首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristics of specific receptors for epidermal growth factor (EGF) and its effect on cellular proliferation and synthesis of DNA and protein were studied in cultured vascular smooth muscle cells (VSMC) from rat aorta. Binding studies using 125I-EGF revealed the presence of high affinity binding sites for EGF on VSMC in culture: the apparent dissociation constant was approximately 2.5 X 10(-10)M and the maximal binding capacity was approximately 67,000 sites/cell. EGF stimulated cellular proliferation and incorporation of [3H]thymidine and [3H]leucine into the cells in a dose-dependent fashion; the approximate half-maximal stimulation was induced with 1.5 X 10(-10)M. Platelet-derived growth factor (PDGF) had an additive effect with EGF on DNA synthesis by VSMC. Preincubation of VSMC with unlabeled EGF resulted in a substantial reduction in the number of receptors without changing the affinity, suggesting receptor "down-regulation" mechanism. These data indicate that rat aortic VSMCs have specific receptors for EGF, and suggest that EGF, in addition to PDGF, is also involved in the cell growth of VSMC.  相似文献   

2.
To determine the role of calcium in the action of insulin-like growth factor II (IGF-II), we have examined the effect of multiplication stimulating activity, the rat IGF-II, on cytoplasmic-free calcium concentration, [Ca2+]c, in aequorin-loaded Balb/c 3T3 cells. IGF-II does not cause any change in [Ca2+]c in quiescent cells. By contrast, IGF-II induces changes in [Ca2+]c in platelet-derived growth factor(PDGF) - pretreated competent cells: when competent cells are incubated with epidermal growth factor (EGF) for 10 min, subsequent IGF-II induces an immediate increase in [Ca2+]c. Without EGF treatment, IGF-II does not cause any increase in [Ca2+]c. The priming action of EGF is time dependent, requiring approximately 10 min for the maximum effect. The IGF-II-mediated increase in [Ca2+]c is totally dependent on extracellular calcium and is blocked by lanthanum. When DNA synthesis in PDGF-treated competent cells is assessed by measuring [3H]thymidine incorporation, IGF-II by itself has only a small effect. Likewise, a brief treatment with EGF results in only a small increase in [3H]thymidine incorporation. By contrast, in competent cells briefly treated with EGF, IGF-II causes a marked stimulation of [3H]thymidine incorporation. These results indicate that IGF-II increases [Ca2+]c in competent Balb/c 3T3 cells treated with EGF by stimulating calcium influx and that IGF-II-stimulated calcium influx may be related causally to its action on cell proliferation.  相似文献   

3.
Effects of platelet-derived growth factor on bone formation in vitro   总被引:5,自引:0,他引:5  
Platelet-derived growth factor (PDGF) is a polypeptide found in a variety of tissues, including bone, where it could act as an autologous regulator of skeletal remodeling. Therefore, a recombinant B chain homodimer of human PDGF was studied for its effects on bone formation in cultured rat calvariae. PDGF at 10-100 ng/ml stimulated [3H]thymidine incorporation into DNA by up to sixfold and increased the DNA content and the number of colcemid-induced metaphase arrested cells. This effect was observed in the fibroblast and precursor cell-rich periosteum. As a result of its mitogenic actions, PDGF enhanced [3H]proline incorporation into collagen, an effect that was observed primarily in the osteoblast-rich central bone. The effect of PDGF was not specific for collagen since it also increased noncollagen protein synthesis. In addition, PDGF increased bone collagen degradation. PDGF and insulin-like growth factor (IGF) I had additive effects on calvarial DNA synthesis, but PDGF opposed the stimulatory effect of IGF I on collagen synthesis and IGF I prevented the PDGF effect on collagen degradation. In conclusion, PDGF stimulates calvarial DNA synthesis which causes an increased number of collagen-synthesizing cells, but PDGF also enhances bone collagen degradation.  相似文献   

4.
Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF beta were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. Moreover, electron microscopy excluded the presence of endothelial cells by the absence of Weibel-Palade bodies. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classes of sites were detected by Scatchard analysis with respectively 21,000 and 37,000 sites per cell, with a KD of 0.3 x 10(-10) M and KD of 0.5 x 10(-9) M. The stimulation of DNA synthesis by PDGF was quantified by [3H]thymidine incorporation. When PDGF was added alone at a concentration of 15 ng/ml, it induced a maximal DNA synthesis of 400%, which increased up to 900%, in the presence of platelet-poor plasma (PPP). On the other hand, PDGF-induced fibroblast proliferation was inhibited in a dose-dependent manner by TGF beta. This inhibition was related to a significantly decreased binding of 125I-labeled PDGF observed in the presence of TGF beta. Our results suggested that PDGF and TGF beta could modulate the growth of bone marrow fibroblasts.  相似文献   

5.
We have investigated the hypothesis that responses associated with proliferation are regulated by extracellular nucleotides such as ATP and UTP in cultured human vascular smooth muscle cells (VSMC) derived from internal mammary artery (IMA) and saphenous vein (SV). Platelet-derived growth factor (PDGF), ATP, and UTP each generated an increase in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in both IMA- and SV-derived cells in the absence of detectable inositol 1,4,5-trisphosphate production. ATP alone had no effect on [(3)H]thymidine incorporation into DNA, but with a submaximal concentration of PDGF it raised [(3)H]thymidine incorporation in SV- but not IMA-derived cells. UTP alone also was without effect on [(3)H]thymidine incorporation or cell number. However, in both SV- and IMA-derived cells, UTP reduced the PDGF-stimulated [(3)H]thymidine response and PDGF-stimulated cell proliferation. This cannot be explained by an inhibitory effect on the p42/p44 mitogen-activated protein kinase (MAPK) cascade, since this response to PDGF was not attenuated by UTP. We conclude that, in human VSMC of both arterial and venous origin, UTP acts as an anti-proliferative regulator.  相似文献   

6.
Platelet-derived growth factor (PDGF) influences the proliferation and differentiation of a variety of cells. In this study, we have investigated the effect of PDGF isoforms on chondrogenesis by stage 24 chick limb bud mesoderm cells in culture. Synthesis of sulfated proteoglycans, an index of chondrogenesis, was inhibited by all three PDGF isoforms (PDGF-AA, PDGF-AB, and PDGF-BB). Application of PDGF isoforms during the first 2 days of culture, before the cells were overtly differentiating, resulted in decreased synthesis of sulfated proteoglycans. This was similar to when PDGF isoforms were present throughout the culture period. However, application of PDGF isoform during only the last 2 days of culture, did not inhibit cartilage matrix production. When chondrogenic and nonchondrogenic cells were separated from the cultures and replated, PDGF-AB and PDGF-BB inhibited the incorporation of sulfate by the chondrogenic cells. Recombinant bone morphogenetic protein 2B reversed the inhibitory effects of PDGF on sulfated proteoglycan synthesis and DNA synthesis. PDGF receptor binding analysis indicated that beta-receptors were predominant receptors present on the chondrogenic and nonchondrogenic cells of the stage 24 mesoderm. PDGF isoforms increased thymidine incorporation by 48 h in both high and low density cultures. However, at later periods, cell proliferation was inhibited by PDGF-AA and PDGF-AB but not by PDGF-BB. PDGF acted as a bifunctional modulator of mesodermal cell proliferation and thus may regulate chondrogenesis during limb differentiation and morphogenesis.  相似文献   

7.
The culture of adult human skin fibroblasts on reconstituted bovine type 1 fibrillar collagen gels, ranging in concentration from 2.5-35.0 mg/ml, results in a reduction in proliferation rate by 40%-60% as measured by (3H) thymidine incorporation. The suppressive effect was noted when cells were cultured in both human and bovine serum. Drying the gels into thin films abolishes the suppressive effect of the fibrillar collagen on cell proliferation. Cell attachment studies showed that differences in the proliferation rate of cells on the various substrata were not simply due to differences in initial attachment. Studies with purified platelet-derived growth factor (PDGF) demonstrated that the reduced responsiveness of cells to this factor, when cultured on collagen gels as compared to plastic, was largely responsible for the reduced proliferative activity of the cells when cultured in the presence of serum. The reduced proliferative activity of fibroblasts in response to PDGF, when cultured on collagen gels, was confirmed by total DNA determination. It was shown that the reduced responsiveness of cells to PDGF was not simply because the factor bound to the fibrillar collagen gel or was inaccessible to the cells. The data indicate that the reduced proliferation rate of fibroblasts cultured on collagen gels is a direct result of the influence of the extracellular matrix on the cells' ability to respond to a soluble mitogenic mediator.  相似文献   

8.
Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement.  相似文献   

9.
This study was designed to evaluate mechanisms regulating proliferation of steroidogenically active and steroidogenically inactive theca-interstitial (T-I) cells, and, specifically, to evaluate the effects of platelet-derived growth factor (PDGF) and insulin-like growth factor-I (IGF-I). T-I cells obtained from immature Sprague-Dawley rats were cultured in chemically defined media. Proliferation was assayed by thymidine incorporation and cell counting. Steroidogenically active cells were identified by the presence of 3beta-hydroxysteroid dehydrogenase activity. Flow cytometry facilitated separation of dividing cells (in S and G2/M phases of the cell cycle) from nondividing cells (in G0 and G1 phases of the cell cycle). PDGF alone (0.1-1 nM) produced a dose-dependent increase in DNA synthesis by up to 136%. IGF-I alone (10 nM) increased DNA synthesis by 56%. In the presence of both IGF-I (10 nM) and PDGF (0.1-1 nM), DNA synthesis increased by 108-214%. PDGF (1 nM) increased the total number of T-I cells by 43%; this effect was due to an increase in the number of steroidogenically inactive cells (47%). In contrast, the stimulatory effect of IGF-I (10 nM) was predominantly due to an increase in the number of steroidogenically active cells (163%). Separation of dividing cells from nondividing cells was accomplished with the aid of flow cytometry. In the absence of growth factors, the proportion of steroidogenically active cells was 35% lower among proliferating than resting cells. PDGF (1 nM) decreased the proportion of steroidogenically active cells among both proliferating and resting cells (by 43% and 16%, respectively). In contrast, IGF-I (10 nM) increased the proportion of steroidogenically active cells among proliferating cells by 56%. These findings indicate that differentiated/steroidogenically active cells divide; furthermore, PDGF and IGF-I may selectively stimulate proliferation of individual subpopulations of T-I cells, thereby providing a mechanism for development of structural and steroidogenically active components of the T-I compartment.  相似文献   

10.
A series of peptides derived from the primary sequence of the B-chain of platelet-derived growth factor (PDGF) was analyzed for their ability to inhibit the binding of 125I-PDGF-AA and 125I-PDGF-BB to PDGF alpha-receptors and PDGF beta-receptors, respectively. A 13-amino acid peptide (ANFLVWEIVRKKP), corresponding to amino acids 116-121 and 157-163 in PDGF B-chain, was found to compete with binding to both alpha- and beta-receptors. Modification of this peptide on the tryptophan residue increased its receptor competing activity. The peptide was found to be a receptor antagonist, since it inhibited dimerization and autophosphorylation of PDGF receptors. When analyzed on intact cells, the peptide was found to have, in addition to the specific inhibitory effect at the receptor level, a nonspecific inhibitory effect on [3H]thymidine incorporation. Our study has identified two regions in PDGF that are of importance for receptor interaction.  相似文献   

11.
Platelet derived growth factor was purified from an industrially processed fraction of human placenta (EAP) donated by the Institut Merieux. We first demonstrated that EAP contains PDGF and the quantity of this growth factor was estimated by inhibition of its biological activity using antibodies against PDGF. According to this first estimation, 1 l of EAP (obtained from 125 kg of placenta) contains 10-1000 micrograms of PDGF. A purification procedure including fast flow chromatography (cationic S), heparin Sepharose affinity, chromatography on Cibacron Blue followed by a reverse phase on a C8 column gave a 6000-fold enrichment with a yield of 14%. This result suggests that the PDGF content in 1 l of EAP is between 10 and 30 micrograms. Mitogenic activity was measured on human fibroblast AG1523, Chinese hamster fibroblasts CCL39 and bovine epithelial cells BEC. Dose-response curves indicate that our preparation of purified PDGF from human placenta induces 50% of the maximal tritiated thymidine incorporation in CCL39 at a dose of 5 ng of PDGF/ml of culture medium.  相似文献   

12.
The effects of the transforming growth factor beta (TGF-beta) on the growth and glycosaminoglycan synthesis of rabbit growth plate-chondrocytes in culture were studied. In serum-free medium, TGF-beta caused dose-dependent inhibition of DNA synthesis by chondrocytes, measured as [3H]thymidine incorporation (ED50 = 0.1-0.3 ng/ml). The inhibitory effect was maximal at a dose of 1 ng/ml, and extended for a duration of 16-42 h. In contrast, TGF-beta potentiated the synthesis of DNA stimulated by fetal calf serum (FCS). Addition of TGF-beta (1 ng/ml) to cultures containing 10% FCS increased [3H]thymidine incorporation to 1.6-times that in cultures with 10% FCS alone. Consistent with this finding, TGF-beta potentiated DNA synthesis stimulated by the purified growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factor (FGF). The maximal stimulation of DNA synthesis by FGF (0.4 ng/ml) was further potentiated dose dependently by TGF-beta (ED50 = 0.1 ng/ml, maximum at 1 ng/ml). When the cultures were treated with the optimal concentrations of TGF-beta (1 ng/ml) and FGF (0.4 ng/ml), [3H]thymidine incorporation was 3-times higher than that of cultures treated with FGF alone. This TGF-beta-induced potentiation of DNA synthesis was associated with replication of chondrocytes, as shown by a marked increase in the amount of DNA during treatment of sparse cultures of the cells with the growth factors for 5 days. In contrast, TGF-beta caused dose-dependent stimulation of glycosaminoglycan synthesis in confluent cultures of growth-plate chondrocytes (ED50 = 0.3 ng/ml, maximum at 1 ng/ml). This stimulatory effect of TGF-beta was greater than that of insulin-like growth factor I (IGF-I) or PDGF. Furthermore, TGF-beta stimulated glycosaminoglycan synthesis additively with IGF-I or PDGF. Recently, it has been suggested that bone and articular cartilage are rich sources of TGF-beta, whereas epiphyseal growth cartilage is not. Thus, the present data indicate that TGF-beta may be important in bone formation by modulating growth and phenotypic expression of chondrocytes in the growth plate, possibly via a paracrine mechanism.  相似文献   

13.
Osteoblastic migration and proliferation in response to growth factors are essential for skeletal development, bone remodeling, and fracture repair, as well as pathologic processes, such as metastasis. We studied migration in response to platelet-derived growth factor (PDGF, 10 ng/ml) in a wounding model. PDGF stimulated a twofold increase in migration of osteoblastic MC3T3-E1 cells and murine calvarial osteoblasts over 24-48 h. PDGF also stimulated a tenfold increase in 3H-thymidine (3H-TdR) incorporation in MC3T3-E1 cells. Migration and DNA replication, as measured by BrdU incorporation, could be stimulated in the same cell. Blocking DNA replication with aphidicolin did not reduce the distance migrated. To examine the role of mitogen-activated protein (MAP) kinases in migration and proliferation, we used specific inhibitors of p38 MAP kinase, extracellular signal regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). For these signaling studies, proliferation was measured by carboxyfluorescein diacetate succinimidyl ester (CFSE) using flow cytometry. Inhibition of the p38 MAP kinase pathway by SB203580 and SB202190 blocked PDGF-stimulated migration but had no effect on proliferation. Inhibition of the ERK pathway by PD98059 and U0126 inhibited proliferation but did not inhibit migration. Inhibition of JNK activity by SP600125 inhibited both migration and proliferation. Hence, the stimulation of migration and proliferation by PDGF occurred by both overlapping and independent pathways. The JNK pathway was involved in both migration and proliferation, whereas the p38 pathway was predominantly involved in migration and the ERK pathway predominantly involved in proliferation.  相似文献   

14.
The effect of glucose on PDGF production and cell proliferation was studied on cultured bovine aortic endothelial cells. PDGF levels were measured using an enzyme-linked immunosorbent assay technique newly developed in our laboratory. The cell proliferation rate was determine on the basis of 3H-thymidine incorporation into cellular DNA. PDGF levels in culture medium were below the detection limit of the assay. However, PDGF levels were measurable in cultured endothelial cells at confluence. Both PDGF production and thymidine incorporation were significantly reduced in the endothelial cells cultured with high concentrations of glucose. These results suggest that reduced PDGF production and cell proliferation may be involved in altered vascular endothelial function in diabetics.  相似文献   

15.
Cyclic mechanical strain causes proliferation of vascular smooth muscle cells, mediated in part by platelet-derived growth factor (PDGF). We examined the effect of cyclic strain on expression of PDGF-B and the PDGF beta receptor. Neonatal rat vascular smooth muscle cells were exposed to 1 hertz cyclic strain on silicone elastomer plates. PDGF-B mRNA increased after 6 h of strain. In cells transfected with a PDGF-B promoter chloramphenicol acetyl transferase construct (psisCAT 6A), activity increased by 12-fold following 12 h of strain. Two neutralizing antibodies to the PDGF beta receptor both reduced strain-induced [(3)H]thymidine incorporation by 50%. Expression of the PDGF beta receptor protein increased 1.8-fold following 24 h of strain. During strain, PDGF beta receptor expression was not significantly altered by neutralizing antibodies to PDGF-B. Thus, both PDGF-B and the PDGF beta receptor are induced by cyclic mechanical strain and both contribute to cell proliferation in response to strain.  相似文献   

16.
Platelet-derived growth factor in chemotactic for fibroblasts   总被引:57,自引:18,他引:39       下载免费PDF全文
Chemotaxis assays in modified Boyden chambers were used to detect fibroblast chemoattractants in materials released from early-stage inflammatory cells, namely, mast cells, platelets, and neutrophils. Strong attractant activity was found in substances released from platelets. This activity was accounted for mainly by the platelet- derived growth factor (PDGF), which is released from the platelets and which was active as a chemoattractant at 0.5-1.0 mitogenic units/ml. The mitogenic activity of purified PDGF, measured by [3H]thymidine incorporation, occurs at a similar concentration range. By varying the gradient of PDGF, we demonstrated that PDGF stimulates chemotaxis rather than random motility. Preincubation of suspensions of fibroblasts in the presence of PDGF decreased the subsequent migration of cells to a gradient of PDGF as well as to a gradient of fibronectin, which is also in attractant for fibroblasts. The chemotactic response of fibroblasts to PDGF was not inhibited by hydroxyurea or azidocytidine but was inhibited by actinomycin D and cycloheximide, suggesting that synthesis of RNA and proteins but not of DNA is required for the chemotactic response to occur. Fibroblast growth factor, epidermal growth factor, nerve growth factor, and insulin were not chemotactic for human skin fibroblasts, suggesting that the chemoattractant activity of PDGF for fibroblasts is not a general property of growth factors and mitogens. These results suggest that PDGF could have two functions in wound healing: to attract fibroblasts to migrate into the clot and then to induce their proliferation.  相似文献   

17.
The effect of cyclic mechanical strain on growth of neonatal rat vascular smooth muscle (VSM) cells were examined. Cells were grown on silicone elastomer plates subjected to cyclic strain (60 cycle/min) by application of a vacuum under the plates. A 48 h exposure to mechanical strain increased the basal rate of thymidine incorporation by threefold and increased cell number by 40% compared with cells grown on stationary rubber plates. Strain also increased the rate of thymidine incorporation in response to alpha-thrombin (from 15- to 33-fold), but not to PDGF. As determined by thymidine autoradiography, strain alone induced a fourfold increase in labeled nuclei at the periphery of dishes, where strain is maximal, and a 2-3-fold increase at the center of dishes. Strain appeared to induce the production of an autocrine growth factor(s), since conditioned medium from cells subjected to strain induced a fourfold increase in DNA synthesis in control cells. Western blots of medium conditioned on the cells subjected to strain indicate that the cells secrete both AA and BB forms of PDGF in response to strain. Northern blots of total cell RNA from cells exposed to strain for 24 h show increased steady-state level of mRNA for PDGF- A. Lastly, polyclonal antibodies to the AA form of PDGF reduced by 75% the mitogenic effect of strain and polyclonal antibodies to AB-PDGF reduced mitogenicity by 50%. Antibodies to bFGF did not significantly reduce the strain-induced thymidine incorporation. Thus, the mechanism of strain-induced growth appears to involve the intermediary action of secreted PDGF.  相似文献   

18.
Recent data suggest that uric acid is generated locally in the vessel wall by the action of xanthine oxidase. This enzyme, activated during ischemia/reperfusion by proteolytic conversion of xanthine dehydrogenase, catalyzes the oxidation of xanthine, thereby generating free radicals and uric acid. Because of the potential role of ischemia/reperfusion in vascular disease, we studied the effects of uric acid on rat aortic vascular smooth muscle cell (VSMC) growth. Uric acid stimulated VSMC DNA synthesis, as measured by [3H]thymidine incorporation, in a concentration-dependent manner with half-maximal activity at 150 microM. Maximal induction of DNA synthesis by uric acid (250 microM) was approximately 70% of 10% calf serum and equal to 10 ng/ml platelet-derived growth factor (PDGF) AB or 20 ng/ml fibroblast growth factor. Neither uric acid precursors (xanthine and hypoxanthine) nor antioxidants (ascorbic acid, glutathione, and alpha-tocopherol) were mitogenic for VSMC. Uric acid was mitogenic for VSMC but not for fibroblasts or renal epithelial cells. The time course for uric acid stimulation of VSMC growth was slower than serum, suggesting induction of an autocrine growth mechanism. Exposure of quiescent VSMC to uric acid stimulated accumulation of PDGF A-chain mRNA (greater than 5-fold at 8 h) and secretion of PDGF-like material in conditioned medium (greater than 10-fold at 24 h). Uric acid-induced [3H]thymidine incorporation was markedly inhibited by incubation with anti-PDGF A-chain polyclonal antibodies. Thus uric acid stimulates VSMC growth via an autocrine mechanism involving PDGF A-chain. These findings suggest that generation of uric acid during ischemia/reperfusion contributes to atherogenesis and intimal proliferation following arterial injury.  相似文献   

19.
Endothelin-1 (ET-1), platelet-derived growth factor (PDGF), and epidermal growth factor (EGF) stimulated thymidine incorporation with different efficiency (PDGF >> EGF = ET-1) in rat myometrial cells. They also stimulated ERK activation, which culminated at 5 min and then declined to reach a plateau (at 45 min: EGF > 90%, PDGF = 50%, and ET-1 < 10% of maximum). Inhibition and downregulation of PKC demonstrated that ERK activation at 5 min involved PKC and - for ET-1 and PKC plus another PKC isoform for PDGF. By contrast, the EGF response did not involve PKC. Stimulation of Ras was more important with EGF than with PDGF, with ET-1 being the weakest activator. The simultaneous incubation of the cells with EGF and ET-1 potentiated the ERK activation at 5 min and mimicked the plateau phase obtained with PDGF. Under these conditions thymidine incorporation was comparable to that induced by PDGF. Taken together, our results indicated that the kinetic profile of ERK activation and its impact on cell proliferation can be modulated by the differential involvement of PKC isoforms and the amplitude of Ras activation. uterine smooth muscle; phospholipase C; ETA receptor; thymidine incorporation; Ras  相似文献   

20.
The effects of platelet-derived growth factor (PDGF) on DNA synthesis and proliferation in cultures of arterial smooth muscle cells obtained from young and adult rats, respectively, were measured. Addition of 10-20 ng/ml of PDGF to medium MCDB 104 induced DNA synthesis in quiescent cultures of cells from young animals to a similar extent as 10-20% whole blood serum (WBS). PDGF further stimulated proliferation of the cells in medium MCDB 104, although less markedly than 10% WBS. Antibodies against PDGF partially inhibited the growth response after stimulation with serum. This shows that PDGF is a major growth factor in serum for these cells and that PDGF can promote entrance into and passage through S phase and mitosis independent o plasma factors. Cells from adult animals were also found to respond to PDGF, although a higher concentration (25 ng/ml) was required to obtain a maximum effect. These cells, however, responded better than cells from young animals to stimulation with serum. Further, antibodies against PDGF did not inhibit the growth-stimulatory effect of serum to any appreciable extent. Thus, serum contains growth factors other than PDGF that stimulate preferentiaLly the proliferation of smooth muscle cells from adult animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号