首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replicating T5 phage DNA was gently isolated using NaI density gradient centrifugation and examined by electron microscopy. At the beginning of phage DNA synthesis, linear unit-length T5 DNA molecules containing from one to four replicating "eye-loops" were consistently observed. Replication in these molecules was found to proceed bidirectionally from multiple, internal origins. A primary origin of replication is located near the center of the T5 genome, which does not coincide with the location of any of the nicks (single-strand breaks) found in mature T5 DNA. The initiation of replication at the various origins within an individual molecule does not appear to follow any definite temporal sequence. At later times in the infection, we have observed a significant number of circular T5 DNA molecules-both replicating and nonreplicating-whose average circumference is approximately the length of mature T5 DNA minus the terminal redundancy. The replicating circular molecules appear to be either in a theta configuration, a sigma configuration with the tails all being less than the length of the circle, or a combination of theta and sigma forms.  相似文献   

2.
Accumulation of replicative intermediates of the bacteriophage phi X174 was observed in E. coli C infected cells when phage DNA methylation has been inhibited by nicotinamide or when cells were infected with a temperature-sensitive mutant in gene A. Analysis of the accumulating replicative intermediates by electron microscopy revealed that these molecules are composed of double-stranded DNA rings with multiple-genome length single-stranded "tails". These results suggest that the single 5-methylcytosine residue present in the phage DNA serves as a recognition site for the gene A protein mediating the excision of one-genome long phage DNA. This excision process is oligatory for the final maturation of the phage.  相似文献   

3.
Double-Length, Circular, Single-Stranded DNA from Filamentous Phage   总被引:1,自引:1,他引:0  
Wild-type and gene 3 mutant filamentous phage stocks, containing different relative amounts of multiple-length particles, were treated exhaustively with DNase and then were highly purified. The phage DNA was extracted and examined by electron microscopy. In all cases, about 0.03% of the molecules were circular dimers. (3)H-labeled phage DNA was separated as to size by sedimentation in a preformed CsCl density gradient. Individual fractions were then examined in the electron microscope, and the percentage of linear and circular monomer and dimer DNAs was determined. A peak of double-length, circular molecules (with the expected sedimentation constant of 38S) was found ahead of the 24S monomer peak. The double-length molecules had been purified 65-fold. As previously found for single-stranded DNA, the contour length of these molecules was strongly dependent upon ionic strength. Possible artifacts were ruled out, and it was shown that the double-length molecules arose from phage particles.  相似文献   

4.
Bacteriophage phiX174 DNA replication was examined in temperature-sensitive dnaB mutants of Escherichia coli C to determine which stages require the participation of the product of this host gene. The conversion of the infecting phage single-stranded DNA to the double-stranded replicative form (parental RF synthesis) is completely inhibited at the nonpermissive temperature (41 C) in two of the three dnaB mutants tested. The efficiency of phage eclipse and of phage DNA penetration of these mutant host cells at 41 C is the same as that of the parent host strain. The defect is most likely in the synthesis of the complementary strand DNA. The semiconservative replication of the double-stranded replicative form DNA (RF replication) is inhibited in all three host mutants after shifting from 30 to 41 C. Late in infection, the rate of progeny single-stranded phage DNA synthesis increases following shifts from 30 to 41 C. Approximately the same amounts of phage DNA and of infectious phage particles are made following the shift to 41 C as in the control left at 30 C. The simplest interpretation of our data is that the product of the host dnaB gene is required for phiX174 parental RF synthesis and RF replication, but is not directly involved in phage single-stranded DNA synthesis once it has begun. The possible significance of the synthesis of parental RF DNA at 41 C in one of the three mutants is discussed.  相似文献   

5.
Lack of repair of ultraviolet light damage in Mycoplasma gallisepticum   总被引:10,自引:0,他引:10  
Molecules with single-stranded tails (rolling circles) were isolated as replicating intermediates in G4 progeny single-stranded DNA synthesis. Lysates from infected cells harvested late in infection during single-stranded DNA synthesis were not deproteinised but analysed directly in caesium chloride and propidium diiodide gradients. The gradient fractionated them on the basis of tail length. If the lysates were first deproteinised however, the tailed replicative intermediates banded as a peak at a density just greater than that of replicative form II DNA (RFII) and did not spread down the gradient. The origin of synthesis of the viral strand tail was mapped by electron microscopy as 55 to 60% away from the single EcoRI cleavage site. Termination molecules finishing a round of viral strand DNA synthesis have been identified as molecules consisting of a closed single-stranded DNA circle attached by a very small region to the parent double-stranded DNA circle.  相似文献   

6.
Rolling circle replication has previously been reconstituted in vitro using M13 duplex circles containing preformed forks and the 10 purified T4 bacteriophage replication proteins. Leading and lagging strand synthesis in these reactions is coupled and the size of the Okazaki fragments produced is typical of those generated in T4 infections. In this study the structure of the DNAs and DNA-protein complexes engaged in these in vitro reactions has been examined by electron microscopy. Following deproteinization, circular duplex templates with linear tails as great as 100 kb are observed. The tails are fully duplex except for one to three single-stranded DNA segments close to the fork. This pattern reflects Okazaki fragments stopped at different stages in their synthesis. Examination of the DNA-protein complexes in these reactions reveals M13 duplex circles in which 64% contain a single large protein mass (replication complex) and a linear duplex tail. In 56% of the replicating molecules with a tail there is at least one fully duplex loop at the replication complex resulting from the portion of the lagging strand engaged in Okazaki fragment synthesis folding back to the replisome. The single-stranded DNA segments at the fork bound by gene 32 and 59 proteins are not extended but rather appear organized into highly compact structures ("bobbins"). These bobbins constitute a major portion of the mass of the full replication complex.  相似文献   

7.
Control of single-strand DNA synthesis in coliphage f1 was studied with the use of mutants which are temperature sensitive in gene 2, a gene essential for phage DNA replication. Cells were infected at a restrictive temperature with such a mutant, and the DNA synthesized after a shift to permissive temperature was examined. When cells were held at 42 °C for ten or more minutes after infection, only single-stranded DNA was synthesized immediately after the shift to permissive temperature. This indicated that the accumulation of a pool of double-stranded, replicative form DNA molecules is not an absolute requirement for the synthesis of single-stranded DNA, although replicative form DNA accumulation precedes single-strand synthesis in cells infected with wild-type phage. Cells infected at restrictive temperature with the mutant phage do not replicate the infecting DNA, but do accumulate a substantial amount of gene 5 protein, a DNA-binding protein essential for single-strand synthesis. It is proposed that this accumulated gene 5 protein, by binding to the limited number of replicating DNA molecules formed following the shift to the permissive temperature, acts to prevent the synthesis of double-stranded replicative form DNA, thus causing the predominant appearance of single strands. This explanation implies an intermediate common to both single and double-stranded DNA synthesis. The kinetics of gene 5 protein synthesis indicates that it is the ratio of the gene 5 protein to replicating DNA molecules which determines whether an intermediate will synthesize double or single-stranded DNA.  相似文献   

8.
Nature of φX174 Linear DNA from a DNA Ligase-Defective Host   总被引:1,自引:0,他引:1       下载免费PDF全文
Linear DNAs have been prepared from phiX phage and from phiX RF II (double-stranded circular form of phiX DNA, formed during infection and nicked in one or both strands) molecules derived from infection at the restrictive temperature of Escherichia coli ts7, a host mutant with a temperature-sensitive DNA ligase activity. The linear DNA from these phages can be circularized by annealing with fragments of phiX RF DNA produced by the Haemophilus influenzae restriction nuclease. The circularization experiment indicated that the site of breakage of the linear phage DNAs is not unique nor confined to a particular region of the genome. These linear DNAs were less than 0.1% as infective as circular phage DNA. The linear, positive strand of late RF II DNA, however, is uniquely nicked in the region of the phiX genome corresponding to cistron A. Although a low level of infectivity is associated with the linear DNA derived from late RF II, this infectivity appears to be a result of the association of linear positive and linear negative strands during the infectivity assay.  相似文献   

9.
DNA isolated from the hepatitis B antigen form known as the Dane particle was examined by electron microscopy before and after the endogenous Dane particle DNA polymerase reaction. The most frequently occurring form was an untwisted circular double-stranded DNA molecule approximately 1 mum in length. Less frequently occurring forms included circular DNA of approximately unit length and having one or more small single-stranded regions, similar circular molecules with one or more tails either shorter or longer than 1 mum in length, and very small circular molecules with tails. There was no increase in frequency or length of tails after a DNA polymerase reaction, suggesting that tails were not formed during this reaction. The mean length of circular molecules increased by 23% when DNA was spread in formamide compared with aqueous spreading, suggesting that single-stranded regions are present in most of the molecules. The mean length of circular molecules obtained from aqueous spreading increased by 27% after a Dane particle DNA polymerase reaction. This indicates that single-stranded regions were converted to double-stranded DNA during the reaction.  相似文献   

10.
The rolling circle DNA replication structures generated by the in vitro phage T4 replication system were analyzed using two-dimensional agarose gels. Replication structures were generated in the presence or absence of T4 primase (gp61), permitting the analysis of replication forks with either duplex or single-stranded tails. A characteristic arc shape was visualized when forks with single-stranded tails were cleaved by a restriction enzyme with the help of an oligonucleotide that anneals to restriction sites in the single-stranded tail. After calibrating the gel system with this well-studied rolling circle replication reaction, we then analyzed the in vivo replication directed by a T4 replication origin cloned within a plasmid. DNA samples were generated from infections with either wild-type or primase-deletion mutant phage. The only replicative arc that could be detected in the wild-type sample corresponded to duplex Y forms, consistent with very efficient lagging strand synthesis. Surprisingly, we obtained evidence for both duplex and single-stranded DNA tails in the samples from the primase-deficient infection. We conclude that a relatively inefficient mechanism primes lagging strand DNA synthesis in vivo when gp61 is absent.  相似文献   

11.
Rolling circle replication from M13 DNA circles was previously reconstituted in vitro using purified factors encoded by bacteriophage T4. The products are duplex circles with linear tails >100 kb. When T4 DNA polymerase deficient in 3' to 5' exonuclease activity was employed, electron microscopy revealed short single-stranded DNA "flaps" along the replicated tails. This marked the beginning of each Okazaki fragment, allowing an analysis of the lengths of sequential Okazaki fragments on individual replicating molecules. DNAs containing runs of Okazaki fragments of similar length were found, but most showed large length variations over runs of six or more fragments reflecting the broad population distribution.  相似文献   

12.
Neither bacteriophage ?X174 single-stranded DNA synthesis nor phage growth was affected by rifampicin (200 μg/ml) once it started, whereas a low concentration of chloramphenicol (30 μg/ml) inhibited the phage growth when added in a late phase of infection. When rifampicin was added at a stage where double-stranded duplex (RF) DNA replication proceeded preferentially in the presence of chloramphenicol, or even after chloramphenicol was removed before the addition of rifampicin, both single-stranded DNA synthesis and phage growth were inhibited. These results suggest that RNA synthesis sensitive to rifampicin was necessary to initiate single-stranded DNA synthesis, but no longer needed once ?X174 DNA synthesis started.  相似文献   

13.
The geometry of replicative form (RF) DNA synthesis of the H-1 parvovirus was studied with the electron microscope using formamide or aqueous variations of the Kleinschmidt spreading procedure. H-1 DNA was isolated from human or hamster cells infected with a temperature-sensitive mutant, ts1, which is deficient in progeny single-stranded DNA synthesis at the restrictive temperature (S.L. Rhode, 1976), thus minimizing possible confusion between RF and progeny DNA replicative intermediates (RIs). The purity of the isolated H-1 DNA, as determined by gel electrophoresis, ethidium bromide staining, autoadiography, and digestion with endo R-EcoRI, was high. H-1 RF DNA'S WERE LINEAR DOUBLE-STRANDED MOLECULES, 1.53 MUM IN LENGTH. H-1 RIs of RF DNA replication were double-stranded, Y-shaped molecules, with the same length as RF DNAs. The replication origin was localized no more than 0.15 genome lengths from one end of the RF DNA, with replication proceeding toward the other end at a uniform rate. Similar RF and RI molecules of dimer size were also observed. The length of H-1 single-stranded DNA extracted from purified virions was measured relative to that of phiX174 and it had a very similar contour length, so that the molecular weight of H-1 single-stranded DNA would be at least 1.48 X 10(6) to 1.59 X 10(6) (Berkowitz and Day, 1974).  相似文献   

14.
Chromosomal DNAs from exponential-phase and competent cells of Haemophilus influenzae were examined by electron microscopy to determine whether the chromosome undergoes structural changes during competence development. Single-stranded gaps and single-stranded tails formed in chromosomal DNA during competence development. The generation of gaps was dependent on the rec-2 function. Since the rec-2 mutant is defective in the translocation of donor DNA, it was inferred that the gaps were involved in the translocation step of transformation. The generation of single-stranded tails was independent of the rec-1 and rec-2 genes. Therefore, these structures were assumed to play no direct role in the interaction of donor and recipient DNAs during transformation. Gaps were preferentially associated with a readily denaturable, possibly A + T-rich fraction of the genome. This finding raised the possibility that hot spots for transformation might be associated with A + T-rich DNA.  相似文献   

15.
Bacteriophage S13 shows exclusion of superinfecting homologous phage, but the exclusion is only partial. The superinfecting phage can form infectious replicative form deoxyribonucleic acid (RF), can direct protein synthesis, and can form progeny particles even at a superinfection time as late as 60 min after the first infection. Exclusion is also only partial for the closely related phage phiX174. Seven min after the first infection, the exclusion mechanism begins to operate, requiring continuous phage-specified protein synthesis. The gene A protein (required for synthesis of progeny RF) appears to be involved in the exclusion mechanism. In superinfection experiments, it was found that at least 40 phage particles per cell can replicate and can carry out protein synthesis, though the number of sites for binding of RF to the membrane is only about 15 per cell. The results suggest that attachment of RF to a binding site is not required for protein synthesis. Evidence is presented that non-attached parental RF can serve as a template for single-stranded deoxyribonucleic acid synthesis.  相似文献   

16.
Construction and characterization of new coliphage M13 cloning vectors   总被引:21,自引:0,他引:21  
J C Hines  D S Ray 《Gene》1980,11(3-4):207-218
New single-stranded DNA cloning vectors have been constructed by the insertion of additional DNA fragments into a HaeII restriction site in the bacteriophage M13 duplex replicative form (RF). These inserts into the M13 genome bring a single restriction sites useful for cloning, including PstI, XorII, EcoRI, SstI, XhoI, KpnI, and PvuII. Drug-resistance genes cloned into M13 include the beta-lactamase (bla) gene and the chloramphenicol acetyl transferase (cat) gene. These vectors provide a convenient means of easily obtaining the separated strands of a cloned duplex DNA fragment by cloning the fragment in each of the two possible orientations. Standard cloning techniques commonly applied to double-stranded DNAs can be utilized to insert foreign DNAs into the duplex RF DNAs of these vectors. Cells transformed by chimeric DNAs extrude filamentous phage particles carrying a circular single-stranded copy of the chimeric viral strand. Because M13-infected cells continue to grow and divide, cells can be transformed to yield either plaques or drug-resistant colonies. Specific inserts are readily detected by plaque hybridization techniques using an appropriate probe. Chimeric viral single strands from virus particles in the supernatant of small volumes of infected cultures can be rapidly and sensitively analyzed by agarose gel electrophoresis to determine the size of an insert.  相似文献   

17.
Agents that interfere with DNA replication in Escherichia coli induce physiological adaptations that increase the probability of survival after DNA damage and the frequency of mutants among the survivors (the SOS response). Such agents also increase the survival rate and mutation frequency of irradiated bacteriophage after infection of treated bacteria, a phenomenon known as Weigle reactivation. In UV-irradiated single-stranded DNA phage, Weigle reactivation is thought to occur via induced, error-prone replication through template lesions (translesion synthesis [P. Caillet-Fauquet, M: Defais, and M. Radman, J. Mol. Biol. 117:95-112, 1977]). Weigle reactivation occurs with higher efficiency in double-stranded DNA phages such as lambda, and we therefore asked if another process, recombination between partially replicated daughter molecules, plays a major role in this case. To distinguish between translesion synthesis and recombinational repair, we studied the early replication of UV-irradiated bacteriophage lambda in SOS-induced and uninduced bacteria. To avoid complications arising from excision of UV lesions, we used bacterial uvrA mutants, in which such excision does not occur. Our evidence suggests that translesion synthesis is the primary component of Weigle reactivation of lambda phage in the absence of excision repair. The greater efficiency in Weigle reactivation of double-stranded DNA phage could thus be attributed to some inducible excision repair unable to occur on single-stranded DNA. In addition, after irradiation, lambda phage replication seems to switch prematurely from the theta mode to the rolling circle mode.  相似文献   

18.
In the course of studying extrachromosomal DNA with composite replicons, a hybrid has been constructed by the in vitro recombination of the filamentous phage M13mp2 DNA (RF) and plasmid pUR222 (ApR). Both parental DNAs contain a fragment of lac-operon (ca. 800 bp), which includes the distal end of lacI gene, lacPO segments, and the lacZ gene proximal region coding for 145 N-terminal amino acid residues of beta-galactosidase and thus providing for alpha-complementation, the effect being cancelled with a polynucleotide insertion at the unique EcoRI site in the lacZ gene segment. E. coli BMH71-18 cells were transformed with the ligated mixture of EcoRI restricts of both DNAs. A phage-like nucleoprotein was isolated from colourless plaques (on the Xgal- and IPTG-supplemented medium); its deproteinization yielded a DNA which contains the ApR-determinant and, according to PAGE, structurally specific staining, restriction analysis, sequencing by the Sanger procedure, and electron microscopy data, is a linear double-stranded molecule comprising the phage and plasmid genomes in an equimolar ratio. Since the hybrid DNA does not display the alpha-complementation effect, both bacterial inserts are in the opposite orientation. Transformation of both phage (F+) and plasmid (F-) hosts with the hybrid DNA led to cultures which, after precipitation of the nucleoprotein from the extracellular medium and deproteinization, afforded the same composite DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Late in the life cycle of the single-stranded DNA phage phi X, the synthesis of positive strand DNA is coupled to the maturation of progeny virions. DNA synthesis and packaging take place in a replication-assembly complex, which we have purified to homogeneity and characterized. The following conclusions can be drawn: 1. The DNA component of the replication-assembly complex is a rolling circle with a single-stranded DNA tail which is less than or equal to genome length. 2. The major protein component of the replication-assembly complex is an intact viral capsid, as shown by gel analysis of 35S-labeled complexes. As replication proceeds at the DNA growing point, the positive strand tail of the rolling circle is displaced directly into the capsid. In addition to the capsid, the complex contains at least 1 molecule of the phi X gene A nicking protein, which appears to be covalently linked to the DNA. 3. The rolling circle . capsid complex can be purified to homogeneity by taking advantage of its uniform sedimentation velocity (35 S) and its uniform density upon equilibrium centrifugation in CsCl (1.50 g/cc). 4. The replication-assembly complex can be visualized in the electron microscope. An electron-dense particle, which has the dimensions of a viral capsid, is observed attached to a rolling circle at the DNA growing point. 5. Hybridization of specific phi X restriction fragments to the deproteinized, single-stranded tails of intact rolling circles has allowed the use of these replicating intermediates to determine both the origin/terminus and the direction of phi X positive strand DNA synthesis. The ends of the rolling circle tails map in the Hae III restriction Fragment Z6b, at the position on the phi X genome at which the gene A endonuclease is known to cut. This result indicates that this endonuclease participates in the "termination" of each round of synthesis by cutting off unit-length viral genomes. 6. Rolling circle . capsid complexes were also isolated from two other icosahedral, single-stranded DNA phages: G4 and St-1. The rolling circle . capsid complex seen in the case of the single-stranded DNA phages represents the first example of a structure in which DNA synthesis and viral assembly occur in a coupled manner. This tight coordination explains why double-stranded DNA circles are the net product of synthesis early in the viral life cycle while only single-stranded DNA circles are produced later. The single-stranded tails of the rolling circle intermediates are available for conversion to the duplex state at early times, whereas the concentration of preformed capsids later is high enough to bind to all of the replicating molecules and package the emerging positive strand DNA.  相似文献   

20.
A DNA form with restricted binding of intercalating dyes (propidium iodide or ethidium bromide) has been found in bacteriophage φX-infected cells during the period of single-stranded DNA synthesis. In the electron microscope, this DNA form is seen to be a double-stranded DNA ring with two single-stranded DNA tails protruding from the same portion of the ring; it is composed of a linear φX DNA strand, longer than one φX genome, and a single-stranded ring complementary to φX DNA. Base-pairing of these two tails in partially complementary regions restricts unwinding of the double-stranded DNA ring and consequently intercalation and binding of the dyes. It is postulated that these molecules originate from a previously reported precursor of φX DNA, namely a double-stranded ring with a single-stranded tail, by branch migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号