models were compared by measurement of transendothelial electrical resistance and permeability for the small molecular weight marker fluorescein. (4) We could confirm that brain endothelial monolayers in mono-culture do not form tight barrier. Pericytes induced higher electrical resistance and lower permeability for fluorescein than type I astrocytes in co-culture conditions. In triple co-culture models the tightest barrier was observed when endothelial cells and pericytes were positioned on the two sides of the porous filter membrane of the inserts and astrocytes at the bottom of the culture dish. (5) For the first time a rat primary culture based syngeneic triple co-culture BBB model has been constructed using brain pericytes beside brain endothelial cells and astrocytes. This model, mimicking closely the anatomical position of the cells at the BBB in vivo, was superior to the other BBB models tested. (6) The influence of pericytes on the BBB properties of brain endothelial cells may be as important as that of astrocytes and could be exploited in the construction of better BBB models.  相似文献   

13.
Pericytes are closely associated with endothelial cells, contribute to vascular stability and represent a potential source of mesenchymal progenitor cells. Using the specifically expressed annexin A5-LacZ fusion gene (Anxa5-LacZ), it became possible to isolate perivascular cells (PVC) from mouse tissues. These cells proliferate and can be cultured without undergoing senescence for multiple passages. PVC display phenotypic characteristics of pericytes, as they express pericyte-specific markers (NG2-proteoglycan, desmin, alphaSMA, PDGFR-beta). They also express stem cell marker Sca-1, whereas endothelial (PECAM), hematopoietic (CD45) or myeloid (F4/80, CD11b) lineage markers are not detectable. These characteristics are in common with the pericyte-like cell line 10T1/2. PVC also display a phagocytoic activity higher than 10T1/2 cells. During coculture with endothelial cells both cell types stimulate angiogenic processes indicated by an increased expression of PECAM in endothelial cells and specific deposition of basement membrane proteins. PVC show a significantly increased induction of endothelial specific PECAM expression compared to 10T1/2 cells. Accordingly, in vivo grafts of PVC aggregates onto chorioallantoic membranes of quail embryos recruit endothelial cells, get highly vascularized and deposit basement membrane components. These data demonstrate that isolated Anxa5-LacZ(+) PVC from mouse meninges retain their capacity for differentiation to pericyte-like cells and contribute to angiogenic processes.  相似文献   

14.
Summary The conus papillaris of Ophisaurus apodus consists of blood vessels and pigment cells. The capillary walls are formed by endothelial cells, scarce pericytes and basal laminae. The cell bodies are attenuated and the plasmalemma of their luminal and abluminal surfaces forms microvilli. The perivascular space is well developed, containing nerve fibers and their terminals. Similar localization and ultrastructure of avian pecten oculi and lacertilian conus papillaris suggest homology of these structures.  相似文献   

15.
A large population of perivascular cells was found to be present in the area of the blood-labyrinth barrier in the stria vascularis of normal adult cochlea. The cells were identified as perivascular resident macrophages (PVMs), as they were positive for several macrophage surface molecules including F4/80, CD68, and CD11b. The macrophages, which were closely associated with microvessels and structurally intertwined with endothelial cells and pericytes, constitutively expressed scavenger receptor classes A1 and B1 and accumulated blood-borne proteins such as horseradish peroxidase and acetylated low-density lipoprotein. The PVMs were demonstrated to proliferate slowly, as evidenced by the absence of 5-bromo-2-deoxyuridine (BrdU)-positive PVMs at 3–14 days in normal mice injected with BrdU. However, in irradiated mice, the majority of the PVMs turned over via bone-marrow-cell migration within a 10-month time-frame. The existence of PVMs in the vascular wall of the blood-labyrinth barrier might therefore serve as a source for progenitor cells for postnatal vasculogenesis and might contribute to the repair of damaged vessels in the context of a local inflammatory response.  相似文献   

16.
Pericyte and vascular smooth muscle cell (SMC) recruitment to the developing vasculature is an important step in blood vessel maturation. Brain-derived neurotrophic factor (BDNF), expressed by endothelial cells, activates the receptor tyrosine kinase TrkB to stabilize the cardiac microvasculature in the perinatal period. However, the effects of the BDNF/TrkB signaling on pericytes/SMCs and the mechanisms downstream of TrkB that promote vessel maturation are unknown. To confirm the involvement of TrkB in vessel maturation, we evaluated TrkB deficient (trkb −/−) embryos and observed severe cardiac vascular abnormalities leading to lethality in late gestation to early prenatal life. Ultrastructural analysis demonstrates that trkb−/− embryos exhibit defects in endothelial cell integrity and perivascular edema. As TrkB is selectively expressed by pericytes and SMCs in the developing cardiac vasculature, we generated mice deficient in TrkB in these cells. Mice with TrkB deficiency in perivascular cells exhibit reduced pericyte/SMC coverage of the cardiac microvasculature, abnormal endothelial cell ultrastructure, and increased vascular permeability. To dissect biological actions and the signaling pathways downstream of TrkB in pericytes/SMCs, human umbilical SMCs were treated with BDNF. This induced membranous protrusions and cell migration, events dependent on myosin light chain phosphorylation. Moreover, inhibition of Rho GTPase and the Rho-associated protein kinase (ROCK) prevented membrane protrusion and myosin light chain phosphorylation in response to BDNF. These results suggest an important role for BDNF in regulating migration of TrkB-expressing pericytes/SMCs to promote cardiac blood vessel ensheathment and functional integrity during development.  相似文献   

17.
There is now increasing evidence suggesting that non-enzymatic glycation (NEG) of proteins is involved in the pathogenesis of chronic diabetic complication. In this study we demonstrate that chronic exposure to high-glucose concentration leads to intracellular protein glycation in cultured bovine retinal capillary pericytes and endothelial cells. The level of intracellular protein glycation, as measured using a competitive enzyme-linked immunoabsorbant assay (ELISA), was found to increase in both pericytes and endothelial cells as function of time. As expected products of NEG were only detected when the Schiff base and the Amadori products were chemically reduced to glucitollysine by sodium borohydride. Despite the accumulation of early glycation products on cellular proteins there was no further rearrangement reaction into advanced glycation endproducts (AGEs), even after 12 days of incubation in high-glucose medium. Immunofluorescence microscopy demonstrated that the monoclonal antibody reacting with glucitollysine stains the cytoplasm of both pericytes and endothelial cells in a finely punctate pattern. Further studies using Western blot analysis suggested that a number of cellular proteins, including smooth muscle actin in pericytes, become rapidly glycated. The results from this in vitro study suggest that excessive accumulation of early products of non-enzymatic glycation in pericytes and endothelial cells may play an important role in the pathogenesis of diabetic retinopathy.  相似文献   

18.
The long-term effects of perinatal hypoxic exposure followed by the administration of salifen, a GABA derivative, on morphological characteristics of the vascular wall elements in the neocortical microvasculature were studied in rats. Salifen, when applied at therapeutic doses, was established to exert an endothelial protective effect. It prevents such typical pathomorphological consequences of perinatal hypoxia as endothelial hypertrophy, the appearance of multiple intravascular endothelial outgrowths, narrowing of the capillary lumen, malformation of the lamina densa, swelling of perivascular astrocytes, and reactive changes in pericytes. In all neocortical layers, a density of blood vessel distribution across microvasculature as well as their cross-sectional area were found to be approximately the same in adult animals both in control and after hypoxic exposure followed by salifen administration. Changes and rearrangements in the capillary bed after hypoxic exposure and salifen administration were shown to occur at earlier developmental stages, while by the maturity period the structural parameters of microvasculature become stabilized. The endothelial protective effect of salifen promises high clinical efficiency of this preparation and serves as a basis for further studies in this direction.  相似文献   

19.
Critical to the exchange and metabolic functions served by tissues like brain choroid plexi and lung is the coherent development of an epithelial sheet of large surface area in tight apposition to an extensive vascular bed. Here, we present functional experiments in the mouse demonstrating that Sonic hedgehog (Shh) produced by hindbrain choroid plexus epithelium induces the extensive vascular outgrowths and vascular surface area fundamental to choroid plexus functions, but does not induce the more specialized endothelial cell features of fenestrations and bore size. Our findings indicate that these Shh-dependent vascular elaborations occur even in the presence of Vegf and other established angiogenic factors, suggesting either that the levels of these factors are inadequate in the absence of Shh or that a different set of factors may be more essential to choroid plexus outgrowth. Transducing the Shh signal is a perivascular cell—the pericyte—rather than the more integral vascular endothelial cell itself. Moreover, our findings suggest that hindbrain choroid plexus endothelial cells, as compared to other vascular endothelial cells, are more dependent upon pericytes for instruction. Thus, in addition to Shh acting on the progenitor pool for choroid plexus epithelial cells, as previously shown, it also acts on choroid plexus pericytes, and together serves the important role of coordinating the development of two disparate yet functionally dependent structures—the choroid plexus vasculature and its ensheathing epithelium.  相似文献   

20.
The annexin A5 gene (Anxa5) was recently found to be expressed in the developing and adult vascular system as well as the skeletal system. In this paper, the expression of an Anxa5-lacZ fusion gene was used to define the onset of expression in the vasculature and to characterize these Anxa5-lacZ-expressing vasculature-associated cells. After blastocyst implantation, Anxa5-lacZ-positive cells were first detected in extra-embryonic tissues and in angioblast progenitors forming the primary vascular plexus. Later, expression is highly restricted to perivascular cells in most blood vessels resembling pericytes or vascular smooth muscle cells. Viable Anxa5-lacZ+ perivascular cells were isolated from embryos as well as adult brain meninges by specific staining with fluorescent X-gal substrates and cell-sorting. These purified lacZ+ cells specifically express known markers of pericytes, but also markers characteristic for stem cell populations. In vitro and in vivo differentiation experiments show that this cell pool expresses early markers of chondrogenesis, is capable of forming a calcified matrix and differentiates into adipocytes. Hence, Anxa5 expression in perivascular cells from mouse defines a novel population of cells with a distinct developmental potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号