首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secondary forest habitats are increasingly recognized for their potential to conserve biodiversity in the tropics. However, the development of faunal assemblages in secondary forest systems varies according to habitat quality and species‐specific traits. In this study, we predicted that the recovery of bird assemblages is dependent on secondary forest age and level of isolation, the forest stratum examined, and the species’ traits of feeding guild and body mass. This study was undertaken in secondary forests in central Panama; spanning a chronosequence of 60‐, 90‐, and 120‐year‐old forests, and in neighboring old‐growth forest. To give equal attention to all forest strata, we employed a novel method that paired simultaneous surveys in canopy and understory. This survey method provides a more nuanced picture than ground‐based studies, which are biased toward understory assemblages. Bird reassembly varied according to both habitat age and isolation, although it was challenging to separate these effects, as the older sites were also more isolated than the younger sites. In combination, habitat age and isolation impacted understory birds more than canopy‐dwelling birds. Proportions of dietary guilds did not vary with habitat age, but were significantly different between strata. Body mass distributions were similar across forest ages for small‐bodied birds, but older forest supported more large‐bodied birds, probably due to control of poaching at these sites. Canopy assemblages were characterized by higher species richness, and greater variation in both dietary breadth and body mass, relative to understory assemblages. The results highlight that secondary forests may offer critical refugia for many bird species, particularly specialist canopy‐dwellers. However, understory bird species may be less able to adapt to novel and isolated habitats and should be the focus of conservation efforts encouraging bird colonization of secondary forests.  相似文献   

2.
Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.  相似文献   

3.
Edge effects threaten organisms and ecological processes in habitat remnants, but they have been poorly studied in non-humid forests such as cerradão, a tropical dry forest sometimes derived from fire-suppressed savanna in Brazil. The diverse ecosystem functions performed by arthropods may be disrupted by edge effects, and there is pressing need for more studies on this subject. We sampled fragments of cerradão facing either a road or fire breaks, assessing edge effects in: beta diversity and community composition of epigaeic (litter-dwelling) arthropod orders, ant species, and ant functional groups; ant species richness and diversity; leaf litter depth; and colony residence time of a predatory ground-dwelling ant, Odontomachus chelifer (Ponerinae). None of the variables measured differed between edge and interior of the sites sampled. Dry forests have high micro-climatic variations caused by discontinuities in the canopy cover and, as such, changes in abiotic variables in cerradão edges might not be as clear as those observed in tropical rainforests. Our study demonstrates that edge effects may not be so prevalent in cerradão facing roads or fire breaks, which possibly increases the chances of survival of a higher fraction of the original arthropod fauna compared to rainforest fragments.  相似文献   

4.
This study examines the effects of deforestation, and the habitat value of coffee and regenerated forest for tropical dung beetles, a functionally significant insect group. Pitfall trapping was conducted at 22 sites in a montane region of central Peru during April and November/December of 2002. Sites included primary and secondary forest, shade-coffee, regenerated forest and open farms (mainly with banana, yuca, and corn). Ordination techniques indicated that beetle assemblages in forests, regenerated forest and coffee were relatively similar. However, assemblage compositions in forested areas differed even at similar altitudes under the influence of biogeographical factors, and the assemblages at disturbed sites (farms/coffee) were influenced by beetle dispersal from adjacent forests. During dry months, when beetle activity is low, communities at all habitat types tended to converge because fewer unique species were recorded in forests at that time and habitat/season generalists were dominant. Preliminary results also indicate that beetles in shady crops such as bananas responded to plant growth: as the banana canopy closed-in, producing more shade, open-habitat specialists retreated and forest/shade specialists invaded the sites. Chronosequence data at two of the sites demonstrate the rapid and dramatic changes in species richness and assemblage composition caused by deforestation. As forests become increasingly fragmented, and open farms continue to expand, dung beetles will become more restricted to the remaining fragments and reserves. In the mosaic landscape studied here, shade crops, like coffee, act as habitat and corridors for many dung beetle species. Small farm size and the consequent magnitude of edge effects, likely contributed to beetle movement between habitat types and determined the apparent generalist nature of many of the dung beetle species in this study.  相似文献   

5.
Question: Disturbance effects on dry forest epiphytes are poorly known. How are epiphytic assemblages affected by different degrees of human disturbance, and what are the driving forces? Location: An inter‐Andean dry forest landscape at 2300 m elevation in northern Ecuador. Methods: We sampled epiphytic bryophytes and vascular plants on 100 trees of Acacia macracantha in five habitats: closed‐canopy mixed and pure acacia forest (old secondary), forest edge, young semi‐closed secondary woodland, and isolated trees in grassland. Results: Total species richness in forest edge habitats and on isolated trees was significantly lower than in closed forest types. Species density of vascular epiphytes (species per tree) did not differ significantly between habitat types. Species density of bryophytes, in contrast, was significantly lower in edge habitat and on isolated trees than in closed forest. Forest edge showed greater impoverishment than semi‐closed woodland and similar floristic affinity to isolated trees and to closed forest types. Assemblages were significantly nested; habitat types with major disturbance held only subsets of the closed forest assemblages, indicating a gradual reduction in niche availability. Distance to forest had no effect on species density of epiphytes on isolated trees, but species density was closely correlated with crown closure, a measure of canopy integrity. Main conclusions: Microclimatic changes but not dispersal constraints were key determinants of epiphyte assemblages following disturbance. Epiphytic cryptogams are sensitive indicators of microclimate and human disturbance in montane dry forests. The substantial impoverishment of edge habitat underlines the need for fragmentation studies on epiphytes elsewhere in the Tropics.  相似文献   

6.
We studied the structure of spider assemblages in fragments of old coniferous forest in the southern Finnish taiga We sampled spiders with pitfall traps in the interiors and in the edges of the old-forest patches and in the surrounding managed forests We surveyed assemblages of ground-dwelling spiders and the relation of species to formerly mentioned three forest-habitat categories We analysed spider assemblages in relation to vegetation structure as well As in forest spiders there are no habitat specialists, no strict old-forest species were found However, the spider assemblages of old forests were different from those in the surrounding managed forests The difference was attributable to habitat differences, mainly to reduced tree-canopy cover in managed forests Large hunting-spider species (Gnaphosidae, Lycosidae) benefitted from clearcutting and other management measures, whereas the catches of small forest-living species (Linyphiidae) decreased in plantations and open forests The hunters colonized the edges of old-forest fragments, and were seldom found in the interior of old forest Size of old-forest fragment did not affect significantly the spider assemblage The results indicate that a buffer zone of mature forest with closed canopy should be left to surround the old-growth reserves in order to minimize the edge effect in the fragments  相似文献   

7.
Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems–mangroves, island maritime forests, and mainland coastal terrestrial forests–where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests.  相似文献   

8.
Over the past 20 years the combined effects of El Niño-induced droughts and land-use change have dramatically increased the frequency of fire in humid tropical forests. Despite the potential for rapid ecosystem alteration and the current prevalence of wildfire disturbance, the consequences of such fires for tropical forest biodiversity remain poorly understood. We provide a pan-tropical review of the current state of knowledge of these fires, and include data from a study in a seasonally dry terra firme forest of central Brazilian Amazonia. Overall, this study supports predictions that rates of tree mortality and changes in forest structure are strongly linked to burn severity. The potential consequences for biomass loss and carbon emissions are explored. Despite the paucity of data on faunal responses to tropical forest fires, some trends are becoming apparent; for example, large canopy frugivores and understorey insectivorous birds appear to be highly sensitive to changes in forest structure and composition during the first 3 years after fires. Finally, we appraise the management implications of fires and evaluate the viability of techniques and legislation that can be used to reduce forest flammability, prevent anthropogenic ignition sources from coming into contact with flammable forests and aid the post-fire recovery process.  相似文献   

9.
The study determined linear edge effects on liana and tree community assemblages in moist semi-deciduous (Afram Headwaters Forest Reserve) and upland evergreen (Tano Offin Forest Reserve) forests in Ghana. Fifteen plots (20 × 20 m2) were randomly set up at each habitat in the forests: edge habitat (0–40 m) and interior habitat (≥500 m). Lianas (diameter at 1.30 m from rooting base ≥1 cm) and trees (diameter at breast height, dbh ≥5 cm) were identified and enumerated in the plots. In the forest ecosystems, liana and tree species composition differed significantly between the two habitats. Liana and tree diversity did not differ significantly between edge and interior habitats. Nevertheless, edge habitat in moist semi-deciduous forest supported significantly higher liana abundance and basal area than its interior habitat, whereas edge habitat in upland evergreen forest harboured significantly lower liana basal area than its corresponding interior habitat. Edge habitat in moist semi-deciduous and upland evergreen forests had significantly lower tree abundance and basal area, respectively, than interior habitat. The results suggest that overall, linear edge effects on liana and tree assemblages were more pronounced in moist semi-deciduous forest than upland evergreen forest. Lianas exhibited dominance over trees in edge habitat within moist semi-deciduous forest, implying that they can have serious implications on tree diversity and ecosystem functioning in the forest. As our study is the first of its kind in the tropics with respect to edge type and forest ecosystems studied, our findings can contribute towards edge theory development.  相似文献   

10.
Forest management has highly modified the structure of the European forests. Harvesting and post-harvest regeneration leads to a simplified forest structure. Our main objective was to detect the effects of habitat structure and forest age on the ground-dwelling spider diversity and assemblage composition of poplar forests at the Hungarian Great Plain. Our results demonstrate that the rarefaction diversity and the number of forest specialists closely correlated with the structural parameters of the forest floor, however, the age and canopy closure did not influence these parameters. According to redundancy analysis, the composition of spider assemblages was determined solely by habitat structure, with habitat structure having a major effect on the species composition and diversity of spider assemblages. A direct effect of forest age on the spider assemblages was not detected, due to the presence of different habitat types in the surrounding landscape, which may serve as suitable habitats for source-populations of spiders with different habitat requirements. Our results highlight the importance structural complexity of forests for maintaining forest spider diversity and preserving the regional species pool of spiders.  相似文献   

11.
1. Our understanding of the structure and spatial organisation of biological assemblages in human‐modified tropical landscapes has critical importance to improve conservation actions. Investigations on this topic have focused on local (α) diversity patterns, overlooking the changes in species turnover (β diversity) between sites, and its consequences on total (γ) diversity. 2. This study assessed the differences in α, β and γ diversities of galling insects and their host plants (saplings) in a fragmented Atlantic forest landscape in northeast Brazil. Both assemblages were recorded in 30 plots (total of 0.1 ha for each forest type) located in the interior and on the edges of a large fragment and small forest fragments (10 plots per forest type). 3. α diversity of host plants and galling insect assemblages was significantly higher in interior (reference) plots than in edge and fragment plots. Yet, both assemblages showed higher β diversity in fragment and edge plots than in reference plots – a finding potentially associated with the hyperdynamism of fragmented forests and consistent with the landscape divergence hypothesis. 4. However, biotic differentiation of host plant and galling insects was not great enough to compensate the loss of α diversity, and thus γ diversity, because most host plant and galling insect species in forest fragments were also registered in reference plots. Our findings indicate that, despite each small forest fragment being very dissimilar from each other, they have low importance for the conservation of plant assemblages and their specialized herbivores at landscape scale.  相似文献   

12.
13.
S. P. Yanoviak  M. Kaspari 《Oikos》2000,89(2):259-266
The tropical forest canopy and litter differ in physical structure, resource availability, and abiotic conditions. We used standardized bait experiments in the canopy and litter of four neotropical tree species to explore how these differences shape the behavior, morphology, and diversity of ant assemblages. Ant activity (biomass at a bait after 32 min) was higher in the canopy, and higher on protein baits than carbohydrate baits. Aggressive bait defense occurred more frequently in the canopy (60%) than in the litter (32%), but was not associated with tree species or bait type in either habitat. The median size of workers of species in the canopy and litter was nearly identical, but body size distribution was unimodal in the canopy and bimodal in the litter. The colony size of the most aggressive species was an order of magnitude larger in the canopy. Species richness at a bait was relatively uniform across tree species and habitats. Litter and canopy shared no species, but overlap among tree species was three times higher in the litter assemblages. Litter assemblages showed less activity, less interference, less differentiation across the landscape, and different size distributions than canopy assemblages. The canopy and litter templets subsume a number of environmental gradients that combine to shape ant community structure.  相似文献   

14.
Orchid Island, 92  km off the southeast coast of Taiwan, has the northernmost tropical forests in East Asia. We assessed effects of habitat management by Orchid Island inhabitants, the Yami people, on spider diversity by comparing assemblages collected from the ground to canopy among four habitats (natural forest, cultivated woodland, second growth forest and grasslands) that receive different degrees of disturbance. Species and guild composition did not differ among replicates of habitat but differed significantly among habitats. Variation in spider diversity was inversely correlated with vegetation density. Cultivated woodland subjected to an intermediate level of disturbances had a lower understory vegetation density than natural forest, but higher spider diversity. Neither insect abundance nor biomass varied significantly among habitats suggesting little room for effects of prey availability on spider diversity. It appears that the Yami people maintain high spider diversity on Orchid Island by generating novel habitat types with different vegetation structures and disturbance regimes.  相似文献   

15.
Xishuangbanna, situated in the northern margin of the tropical zone in Southeast Asia, maintains large areas of tropical rain forest and contains rich biodiversity. However, tropical rain forests are being rapidly destroyed in this region. This paper analyzed spatial and temporal changes of forest cover and the patterns of forests fragmentation in Xishuangbanna by comparing classified satellite images from 1976, 1988 and 2003 using GIS analyses. The patterns of fragmentation and the effects of edge width were examined using selected landscape indices. The results show that forest cover declined from 69% in 1976 to less than 50% in 2003, the number of forests fragments increased from 6,096 to 8,324, and the mean patch size declined from 217 to 115 ha. It was found that fragment size distribution was strongly skewed towards small values, and fragment size and internal habitat differ strongly among forest types: less fragmented in subtropical evergreen broadleaf forest, but severe in forests that are suitable for agriculture (such as tropical seasonal rain forest and mountain rain forest). Due to fragmentation, the edge width was smaller in 2003 than that in 1976 when the total area of edge habitat exceeded core habitat in different forest types. The core area of tropical seasonal rain forest was smallest among main forest types at any edge width. Fragmentation was severe within 12.5-km buffers around roads. The current forest cover within reserves in Xishuangbanna was comparatively large and less fragmented. However, the tropical rain forest has been degraded inside reserves. For conservation purposes, the approaches to establish forest fragments networks by corridors and stepping stone fragments are proposed. The conservation efforts should be directed first toward the conservation of remaining tropical rain forests.  相似文献   

16.
Riparian forests bordering open terrestrial environments may have three microhabitats differing in structure and conditions: a grassland/pasture-forest edge (GE), a forest interior (FI) and a river–forest edge. The influence of such edge effects and vegetation characteristics on spider diversity of riparian forests was evaluated in Southern Brazil. Four different rivers were sampled on the tree–shrub strata with a beating tray, twice per season for 2 years. There were six transects per river, two per microhabitat. We compared spider abundance, species richness and composition. Vegetation variables sampled were vertical structure and (horizontal) density, canopy height and cover. Overall 42,057 spiders were sampled, 28 spider families and 440 species. The FI had higher spider abundance than the edges. Average species richness differed among rivers. Microhabitats did not differ in average richness, although overall richness (from sample-based rarefaction) was higher for GE than FI. High abundances in FI may result from lowered stress due to abiotic conditions, while higher GE richness may result from a faunal superposition between forest species and those from the grassland/pasture. Only canopy cover returns a positive relationship with spider diversity (richness and adult abundance). This might result from more spider species preferring to build webs or hunt under low-light environments. Rivers had spider faunas differing in composition but among microhabitats species composition was the same. Vegetation structure has been hypothesized to affect spiders, but this impact might be best seen in specific subgroups or guilds within spiders, not in the whole assemblage.  相似文献   

17.
In many tropical lowland rain forests, topographic variation increases environmental heterogeneity, thus contributing to the extraordinary biodiversity of tropical lowland forests. While a growing number of studies have addressed effects of topographic differences on tropical insect communities at regional scales (e.g., along extensive elevational gradients), surprisingly little is known about topographic effects at smaller spatial scales. The present study investigates moth assemblages in a topographically heterogeneous lowland rain forest landscape, at distances of less than a few hundred meters, in the Golfo Dulce region (SW Costa Rica). Three moth lineages—Erebidae–Arctiinae (tiger and lichen moths), the bombycoid complex, and Geometridae (inchworm moths)—were examined by means of automatic light traps in three different forest types: creek forest, slope forest, and ridge forest. Altogether, 6,543 individuals of 419 species were observed. Moth assemblages differed significantly between the three forest types regarding species richness, total abundance, and species composition. Moth richness and abundance increased more than fourfold and eightfold from creek over slope to ridge forest sites. All three taxonomic units showed identical biodiversity patterns, notwithstanding their strong differences in multiple eco-morphological traits. An indicator species analysis revealed that most species identified as characteristic were associated either with the ridge forest alone or with ridge plus slope forests, but very few with the creek forest. Despite their mobility, local moth assemblages are highly differentially filtered from the same regional species pool. Hence, variation in environmental factors significantly affects assemblages of tropical moth species at small spatial scales.  相似文献   

18.
We investigated the effects of the abiotic environment, plant community composition and disturbance by fire on ant assemblages in two distinct habitat types in the Siskiyou Mountains in northern California and southern Oregon, USA. Sampling over 2 years in burned and unburned Darlingtonia fens and their adjacent upland forests, we found that the effects of disturbance by fire depended on habitat type. In forests, fire intensity predicted richness in ant assemblages in both years after the fire, and plant community composition predicted richness 2 years after the fire. No factors were associated with richness in the species‐poor fen ant assemblages. Species‐specific responses to both habitat type and disturbance by fire were idiosyncratic. Assemblage composition depended on habitat type, but not disturbance by fire, and the composition of each assemblage between years was more dissimilar in burned than unburned sites.  相似文献   

19.
Central European calcareous grasslands are considered biodiversity hotspots, but are severely threatened by the change in land-use and by habitat fragmentation. Coniferous forests are typical adjacent habitats to calcareous grasslands, as abandoned calcareous grasslands are often afforested or develop into coniferous forests by succession. To investigate spillover between calcareous grasslands and coniferous forests, a total of 144 pitfall traps for carabid beetles were placed at three different distances (1, 5, 20 m) from the edge in both habitats at eight locations from April to late August. We found that both habitats had a distinct species assemblage and a decrease in spillover with increasing distance from the habitat edge into the adjacent habitat. Calcareous grasslands were more affected by spillover from the adjacent coniferous forests than vice versa because more forest specialists penetrated into calcareous grasslands than grassland specialists penetrated into coniferous forests. We conclude that spillover into small and isolated habitats can severely change species assemblages, which has to be considered in conservation measures. The protection of large sites with small edge-interior ratios can reduce negative effects on species assemblages in endangered calcareous grasslands.  相似文献   

20.
Termites are major decomposers in tropical regions and play critical roles in many soil‐related processes. Studies conducted in Asia and the Neotropics suggest that habitat modification can strongly affect termite assemblages, but data on termite communities from forests in Africa, especially West Africa, are scarce. Here, we measured the short‐term impact of slash‐and‐burn agriculture on termite assemblages in an agricultural region of central Côte d'Ivoire. We assessed termite diversity and relative abundance in four habitat types: secondary forest, cleared forest, burned forest, and crop fields. The secondary forest had higher species richness compared with the other habitats, but all habitat types had similar assemblage structures. Fungus‐growing termites were the most abundant feeding group in all habitats. Soil feeders were most abundant in secondary forest, intermediately abundant in cleared and burned forests, and almost entirely absent in crop fields. Wood‐feeding species showed clear responses to burning; their abundances decreased after fire. We conclude that slash‐and‐burn agriculture does not appear to severely erode the diversity of termite assemblages. This could be due to the dominance of ecologically versatile fungus growers or to the relatively long time between clearing and burning. However, forest clearing negatively affects soil feeders, with the Apicotermitinae most affected by canopy loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号