共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Est1 is a component of yeast telomerase, and est1 mutants have senescence and telomere loss phenotypes. The exact function of Est1 is not known, and it is not homologous to components of other telomerases. We previously showed that Est1 protein coimmunoprecipitates with Tlc1 (the telomerase RNA) as well as with telomerase activity. Est1 has homology to Ebs1, an uncharacterized yeast open reading frame product, including homology to a putative RNA recognition motif (RRM) of Ebs1. Deletion of EBS1 results in short telomeres. We created point mutations in a putative RRM of Est1. One mutant was unable to complement either the senescence or the telomere loss phenotype of est1 mutants. Furthermore, the mutant protein no longer coprecipitated with the Tlc1 telomerase RNA. Mutants defective in the binding of Tlc1 RNA were nevertheless capable of binding single-stranded TG-rich DNA. Our data suggest that an important role of Est1 in the telomerase complex is to bind to the Tlc1 telomerase RNA via an RRM. Since Est1 can also bind telomeric DNA, Est1 may tether telomerase to the telomere. 相似文献
9.
10.
11.
Victoria GS Yadav B Hauhnar L Jain P Bhatnagar S Komath SS 《The Biochemical journal》2012,443(3):619-625
A novel co-regulation exists between the first step of GPI (glycosylphosphatidylinositol) anchor biosynthesis and the rate-determining step of ergosterol biosynthesis in Candida albicans. Depleting CaGpi19p, an accessory subunit of the enzyme complex that initiates GPI biosynthesis, down-regulates ERG11, altering ergosterol levels and drug response. This effect is specific to CaGpi19p depletion and is not due to cell wall defects or GPI deficiency. Additionally, down-regulation of ERG11 down-regulates CaGPI19 and GPI biosynthesis. 相似文献
12.
In view of the importance of Candida drug resistance protein (Cdr1p) in azole resistance, we have characterized it by overexpressing it as a green fluorescent protein (GFP)-tagged fusion protein (Cdr1p-GFP). The overexpressed Cdr1p-GFP in Saccharomyces cerevisiae is shown to be specifically labeled with the photoaffinity analogs iodoarylazidoprazosin (IAAP) and azidopine, which have been used to characterize the drug-binding sites on mammalian drug-transporting P-glycoproteins. While nystatin could compete for the binding of IAAP, miconazole specifically competed for azidopine binding, suggesting that IAAP and azidopine bind to separate sites on Cdr1p. Cdr1p was subjected to site-directed mutational analysis. Among many mutant variants of Cdr1p, the phenotypes of F774A and ΔF774 were particularly interesting. The analysis of GFP-tagged mutant variants of Cdr1p revealed that a conserved F774, in predicted transmembrane segment 6, when changed to alanine showed increased binding of both photoaffinity analogues, while its deletion (ΔF774), as revealed by confocal microscopic analyses, led to mislocalization of the protein. The mislocalized ΔF774 mutant Cdr1p could be rescued to the plasma membrane as a functional transporter by growth in the presence of a Cdr1p substrate, cycloheximide. Our data for the first time show that the drug substrate-binding sites of Cdr1p exhibit striking similarities with those of mammalian drug-transporting P-glycoproteins and despite differences in topological organization, the transmembrane segment 6 in Cdr1p is also a major contributor to drug substrate-binding site(s). 相似文献
13.
Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans 下载免费PDF全文
G1 cyclins coordinate environmental conditions with growth and differentiation in many organisms. In the pathogen Candida albicans, differentiation of hyphae is induced by environmental cues but in a cell cycle-independent manner. Intriguingly, repressing the G1 cyclin Cln3p under yeast growth conditions caused yeast cells to arrest in G1, increase in size, and then develop into hyphae and pseudohyphae, which subsequently resumed the cell cycle. Differentiation was dependent on Efg1p, Cph1p, and Ras1p, but absence of Ras1p was also synthetically lethal with repression of CLN3. In contrast, repressing CLN3 in environment-induced hyphae did not inhibit growth or the cell cycle, suggesting that yeast and hyphal cell cycles may be regulated differently. Therefore, absence of a G1 cyclin can activate developmental pathways in C. albicans and uncouple differentiation from the normal environmental controls. The data suggest that the G1 phase of the cell cycle may therefore play a critical role in regulating hyphal and pseudohyphal development in C. albicans. 相似文献
14.
The telomerase ribonucleoprotein in Candida albicans is presumed to contain at least three Est proteins: CaEst1p, CaEst2p/TERT and CaEst3p. We constructed mutants missing each of the protein subunit of telomerase and analyzed overall telomere dynamics and single-stranded telomere overhangs over the course of many generations. The est1-ΔΔ mutant manifested abrupt telomere loss and recovery, consistent with heightened recombination. Both the est2-ΔΔ and est3-ΔΔ mutant exhibited progressive telomere loss, followed by the gradual emergence of survivors with long telomeres. In no case was telomere loss accompanied by severe growth defects, suggesting that cells with short telomeres can continue to proliferate. Furthermore, the amount of G-strand terminal overhangs was greatly increased in the est2-ΔΔ mutant, but not others. Our results suggest that in addition to their well-characterized function in telomere elongation, both CaEst1p and CaEst2p mediate some aspects of telomere protection in Candida, with the former suppressing excessive recombination, and the latter preventing excessive C-strand degradation. 相似文献
15.
16.
Here, we report an indispensable role for spindle assembly checkpoint (SAC) component CaMad2p in the survival and virulence of Candida albicans in mice. We hypothesized that cell cycle checkpoint functions, especially those monitoring the integrity of DNA and chromosome segregation, might be required for the pathogen to repair damage caused by host defence. To test this idea, we created SAC-defective mutants by deleting the CaMAD2 gene that encodes a key component of the SAC pathway. The CaMAD2 mutant appears normal in morphology, growth rate and growth mode switch in unperturbed conditions. However, it quickly loses viability when treated with nocodazole, which causes disassembly of mitotic spindles. The mutant also exhibits increased frequency of chromosome loss. The virulence of the mutant is greatly reduced in mice, presumably because of the inability of the mutant cells to stop the cell cycle when the host defence damages cellular components important for chromosome segregation. Supporting this hypothesis, unlike the wild-type cells that can proliferate within and eventually grow out of macrophages, most of the CaMAD2 null mutant cells are unable to survive. This study suggests that SAC is required for survival of C. albicans in the host and could thus be targeted for anti-C. albicans therapies. 相似文献
17.
In diverse organisms, the Mre11 complex and phosphoinositide 3-kinase-related kinases (PIKKs), such as Tel1p and Mec1p from S. cerevisiae, are key mediators of DNA repair and DNA damage checkpoints that also function at telomeres. Here, we use chromatin immunoprecipitation (ChIP) to determine if Mre11p, Tel1p, or Mec1p affects telomere maintenance by promoting recruitment of telomerase subunits to S. cerevisiae telomeres. We find that recruitment of Est2p, the catalytic subunit of telomerase, and Est1p, a telomerase accessory protein, was severely reduced in mre11Delta and tel1Delta cells. In contrast, the levels of Est2p and Est1p binding in late S/G2 phase, the period in the cell cycle when yeast telomerase lengthens telomeres, were indistinguishable in wild-type (WT) and mec1Delta cells. These data argue that Mre11p and Tel1p affect telomere length by promoting telomerase recruitment to telomeres, whereas Mec1p has only a minor role in telomerase recruitment in a TEL1 cell. 相似文献
18.
19.
20.
Umeyama T Kaneko A Nagai Y Hanaoka N Tanabe K Takano Y Niimi M Uehara Y 《Molecular microbiology》2005,55(2):381-395
Saccharomyces cerevisiae Hsl1p is a Ser/Thr protein kinase that regulates cell morphology. We identified Candida albicans CaHSL1 and analysed its function in C. albicans. Cells lacking CaHsl1p exhibited filamentous growth under yeast growth conditions with the filaments elongating more quickly than did those of the wild type under hyphal growth conditions, suggesting that it plays a role in the suppression of cell elongation. Green fluorescent protein-tagged CaHsl1p colocalized with a septin complex to the bud neck during yeast growth or to a potent septation site during hyphal growth, as expected from the localization in S. cerevisiae. However, the localization of the septin complex did not change in DeltaCahsl1, suggesting that CaHsl1p does not participate in septin organization. CaHsl1p was expressed in a cell cycle-dependent manner and, except for the G1 phase, phosphorylated throughout the cell cycle. In DeltaCahsl1 cells, the phosphorylation of a possible CaHsl1p target CaSwe1p decreased, while that of CaCdc28p at tyrosine18 increased. Either an extra copy of the tyrosine18-mutated CaCdc28p or deletion of CaSWE1 suppressed the cell elongation phenotype caused by CaHSL1 deletion. Furthermore, DeltaCahsl1 exhibited reduced virulence in the mouse systemic candidiasis model. Thus, the CaHsl1p-CaSwe1p-CaCdc28p pathway appears important in the cell elongation of both the yeast and hyphal forms and to the virulence of C. albicans. 相似文献