首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peritoneal resident macrophages from mice are sensitive to inhibition by cyclosporin A (CsA) of phorbol 12-myristate 13-acetate (PMA)-stimulated oxidative burst. Inhibition was assessed in terms of superoxide anion (O2.-) and H2O2 production. Key findings were as follows. (a) CsA inhibited in a dose-dependent manner the production of O2.- when cells were stimulated with PMA. CsA did not alter the respiratory burst induced by other stimuli (zymosan, concanavalin A and fMet-Leu-Phe). It was verified that CsA itself had no scavenger effect. (b) A concomitant decrease in H2O2 liberation following CsA exposure was found. This inhibition was observed both in the initial rate of synthesis and in the accumulation after 15 min of incubation. (c) NADPH oxidase activity in the crude supernatant was unaffected by the previous incubation of macrophages with CsA. CsA does not inhibit glucose transport measured as 14CO2 production. (d) The production of O2.- was strongly dependent on the glucose concentration. Sodium oleate also stimulated O2.- production in resident macrophages. These data might be correlated with the inhibitory effect of CsA upon other functions of macrophages.  相似文献   

2.
Soluble CD163 inhibits phorbol ester-induced lymphocyte proliferation.   总被引:2,自引:0,他引:2  
CD163 is a member of the scavenger receptor cysteine-rich family which is expressed exclusively on human monocytes and macrophages. Upon an inflammatory stimulus the protein is shed rapidly from the membranes' surface. CD163 expression is significantly upregulated by glucocorticoids and IL-10. While the membrane-bound form of CD163 was recently identified as scavenger receptor for hemoglobin-haptoglobin complexes, there is no information about a possible role of the shed soluble CD163. It has been suggested earlier that CD163 plays a pivotal role in the downregulatory phase of inflammation. However, it has remained elusive so far as to how this protein might influence the inflammatory process. We have now identified a potential direct anti-inflammatory effect mediated by soluble CD163. The highly purified protein statistically significantly inhibits phorbol ester-induced human T-lymphocyte activation, thus attenuating the immune response to the inflammatory mediator.  相似文献   

3.
Prior studies showed that sphingomyelinase action and the free sphingoid bases inhibited protein kinase C (Kolesnick, R. N., and Clegg, S. (1988) J. Biol. Chem. 263, 6534-6537). The present studies investigated whether sphingomyelinase action also inhibited a biologic process mediated via protein kinase C, phorbol ester-induced differentiation of HL-60 promyelocytic cells into macrophages. The potent phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulated time- and concentration-dependent conversion of HL-60 cells into macrophages, ED50 congruent to 5 x 10(-10) M. Differentiation involved growth inhibition, adherence of the suspended cells to tissue culture plastic, morphologic changes, and development of specific enzymatic markers. Sphingomyelinase, which increased the level of sphingoid bases and inactivated protein kinase C, prevented this event. In control incubations, cell number increased 2.10-fold over 24 h, and 2 +/- 1% of the cells were adherent. In incubations with TPA (0.5 nM), cell number increased only 1.75-fold, and 30% were adherent. Sphingomyelinase (3.8 x 10(-5) unit/ml) restored growth to incubations containing TPA to 2.02-fold and reduced adherence to 15%. Sphingomyelinase (3.8 x 10(-2) unit/ml) also restored growth partially and reduced adherence to a maximal concentration of TPA (3 nM). Similar results were obtained with the sphingoid base sphingosine (3-4.5 microM). Sphingomyelinase antagonized the morphologic changes associated with conversion to the macrophage phenotype. Untreated HL-60 cells presented typical promyelocytic morphology with large nuclei, little cytoplasm, and uniformity of nuclear and cell shape. TPA induced a larger cell population with abundant cytoplasm and unusual shape. Sphingomyelinase prevented these changes. Sphingomyelinase blocked TPA-induced increases in the macrophage marker enzymes, acid phosphatase and alpha-naphthyl acetate esterase. These studies indicate that the action of a sphingomyelinase, like the sphingoid bases, blocks phorbol ester-induced differentiation of HL-60 cells into macrophages and provides further support for the concept that sphingomyelinase action may be sufficient to comprise a physiologically relevant inhibitory pathway for protein kinase C.  相似文献   

4.
The activation requirements of murine peritoneal B cells differ from those of conventional (splenic) B cells; in particular, peritoneal B cells are stimulated to enter S phase by phorbol ester, acting alone. This pathway was studied to assess the susceptibility of peritoneal B cells to regulation by T cell products. Three T cell supernatants enhanced phorbol myristate acetate (PMA)-induced peritoneal B cell stimulation. This enhancement was reproduced by recombinant interleukin 4 (IL-4), and IL-4-mediated enhancement was reversed by 11B11 anti-IL-4 antibody. Enhancement of S phase entry was dose dependent for IL-4 and required stimulatory concentrations of PMA. In addition, IL-4 in combination with PMA produced a marked increase in IgM secretion by peritoneal B cells cultured in vitro. Neither an enhancement of S phase entry nor an increase in IgM secretion was observed with splenic B cells similarly treated with IL-4 and PMA. These results suggest that IL-4 modulates the proliferative and differentiative responses of the unusual B cells that reside in the peritoneal cavities of normal mice.  相似文献   

5.
6.
7.
The abilities of three calcium ionophores (A23187, 4-bromo-A23187, and ionomycin) to modulate the respiratory burst of neutrophils induced by phorbol ester and to increase the concentration of free intracellular Ca2+ ([Ca2+]i) were compared. The production of reactive oxygen species (ROS) was determined by luminol-dependent chemiluminescence and [Ca2+]i was determined with the Fura-2 fluorescent probe. A23187 (0.05-2 microM) and ionomycin (0.001-0.5 microM) but not 4-bromo-A23187 amplified 3-4-fold the respiratory burst induced by phorbol ester. The integral response (total production of ROS over 6 min) had a bell-shaped dependence on the concentration of ionomycin and A23187 with increase and decrease at low and high concentrations of the ionophores, respectively. The maximal effect was found at 0.5 microM ionomycin and 2 microM A23187, these concentrations resulting in transient increases in [Ca2+]i to 1776 +/- 197 and 955 +/- 27 nM, respectively. The ionophores had no effect in calcium-free media, though they increased [Ca2+]i to approximately 400 nM through the mobilization of intracellular Ca2+. In cells with exhausted stores of Ca2+, the addition of 1.5 mM Ca2+ combined with phorbol ester amplified twofold the production of ROS. The inhibition of phospholipase A2 with 4-bromophenacyl bromide significantly decreased the production of ROS. Thus, the entrance of Ca2+ and generation of arachidonic acid under the influence of phospholipase A2 are necessary for the ionophore-induced priming of production of ROS during cell activation with phorbol esters.  相似文献   

8.
Lymphocytes were found to be rich in phospholipid/Ca2+-dependent (C-kinase) activity. Addition of polymyxin B (PMB) to in vitro assays of endogenous and exogenous phosphorylation resulted in profound inhibition of C-kinase activity. The phorbol ester 12-o-tetradecanoyl phorbol-13-acetate (TPA) directly activated C-kinase, leading to increased phosphorylation of the same substrates. TPA also stimulated proliferation of B cells as assessed by 3H-thymidine uptake, and PMB strongly inhibited this effect. This coordinate inhibition of TPA-induced phosphorylation and mitogenesis indicates that PMB is a potentially useful inhibitor of C-kinase activity, and that this enzyme may play an important role in mediating B cell responses.  相似文献   

9.
The EL4 murine lymphoma cell line exists in variant phenotypes that differ with respect to responses to the tumor promoter phorbol 12-myristate 13-acetate (PMA1). Previous work showed that “PMA-sensitive” cells, characterized by a high magnitude of PMA-induced Erk activation, express RasGRP, a phorbol ester receptor that directly activates Ras. In “PMA-resistant” and “intermediate” EL4 cell lines, PMA induces Erk activation to lesser extents, but with a greater response in intermediate cells. In the current study, these cell lines were used to examine mechanisms of Raf-1 modulation. Phospho-specific antibodies were utilized to define patterns and kinetics of Raf-1 phosphorylation on several sites. Further studies showed that Akt is constitutively activated to a greater extent in PMA-resistant than in PMA-sensitive cells, and also to a greater extent in resistant than intermediate cells. Akt negatively regulates Raf-1 activation (Ser259), partially explaining the difference between resistant and intermediate cells. Erk activation exerts negative feedback on Raf-1 (Ser289/296/301), thus resulting in earlier termination of the signal in cells with a higher level of Erk activation. RKIP, a Raf inhibitory protein, is expressed at higher levels in resistant cells than in sensitive or intermediate cells. Knockdown of RKIP increases Erk activation and also negative feedback. In conclusion, this study delineates Raf-1 phosphorylation events occurring in response to PMA in cell lines with different extents of Erk activation. Variations in the levels of expression and activation of multiple signaling proteins work in an integrated fashion to modulate the extent and duration of Erk activation.  相似文献   

10.
Previous studies have shown that platelet-derived growth factor (PDGF) and PDGF receptors are expressed in the mammalian central nervous system and that primary cultured neuroblasts from rat hindbrain have functional PDGF beta-receptors. Here, it is shown that cultured human neuroblastoma cells express PDGF alpha- and beta-receptors, but not PDGF-A and PDGF-B chain mRNA. In contrast to alpha-receptor expression, beta-receptor expression appears to be associated with a mature neuronal phenotype. Under serum-free growth conditions, PDGF-AA and -BB induce a trophic and weak mitogenic response in SH-SY5Y neuroblastoma cells, showing that the PDGF receptors in these cells are functional. In combination with 12-O-tetradecanoylphorbol-13-acetate, all three PDGF isoforms induce sympathetic neuronal differentiation of the SH-SY5Y cells, as shown by morphology and by increased expression of the genes coding for growth-associated protein 43 and neuropeptide tyrosine, respectively. This indicates a potential role for PDGF in the development of sympathetic neurons in particular and of the nervous system in general.  相似文献   

11.
When human erythroleukemia cells (K562) were exposed to phorbol-12-myristate 13-acetate (PMA), phosphorylation of transferrin receptors was enhanced 5-fold with 10(-7) M PMA and 7-fold with 10(-6) M PMA, but not with 4 alpha-phorbol (5 X 10(-7) M). Stimulation took place in serine residues in the cytoplasmic domain of the receptor. Although phosphorylation in the control cells took place in both cell-surface and intracellular receptors, phosphorylation in PMA-treated cells increased only in the cell-surface receptors, not in the intracellular receptors. The number of receptors on the cell surface increased slightly with the increase in phosphorylation at the cell surface, in the PMA-treated cells. No difference in transferrin binding was found for the control and PMA-treated cells. These results indicate that enhanced phosphorylation of the transferrin receptor takes place on the cell surface only and that it presumably is mediated by protein kinase C.  相似文献   

12.
T lymphocytes and monocytes were exposed to microgravity and activated to produce interleukin 2 and interleukin 1, respectively. When Jurkat T cells were triggered with monoclonal antibodies directed against the CD3/T cell receptor complex in the presence of THP-1 monocytes used as accessory cells, cell-to-cell contacts took place in microgravity leading to normal production of interleukin 2 and interleukin 1, as compared to ground controls. In contrast, when cells were individually stimulated by soluble substances including a protein kinase C activating phorbol ester, the production of interleukin 1 and interleukin 2 was dramatically inhibited during microgravity exposure. This result indicates that microgravity may affect the cellular target of phorbol ester.  相似文献   

13.
Antigen receptor signaling is known to activate NF-kappaB in lymphocytes. While T-cell-receptor-induced NF-kappaB activation critically depends on novel protein kinase C theta (PKCtheta), the role of novel PKCs in B-cell stimulation has not been elucidated. In primary murine splenic B cells, we found high expression of the novel PKCs delta and epsilon but only weak expression of the theta isoform. Rottlerin blocks phorbol ester (phorbol myristate acetate [PMA])- or B-cell receptor (BCR)-mediated NF-kappaB and c-Jun N-terminal kinase (JNK) activation in primary B and T cells to a similar extent, suggesting that novel PKCs are positive regulators of signaling in hematopoietic cells. Mouse 70Z/3 pre-B cells have been widely used as a model for NF-kappaB activation in B cells. Similar to the situation in splenic B cells, rottlerin inhibits BCR and PMA stimulation of NF-kappaB in 70Z/3 cells. A derivative of 70Z/3 cells, 1.3E2 cells, are defective in NF-kappaB activation due to the lack of the IkappaB kinase (IKKgamma) protein. Ectopic expression of IKKgamma can rescue NF-kappaB activation in response to lipopolysaccharides (LPS) and interleukin-1beta (IL-1beta), but not to PMA. In addition, PMA-induced activation of the mitogen-activated protein kinase JNK is blocked in 1.3E2 cells, suggesting that an upstream component common to both pathways is either missing or mutated. Analysis of various PKC isoforms revealed that exclusively PKCtheta was absent in 1.3E2 cells while it was expressed in 70Z/3 cells. Stable expression of either novel PKCtheta or -delta but not classical PKCbetaII in 1.3E2 IKKgamma-expressing cells rescues PMA activation of NF-kappaB and JNK signaling, demonstrating a critical role of novel PKCs for B-cell activation.  相似文献   

14.
Effects of phorbol 12-myristate 13-acetate (PMA) on the fate of protein kinase C in two mouse thymoma cell lines, which are either responsive (EL4) or unresponsive (IEL4) to PMA-induced interleukin-2 (IL-2) production, were investigated with polyclonal antibodies raised against rat brain enzyme. These antibodies immunoprecipitated completely the protein kinase C from both cell lines and detected mainly an 82-kDa protein by immunoblot analysis of the crude homogenates as well as the partially purified kinase preparations. PMA elicited a time- and dose-dependent redistribution of protein kinase C from cytosol to the particulate fraction and proteolytic degradation of the kinase from both cell lines. The dose of PMA required for half-maximum protein kinase C translocation and degradation was at least five times lower for EL4 than for IEL4. In the presence of 16 nM PMA the rates of protein kinase C translocation and degradation were faster in EL4 than in IEL4, and the half-lives of protein kinase C in EL4 and IEL4 were less than 5 min and greater than 2 h, respectively. Analysis of the tryptic fragments of the immunoprecipitated enzyme, previously phosphorylated in the presence of [gamma-32P]ATP, revealed minor structural differences between the protein kinase C from these two cell lines. In neither cell line did the PMA-induced degradation of protein kinase C result in an accumulation of the Ca2+/phospholipid-independent kinase (catalytic unit) as analyzed by immunoblotting and gel filtration chromatography. Thus, activation of protein kinase C through the proteolytic conversion to the effector-independent catalytic unit plays little role in IL-2 production. The role of protein kinase C translocation and degradation in the PMA-induced responses in EL4 cells is unknown. However, IL-2 production in EL4 cells was reduced when PMA-induced degradation of protein kinase C was retarded by exogenously added protease inhibitors.  相似文献   

15.
The ability of tumor promoting 12-O-tetradecanoylphorbol-13-acetate (TPA) to redistribute protein kinase C in human promyelocytic leukemic HL60 cells was investigated. It was found that TPA caused a rapid translocation (within 10 min) of protein kinase C from the cytosolic (soluble) fraction to the particulate (membrane) fraction, as determined indirectly by assaying for the enzyme activity or by immunoblotting of the enzyme protein in the isolated subcellular fractions. Immunocytochemical localization of the enzyme demonstrated directly that the TPA caused an enzyme translocation t the plasma membrane. These findings suggest that translocation to the plasma membrane of the enzyme may represent initial events related to the TPA effect on terminal differentiation of HL60 cells to monocytes/macrophages.  相似文献   

16.
17.
Both phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate (10(-8)-10(-6) M) induced concentration-dependent increases in prostaglandin E2 (PGE2) production by human amnion cells, with maximum stimulations of 10.8-fold and 5.9-fold, respectively. 4 alpha-Phorbol 12,13-didecanoate, an inactive phorbol ester analogue, had little or no effect on PGE2 production by amnion cells. PMA and phorbol 12,13-dibutyrate (10(-7) M) induced a maximal increase in the rate of PGE2 biosynthesis within 15 min of treatment. These results suggest that there is an active protein kinase C present in amnion cells that is linked to arachidonic acid release and/or metabolism.  相似文献   

18.
In fibroblasts, the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) stimulates phospholipase D (PLD)-mediated hydrolysis of both phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) by PKC-alpha-mediated nonphosphorylating and phosphorylating mechanisms. Here we have used NIH 3T3 fibroblasts overexpressing holo PKC-epsilon and its regulatory, catalytic, and zinc finger domain fragments to determine if this isozyme also regulates PLD activity. Overexpression of holo PKC-epsilon inhibited the stimulatory effects of PMA (5-100 nM) on both PtdCho and PtdEtn hydrolysis. Overexpression of PKC-epsilon also was found to inhibit platelet-derived growth factor-induced PLD activity. Expression of the catalytic unit of PKC-epsilon had no effect on PMA-induced PLD activity. In contrast, expression of both the regulatory domain fragment and the zinc finger domain of PKC-epsilon resulted in significant inhibition of PMA-stimulated PtdCho and PtdEtn hydrolysis. Interestingly, although PKC-alpha also mediates the stimulatory effect of PMA on the synthesis of PtdCho by a phosphorylation mechanism, overexpression of holo PKC-epsilon or its regulatory domain fragments did not affect PMA-induced PtdCho synthesis. These results indicate that the PKC-epsilon system can act as a negative regulator of PLD activity and that this inhibition is mediated by its regulatory domain.  相似文献   

19.
20.
Acute exposure to agents that activate protein kinase C is known to cause insulin release both from the fetal and adult pancreas. These experiments were designed to test the effect of chronic exposure of the human fetal pancreas to such agents. Nine to twelve days after commencement of culture of this tissue, exposed to 0.165-1.3 microM 12-O-tetradecanoylphorbol-13-acetate, insulin secretion was reduced and remained less than that for controls thereafter. Exchange of the test for the control medium resulted in partial recovery of insulin release. Insulin content of the treated explants was also significantly reduced. The insulinogenic response to an acute challenge of either 20 mM glucose or 10 mM theophylline/2.8 mM glucose at the end of the culture was no different from that for controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号