首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Data on the qualitative and quantitative composition of resting stages of planktonic microalgae in recent marine sediments of Peter the Great Bay (Sea of Japan) over the period 2000–2007 are presented. A total of sixty one morphological forms of resting stages represented by dinoflagellate and raphidophyte cysts and diatom spores and resting cells were recorded in the sediment samples. This study revealed cysts of the potentially toxic species Alexandrium tamarense, A. cf. minutum, Alexandrium sp., Gymnodinium catenatum (PSP toxin producers), and Protoceratium reticulatum (yessotoxin producer); resting cells of Pseudo-nitzschia sp. (potential producer of domoic acid); and cysts of bloom-forming species Cochlodinium cf. polykrikoides and Heterosigma cf. akashiwo.  相似文献   

2.
Cell abundances and distributions of Alexandrium catenella resting cysts in recent sediments were studied along time at two locations in the Chilean Inland Sea exposed to different oceanographic conditions: Low Bay, which is much more open to the ocean than the more interior and protected Ovalada Island. The bloom began in interior areas but maximum cyst concentrations were recorded in locations more open to the ocean, at the end of the Moraleda channel. Our results showed a time lapse of around 3 months from the bloom peak (planktonic population) until the number of resting cysts in the sediments reached a maximum. Three months later, less than 10% of the A. catenella cysts remained in the sediments. Maximum cyst numbers in the water column occurred one month after the planktonic peak, when no cells were present. The dinoflagellate assemblage at both study sites was dominated by heterotrophic cysts, except during the A. catenella bloom. CCA analyses of species composition and environmental factors indicated that the frequency of A. catenella blooms was associated with low temperatures, but not with salinity, chlorophyll a concentration, and predator presence (measured as clam biomass). However, resting cyst distribution was only related to cell abundance and location. The occurrence of A. catenella cysts was also associated with that of cysts from the toxic species Protoceratium reticulatum. By shedding light on the ecological requirements of A. catenella blooms, our observations support the relevance of encystment as a mechanism of bloom termination and show a very fast depletion of cysts from the sediments (<3 months), which suggest a small role for resting cyst deposits in the recurrence of A. catenella blooms in this area.  相似文献   

3.
Gymnodinium catenatum is a bloom forming dinoflagellate that has been known to cause paralytic shellfish poisoning (PSP) in humans. It is being reported with increased frequency around the world, with ballast water transport implicated as a primary vector that may have contributed to its global spread. Major limitations to monitoring and management of its spread are the inability for early, rapid, and accurate detection of G. catenatum in plankton samples. This study explored the feasibility of developing a PCR-based method for specific detection of G. catenatumin cultures and heterogeneous ballast water and environmental samples. Sequence comparison of the large sub unit (LSU) ribosomal DNA locus of several strains and species of dinoflagellates allowed the design of G. catenatum specific PCR primers that are flanked by conserved regions. Assay specificity was validated through screening a range of dinoflagellate cultures, including the morphologically similar and taxonomically closely related species G. nolleri. Amplification of the diagnostic PCR product from all the strains of G. catenatum but not from other species of dinoflagellates tested imply the species specificity of the assay. Sensitivity of the assay to detect cysts in ballast water samples was established by simulated spiked experiments. The assay could detect G. catenatum in all ‘blank’ plankton samples that were spiked with five or more cysts. The assay was used to test environmental samples collected from the Derwent river estuary, Tasmania. Based on the results we conclude that the assay may be utilized in large scale screening of environmental and ballast water samples.  相似文献   

4.
Paralytic shellfish poisoning (PSP) caused the deaths of four people in coastal area of Korea, mainly Jinhae-Masan Bay and adjacent areas, in April 1986 and in 1996. The PSP outbreaks were caused by the consumption of mussels, Mytilus edulis. The organism that caused PSP was identified, from morphological data only, as Alexandrium tamarense which is recently renamed as A. catenella, however recent studies have shown that the morphological diagnostic characteristics used to identify Alexandrium species have uncertainties and molecular tools and other criteria should be considered as well. The organism that caused past PSP outbreaks and incidents in Korea therefore need to be carefully reconsidered. The aim of this study was to re-evaluate the species really responsible for past outbreaks of PSP in Jinhae-Masan Bay, Korea. The temporal production and fluxes of the resting cysts of Alexandrium species were investigated for one year (from March 2011 to February 2012) using a sediment trap, and the morphology and phylogeny of vegetative cells germinated from the resting cysts were analysed. The production of Alexandrium species peaked in August and November, when temporal discrepancies were found in the water temperature (22.4 and 22.7 °C in August, 19.1 and 19.6 °C in November) and salinity (29.5 and 26.1 psu in August, 30.5 and 31.8 psu in November). The morphological data revealed that Alexandrium species germinated from resting cysts collected in August have a ventral pore on the 1′ plate, whereas the 1′ plate in Alexandrium species germinated from resting cysts collected in November lacks a ventral pore. Molecular phylogenetic data for the vegetative cells from the germination experiments allowed the August and November peaks to be assigned to Alexandrium catenella (Group I) and A. pacificum (Group IV), respectively. This indicates that the production of resting cysts of A. catenella can be enhanced by relatively high water temperature. This result is not consistent with those of previous studies that A. catenella responsible for PSP outbreaks was found at relatively low water temperature. In addition, large subunit ribosomal sequences data revealed that A. pacificum isolates from Korea were closely related to those from Australia, Japan and New Zealand where the PSP toxicity of shellfish and blooms occurred in the 1990s, indicating that the introduction of toxic dinoflagellates were related to ballast water from bulk-cargo shipping. Based on these results, we concluded that past PSP outbreaks in Jinhae-Masan Bay of Korea could have been caused by A. pacificum rather than by A. catenella.  相似文献   

5.
《Harmful algae》2008,7(6):837-848
The study proposes methodological developments to optimize sampling strategy of resting cysts of Alexandrium catenella to estimate their abundance with a predefined error. This work also aims to provide information on spatial distribution of resting cysts in sediments. The distribution mode of A. catenella resting cysts related to the abundance variability was studied through sediment cores sampling on four different spatial scales and using Ludox CLX gradient density method. The quantification method underestimates by a factor of 2 the resting cysts abundance in one gram of sediment. Application of Taylor's power law allowed us to define a compromise between sampling effort and abundance estimation error. In the case of A. catenella resting cysts from Thau lagoon, the optimal sampling strategy consists of sampling 10 stations on a surface of 2 km2 for a given coefficient of variability (C) of 15%, sampling 3 sediment cores at each station (C = 30%) and counting only one replicate by core (C = 18%). Results related to the application of Taylor's power law are closely dependent on resting cyst density and aggregation in a given sediment. In our area, A. catenella resting cysts are mainly observed in the upper 3 cm of sediment. Horizontally, their heterogeneity is lower on 10 cm2 surface and tends to stabilize itself beyond a surface of 10 m2. Each author has to carry out this pre-sampling effort for his own resting cysts-forming species, in his own area, in order to increase accuracy of resting cyst mapping.  相似文献   

6.
We characterized the physical/chemical conditions and the algal and bacterial assemblages in ballast water from 62 ballast tanks aboard 28 ships operated by the U.S. Military Sealift Command and the Maritime Administration, sampled at 9 ports on the U.S. West Coast and 4 ports on the U.S. East Coast. The ballast tank waters had been held for 2–176 days, and 90% of the tanks had undergone ballast exchange with open ocean waters. Phytoplankton abundance was highly variable (grand mean for all tanks, 3.21 × 104 viable cells m−3; median, 7.9 × 103 cells m−3) and was unrelated to physical/chemical parameters, except for a positive relationship between centric diatom abundance and nitrate concentration. A total of 100 phytoplankton species were identified from the ballast tanks, including 23 potentially harmful taxa (e.g. Chaetoceros concavicornis, Dinophysis acuminata, Gambierdiscus toxicus, Heterosigma akashiwo, Karlodinium veneficum, Prorocentrum minimum, Pseudo-nitzschia multiseries). Assemblages were dominated by chain-forming diatoms and dinoflagellates, and viable organisms comprised about half of the total cells. Species richness was higher in ballast tanks with coastal water, and in tanks containing Atlantic or Pacific Ocean source waters rather than Indian Ocean water. Total and viable phytoplankton numbers decreased with age of water in the tanks. Diversity also generally decreased with water age, and tanks with ballast water age >33 days did not produce culturable phytoplankton. Abundance was significantly higher in tanks with recently added coastal water than in tanks without coastal sources, but highly variable in waters held less than 30 days. Bacterial abundance was significantly lower in ballast tanks with Atlantic than Pacific Ocean source water, but otherwise was surprisingly consistent among ballast tanks (overall mean across all tanks, 3.13 ± 1.27 × 1011 cells m−3; median, 2.79 × 1011 cells m−3) and was unrelated to vessel type, exchange status, age of water, environmental conditions measured, or phytoplankton abundance. At least one of four pathogenic eubacteria (Listeria monocytogenes, Escherichia coli, Mycobacterium spp., Pseudomonas aeruginosa) was detected in 48% of the ballast tanks, but toxigenic strains of Vibrio cholerae were not detected. For ships with tanks of similar ballasting history, the largest source of variation in phytoplankton and bacteria abundance was among ships; for ships with tanks of differing ballasting histories, and for all ships/tanks considered collectively, the largest source of variation was within ships. Significant differences in phytoplankton abundance, but not bacterial abundance, sometimes occurred between paired tanks with similar ballasting history; hence, for regulatory purposes phytoplankton abundance cannot be estimated from single tanks only. Most tanks (94%) had adequate records to determine the source locations and age of the ballast water and, as mentioned, 90% had had ballast exchange with open-ocean waters. Although additional data are needed from sediments that can accumulate at the bottom of ballast tanks, the data from this water-column study indicate that in general, U.S. Department of Defense (DoD) ships are well managed to minimize the risk for introduction of harmful microbiota. Nevertheless, abundances of viable phytoplankton with maximum dimension >50 μm exceeded proposed International Maritime Organization standards in 47% of the ballast tanks sampled. The data suggest that further treatment technologies and/or alternative management strategies will be necessary to enable DoD vessels to comply with proposed standards.  相似文献   

7.
The toxic, chain-forming dinoflagellate Gymnodinium catenatum Graham was cultured from vegetative cells and benthic resting cysts isolated from estuarine waters in Tasmania, Australia. Rapidly dividing, log phase cultures formed long chains of up to 64 cells whereas stationary phase cultures were composed primarily of single cells (23-41 pm long, 27-36 pm wide). Vegetative growth (mean doubling time 3-4 days) was optimal at temperatures from 14.5-20° C, salinities of 23-34% and light irradiances of 50-300 μE·m?2·s?1. The sexual life cycle of G. catenatum was easily induced in a nutrient-deficient medium, provided compatible opposite mating types were combined (heterothallism). Gamete fusion produced a large (59-73 μm long, 50-59 μm wide) biconical, posteriorly biflagellate planozygote (double longitudinal flagellum) which after several days lost one longitudinal flagellum and gradually became subspherical in shape. This older planozygote stage persisted for up to two weeks before encysting into a round, brown resting cyst (42-52 μm diam; hypnozygote) with microreticulate surface ornamentation. Resting cysts germinated after a dormancy period as short as two weeks under our culture conditions, resulting in a single, posteriorly biflagellate germling cell (planomeiocyte). This divided to form a chain of two cells, which subsequently re-established a vegetative population. Implications for the bloom dynamics of this toxic dinoflagellate, a causative organism of paralytic shellfish poisoning, are discussed.  相似文献   

8.
The dinoflagellates Alexandrium tamarense (Lebor) Balech and Alexandrium catenella (Whedon and Kofoid) Balech (Dinophyceae) are believed to be the main species responsible for paralytic shellfish poisoning (PSP) all over the world. It is necessary to identify A. tamarense and A. catenella cysts and to monitor their distribution in sediment in order to minimize the damages caused by PSP to the economy and food quality because cysts are the seed population for blooms caused by motile vegetative cells. In this study, we developed an efficient DNA extraction method from the natural cysts present in marine sediments after they were size fractionated with a plankton net (mesh size of 20–150 μm). The 10–3000 cysts were added to the sediments collected from the Ariake Sea, and for which the primuline-staining method did not reveal any cysts. DNA was then extracted from each sample, and linear standard curves for A. tamarense and A. catenella cysts were obtained from the correlation between the Ct values by real-time PCR and the log of the initial densities of cysts. We monitored the A. tamarense and A. catenella cyst densities in the environmental samples. This assay was demonstrated to be a powerful tool for the identification, detection, and quantification of the cysts of the toxic dinoflagellates.  相似文献   

9.
Gymnodinium catenatum Graham (Dinophyceae)in Europe: a growing problem?   总被引:1,自引:0,他引:1  
The microreticulate resting cyst of the potentially toxic, chain-forming,unarmoured neritic dinoflagellate Gymnodinium catenalum Graham1943. the planktonic stage of which is not known from NorthEuropean waters, is reported for the first time from recentGerman coastal sediments of the North Sea and Baltic Sea. Insandy mud sediments of the German Bight, a maximum of 8 5 livingcysts cm–3 were found. In Kiel Bight sediments G.catenalumwas found in maximum concentrations of 17.0 living cysts cm–3.In surface waters of the German Bight resuspended G catenatumcysts were observed at concentrations of up to 3.6 cysts l–1.Successful germination experiments conducted with natural seawatershow that the occurrence of a vegetative form of G.catenatumin northern Europe is very likely. The present study highlightsthat cyst surveys provide an important tool for the evaluationof areas with potential toxicity problems, as they may indicatethe presence of hitherto overlooked species in the water column.  相似文献   

10.
The detection of sparse Alexandrium catenella-resting cysts in sediments of southern Chilean fjords has cast doubts on their importance in the recurrence of massive toxic dinoflagellate blooms in the region. The role of resting cysts and the existence of different regional Chilean populations was studied by culturing and genetic approaches to define: (1) cyst production; (2) dormancy period; (3) excystment success; (4) offspring viability and (5) strain mating compatibility. This study newly revealed a short cyst dormancy (minimum 69 days), the role of key abiotic factors (in decreasing order salinity, irradiance, temperature and nutrients) controlling cyst germination (max. 60%) and germling growth rates (up to 0.36–0.52 div. day−1). Amplified fragment length polymorphism (AFLP) characterization showed significant differences in genetic distances (GD) among A. catenella populations that were primarily determined by the geographical origin of isolates and most likely driven by oceanographic dispersal barriers. A complex heterothallic mating system pointed to variable reproductive compatibility (RCs) among Chilean strains that was high among northern (Los Lagos/North Aysén) and southern populations (Magallanes), but limited among the genetically differentiated central (South Aysén) populations. Field cyst surveys after a massive 2009 bloom event revealed the existence of exceptional high cyst densities in particular areas of the fjords (max. 14.627 cysts cm−3), which contrast with low cyst concentrations (<221.3 cysts cm−3) detected by previous oceanographic campaigns. In conclusion, the present study suggests that A. catenella resting cysts play a more important role in the success of this species in Chilean fjords than previously thought. Results from in vitro experiments suggest that pelagic–benthic processes can maintain year-round low vegetative cell concentrations in the water column, but also can explain the detection of high cysts aggregations after the 2009-bloom event. Regional drivers that lead to massive outbreaks, however, are still unknown but potential scenarios are discussed.  相似文献   

11.
Between May 2000 and February 2001, a major bloom of the toxic dinoflagellate Gymnodinium catenatum (a causative organism of Paralytic Shellfish Poisoning, PSP) affected over 1500 km of coastline of New Zealand’s North Island. As this was the first record of this species in New Zealand, we aimed to resolve whether this represented a recent introduction/spreading event or perhaps an indigenous cryptic species stimulated by environmental/climatic change. To answer this question, we analysed for G. catenatum resting cysts in 210Pb dated sediment cores (18–34 cm long; sedimentation rates 0.34–0.69 cm per year) collected by SCUBA divers from Manukau Harbour, where the species was first detected, and from Hokianga Harbour, where the highest shellfish toxicity was recorded, while using Wellington Harbour as a well-monitored control site. The results of this study conclusively demonstrate that abundant G. catenatum has been in northern New Zealand at least since the early 1980s, increasing up to 1200 cysts/g around the year 2000, but with low cyst concentrations possibly present since at least 1937. In contrast, Wellington Harbour cores contained only very sparse G. catenatum cysts (8 cysts/g), present only to a depth of 7 cm (surface mixed layer depth), reflecting an apparent recent range expansion of this dinoflagellate in New Zealand, possibly stimulated by unusual climatic conditions associated with the 2000 La Nina event. The significant increases since the early 1980s also of Protoperidinium cysts at Hokianga Harbour and of Gonyaulax, Protoperidinium and Protoceratium cysts at Manukau Harbour suggest a broad scale environmental change has occurred in Northland, New Zealand.  相似文献   

12.
13.
While harmful algal blooms (HABs) caused by the toxic dinoflagellate Cochlodinium polykrikoides have been known to science for more than a century, the past two decades have witnessed an extraordinary expansion of these events across Asia, North America, and even Europe. Although the production of resting cysts and subsequent transport via ships’ ballast water or/and the transfer of shellfish stocks could facilitate this expansion, confirmative evidence for cyst production by C. polykrikoides is not available. Here, we provide visual confirmation of the production of resting cysts by C. polykrikoides in laboratory cultures isolated from North America. Evidence includes sexually mating cell pairs, planozygotes with two longitudinal flagella, formation of both pellicular (temporary) cysts and resting cysts, and a time series of the cyst germination process. Resting cyst germination occurred up to 1 month after cyst formation and 2–40% of resting cysts were successfully germinated in cultures maintained at 18–21 °C. Pellicular cysts with hyaline membranes were generally larger than resting cysts, displayed discernable cingulum and/or sulcus, and reverted to vegetative cells within 24 h to ∼1 week of formation. A putative armored stage of C. polykrikoides was not observed during any life cycle stage in this study. This definitive evidence of resting cyst production by C. polykrikoides provides a mechanism to account for the recurrence of annual blooms in given locales as well as the global expansion of C. polykrikoides blooms during the past two decades.  相似文献   

14.
Since resting cysts are a potential seeding source for blooms, the presence of these cysts in sediments is a marker of an established population for a number of harmful algal species. The spatial patterns of cyst density in relation to sediment characteristics and hydrodynamics are still largely misunderstood. This study investigated the spatial distribution of resting cysts belonging to the Alexandrium tamarense species complex (Dinophyceae) in sediments of a Mediterranean coastal lagoon (Thau Lagoon, France). This lagoon, hosting shellfish farming, is regularly impacted by toxic Alexandrium catenella blooms. The average cyst density across the whole lagoon was rather low, <20 cysts g−1 of dry sediment (DS). However, densities varied widely among sampled stations, with the highest density (∼440 cysts g−1 DS) recorded in a shallow cove named Crique-de-l’Angle, which is the only area where dense blooms of A. catenella and A. tamarense have been recorded in the years preceding this survey. An analysis using spatial autoregressive models demonstrated that cyst densities were highly spatially autocorrelated (indicating that close stations tended to have more similar cyst densities) with accumulation sites. With respect to sediment characteristics (5 granulometric fractions <2 mm and biochemical components), the highest densities were found in silty sediments containing high proportions of water and organic matter. Nevertheless, the linkage between cyst density and sediment structure was not always verified; this reflected the influence of hydrodynamics on the sedimentation of cysts and sediment particles, and on the dispersal of cysts away from the bloom area by wind-induced currents, suggesting that hydrodynamics was responsible for the spatially autocorrelated distribution of cyst densities.  相似文献   

15.
In Chile, 90% of the fish farms and major natural shellfish beds are located in the region surrounding the Inland Sea, where over the last few decades harmful phytoplankton blooms have often been observed. The onset and recurrence of bloom events are often related to the resuspension and germination of resting cysts that have accumulated in the sediments. The degree of cyst settling, accumulation and germination is highly variable between areas and depends on physical and environmental factors. To learn how differences in oceanographic exposure, amount of river runoff and bathymetry affect dinoflagellate cyst deposition, we examined the diversity and abundance of dinoflagellate resting cysts from two hydrographically contrasting coastal areas (oceanic Guaitecas Archipelago and estuarine Pitipalena Fjord) of the Chilean Inland Sea in September 2006, seven months after a bloom of Alexandrium catenella, a producer of paralytic shellfish toxin. Cyst species diversity consisted of 18 taxa, including A. catenella and the noxious species Protoceratium reticulatum, both of which have caused blooms in the study area. Our results revealed significant differences between the two study sites in terms of the abundance and diversity of resting cysts, suggesting that in the specific case of A. catenella, only Guaitecas stations have potential for cyst accumulation and successful growth of cells. However, there was no evidence of long-term resting cyst beds of A. catenella at either study site.  相似文献   

16.
Studies considering the biology and ecology of the toxic bloom‐forming species, Alexandrium pseudogonyaulax, are rare. Our results highlight five features not described before in A. pseudogonyaulax life cycle: (i) A. pseudogonyaulax gametes showed two modes of conjugation, anisogamy and isogamy, (ii) sexual conjugation occurs either in the dark or in the light phase by engulfment or a fusion process, (iii) the presence of planozygote and newly formed cysts in monoclonal culture suggests homothallism, (iv) newly formed cysts have very dark vesicular content and are mostly unparatabulated when observed under light microscope and (v) natural resting cysts are able to give either a planomeiocyte or two vegetative cells. Cyst viability was enhanced after 5 months of cold storage (4°C), with excystment rate reaching 97% after 3 d of incubation. Excystment rate was highest (43%–79%) in Enriched Natural Sea Water diluted culture medium, whereas few germling cells were able to survive without the culture medium (0%–13%). Salinity‐irradiance experiments revealed that the highest cell concentrations occur at high irradiances for all the tested salinities. Vegetative growth rates generally increased with increasing irradiance, and were less dependent on salinity variations. The relatively low growth rate, low cell densities in the laboratory, and the notable capacity of producing cysts along growth phases of A. pseudogonyaulax could explain the occurrence of high resting cysts densities in the sediment of Bizerte lagoon and the relatively low abundances of vegetative cells in the water column.  相似文献   

17.
The responses of the pioneer submerged macroalga (Chara globularis) and the rapidly spreading floating macroalga (Hydrodictyon reticulatum) to high levels of lead (40, 80, and 160 mg L−1) at pH 7.14 were studied. Growth rate, Pb bioaccumulation, and physiological response of plants were measured after 5 and 15 days exposure. Both macroalgae efficiently postponed the deposition process of Pb from water column to soil. The Pb bioaccumulation in C. globularis was concentration- and time-dependent increase during the experiment and the maximum bioaccumulation activity was about 3,650 mg Pb kg−1 DW in 160 mg L−1 Pb at pH 7.14 after 15 days, whereas H. reticulatum showed saturable bioaccumulation in 5 days and the maximum was approximately 4,000 mg Pb kg−1 DW; in addition, H. reticulatum exhibited higher tolerance to Pb pollution than C. globularis. The results also showed that the antioxidant defense systems of both tested macroalgae were overwhelmed under high Pb levels with superoxide radical and malondiadehyde levels increasing significantly. The antioxidant enzymes, superoxide dismutase, catalase, and guaiacol peroxidase activities were inhibited severely increasing Pb levels and exposure time. These results indicate that the pioneer species C. globularis would have difficulty growing in a habitat polluted by Pb >40 mg L−1and the rapidly spreading H. reticulatum may not grow in an environment polluted by >80 mg L−1 Pb. Because Pb levels in most water bodies are lower than 40 mg L−1, both C. globularis and H. reticulatum can be considered for phytoremediation of Pb pollution.  相似文献   

18.
19.
There are at least 40,000 species of microalgae in the aquatic environment. Fifteen species of marine dinoflagellates and freshwater cyanobacteria are known to produce paralytic shellfish toxins (PSTs) and represent a threat to human and/or livestock health. Although known toxic species are regularly monitored, the wider cross‐section of microalgae has not been systematically tested for PSTs. Advances in rapid screening techniques have resulted in the development of highly sensitive and specific methods to detect PSTs, including the sodium channel and saxiphilin binding assays. These assays were used in this study in 96‐well formats to screen 234 highly diverse isolates of Australian freshwater and marine microalgae for PSTs. The screening assays detected five toxic species, representing one freshwater cyanobacterium (Anabaena circinalis Rabenhorst) and four species of marine dinoflagellates (Alexandrium minutum Halim, A. catenella Balech, A. tamarense Balech, and Gymnodinium catenatum Graham). Liquid chromatography‐fluorescence detection was used to identify 14 saxitoxin analogues across the five species, and each species exhibited distinct toxin profiles. These results indicate that PST production is restricted to a narrow range of microalgal species found in Australian waters.  相似文献   

20.
Most microalgal species are geographically widespread, but little is known about how they are dispersed. One potential mechanism for long‐distance dispersal is through birds, which may transport cells internally (endozoochory) and deposit them during, or in‐between, their migratory stopovers. We hypothesize that dinoflagellates, in particular resting stages, can tolerate bird digestion; that bird temperature, acidity, and retention time negatively affect dinoflagellate viability; and that recovered cysts can germinate after passage through the birds’ gut, contributing to species‐specific dispersal of the dinoflagellates across scales. Tolerance of two dinoflagellate species (Peridiniopsis borgei, a warm‐water species and Apocalathium malmogiense, a cold‐water species) to Mallard gut passage was investigated using in vitro experiments simulating the gizzard and caeca conditions. The effect of in vitro digestion and retention time on cell integrity, cell viability, and germination capacity of the dinoflagellate species was examined targeting both their vegetative and resting stages. Resting stages (cysts) of both species were able to survive simulated bird gut passage, even if their survival rate and germination were negatively affected by exposure to acidic condition and bird internal temperature. Cysts of A. malmogiense were more sensitive than P. borgei to treatments and to the presence of digestive enzymes. Vegetative cells did not survive conditions of bird internal temperature and formed pellicle cysts when exposed to gizzard‐like acid conditions. We show that dinoflagellate resting cysts serve as dispersal propagules through migratory birds. Assuming a retention time of viable cysts of 2–12 h to duck stomach conditions, cysts could be dispersed 150–800 km and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号