首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The medial nucleus of the trapezoid body (MNTB) acts as a relay nucleus in the transmission of auditory information from the cochlear nucleus (CN) to the lateral superior olive. Glutamate receptors mediate the excitatory synaptic transmission in the CN-MNTB projection. Here, we used immunohistochemistry to investigate the expression pattern of the kainate receptor subunits KA2 and GluR6/7 and the orphan glutamate receptor subunits delta 1/2 in principal neurons of the rat MNTB during early postnatal development (P2-59). To objectively quantify the intensity of immunoreactivity, images were scanned with a CCD camera and used for gray-value measurements. At all ages analyzed, each of the three antisera produced immunoreactivity in the somata of MNTB principal cells and in the neuropil. KA2 immunoreactivity of somata and neuropil remained nearly constant between P2 and 23. In contrast, the intensity of GluR6/7 immunoreactivity of somata and neuropil increased between P2 and 6, followed by a decrease until P10. Between P10 and 23, GluR6/7 immunoreactivity of neuropil remained nearly constant, whereas it increased in the somata. In both somata and neuropil, the intensity of delta 1/2 immunoreactivity decreased between P2 and 10, reaching a constant, low level by P10. Our results demonstrate the continuous presence of the glutamate receptor subunits KA2, GluR6/7 and delta 1/2 in the developing MNTB, yet quantitative changes occur which may be associated with functional differences.  相似文献   

2.
Both nerve growth factor (NGF) and pituitary adenylate cyclase activating polypeptide (PACAP) have neurotrophic effects on basal forebrain cholinergic neurons. They promote differentiation, maturation, and survival of these cholinergic neurons in vivo and in vitro. Here we report on the cooperative effects of NGF and PACAP on postnatal, but not embryonic, cholinergic neurons cultured from rat basal forebrain. Combined treatment with NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and PACAP induced an additive increase in choline acetyltransferase (ChAT) activity. There were no cooperative effects on the number of cholinergic neurons, suggesting that ChAT mRNA expression had been induced in each cholinergic neuron. Further analysis revealed that NGF and PACAP led to complementary induction of different ChAT mRNA species, thus enhancing total ChAT mRNA expression. These results explain the cooperative neurotrophic action of NGF and PACAP on postnatal cholinergic neurons.  相似文献   

3.
Neural recognition molecule NB-2/contactin 5 is expressed transiently during the first postnatal week in glutamatergic neurons of the central auditory system. Here, we investigated the effect of NB-2 deficiency on the auditory brainstem in mouse. While almost all principal neurons are wrapped with the calyces of Held in the medial nucleus of the trapezoid body (MNTB) in wild type, 8% of principal neurons in NB-2 knockout (KO) mice lack the calyces of Held at postnatal day (P) 6. At P10 and P15, apoptotic principal neurons were detected in NB-2 KO mice, but not in wild type. Apoptotic cells were also increased in the ventral cochlear nucleus (VCN) of NB-2 KO mice, which contains bushy neurons projecting to the MNTB and the lateral superior olive (LSO). At the age of 1 month, the number of principal neurons in the MNTB and of glutamatergic synapses in the LSO was reduced in NB-2 KO mice. Finally, interpeak latencies for auditory brainstem response waves II-III and III-IV were significantly increased in NB-2 KO mice. Together, these findings suggest that NB-2 deficiency causes a deficit in synapse formation and then induces apoptosis in MNTB and VCN neurons, affecting auditory brainstem function.  相似文献   

4.
The calyx of Held synapse is a giant axosomatic synapse that has a fast relay function within the sound localization circuit of the brainstem. In the adult, each principal neuron of the medial nucleus of the trapezoid body (MNTB) is contacted by a single calyx terminal. In rodents, the calyx of Held synapse forms around the third postnatal day (P3). Here, we studied the developmental changes in the intrinsic excitability of the principal neurons during the first postnatal week by making whole-cell recordings from brainstem slices. In slices from P0-1 rats, about 20% of the principal neurons were spontaneously active, whereas after P3, no spontaneously active cells were observed. Already at P0, principal neurons received both glutamatergic and GABAergic/glycinergic inputs. The occurrence of spontaneous action potentials depended upon the presence of spontaneous glutamatergic inputs; summation of only a few quanta was enough to reach action potential threshold. The main cause for this high excitability was a high resting membrane resistance, which decreased at least four-fold during the first postnatal week. A relatively slow decay of synaptic currents and a relatively depolarized membrane potential may have contributed as well. We conclude that the decrease in the excitability of principal neurons in the MNTB matches the increase of the strength of the synaptic inputs resulting from the formation and maturation of the calyx of Held synapse during the first postnatal week. This decrease in excitability will make it progressively more difficult for non-calyceal inputs to trigger action potentials.  相似文献   

5.
6.
Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression.  相似文献   

7.
8.
9.
We have examined the expression of Thy-1, an abundant glycosylphosphatidylinositol (GPI)-anchored glycoprotein, in dorsal root ganglia (DRG) and associated nerve fascicles, during postnatal development and following a nerve crush. The expression levels of Thy-1 in DRG neurons, dorsal roots, and central processes in spinal cord were rather low at postnatal day 2, and gradually increased as DRG neurons matured. During early development, the expression of Thy-1 within DRG neurons was low and equally distributed between plasma membrane and cytosol. With maturation, the staining intensities of Thy-1 in both the plasma membrane and the cytosol of DRG neurons became increased. We also studied Thy-1 expression in the regeneration of mature DRG neurons following the crush injury of sciatic nerve. Two days after the crush injury, Thy-1 expression dramatically decreased in the DRG neurons on the lesion side. Between 4 and 7 days after the injury, the expression of Thy-1 gradually increased and returned to a normal level 1 week after the sciatic nerve crush. The time course of the up-regulation of Thy-1 expression during regeneration matched that of the recovery of sensory functions, such as pain withdraw reflex, placing reflex, and the score of Basso-Beattie-Bresnahan Locomotor Rating Scale. Taken together, our results suggest that Thy-1 expression is developmentally regulated and is closely associated with the functional maturation of DRG neurons during both postnatal development and nerve regeneration. Furthermore, perturbation of Thy-1 function with anti-Thy-1 antibodies promoted neurite outgrowth from primary cultured DRG neurons, again confirming the inhibitory role of Thy-1 on neurite outgrowth.  相似文献   

10.
Cerebellar granule neurons migrate from the external granule cell layer (EGL) to the internal granule cell layer (IGL) during postnatal morphogenesis. This migration process through 4 different layers is a complex mechanism which is highly regulated by many secreted proteins. Although chemokines are well-known peptides that trigger cell migration, but with the exception of CXCL12, which is responsible for prenatal EGL formation, their functions have not been thoroughly studied in granule cell migration. In the present study, we examined cerebellar CXCL14 expression in neonatal and adult mice. CXCL14 mRNA was expressed at high levels in adult mouse cerebellum, but the protein was not detected. Nevertheless, Western blotting analysis revealed transient expression of CXCL14 in the cerebellum in early postnatal days (P1, P8), prior to the completion of granule cell migration. Looking at the distribution of CXCL14 by immunohistochemistry revealed a strong immune reactivity at the level of the Purkinje cell layer and molecular layer which was absent in the adult cerebellum. In functional assays, CXCL14 stimulated transwell migration of cultured granule cells and enhanced the spreading rate of neurons from EGL microexplants. Taken together, these results revealed the transient expression of CXCL14 by Purkinje cells in the developing cerebellum and demonstrate the ability of the chemokine to stimulate granule cell migration, suggesting that it must be involved in the postnatal maturation of the cerebellum.  相似文献   

11.
12.
13.
Using proteomics, we investigated the temporal expression profiles of proteins in rat sciatic nerve after experimental crush. Extracts of sciatic nerves collected at 5, 10, and 35 days after injury were analyzed by two-dimensional gel electrophoresis and quantitative image analysis. Of the approximately 1,500 protein spots resolved on each gel, 121 showed significant regulation during at least one time point. Using cluster analysis, these proteins were grouped into two expression profiles of down-regulation and four of up-regulation. These profiles mainly reflected differences in cellular origins in addition to different functional roles. Mass spectrometric analysis identified 82 proteins pertaining to several functional classes, i.e. acute-phase proteins, antioxidant proteins, and proteins involved in protein synthesis/maturation/degradation, cytoskeletal (re)organization, and in lipid metabolism. Several proteins not previously implicated in nerve regeneration were identified, e.g. translationally controlled tumor protein, annexin A9/31, vitamin D-binding protein, alpha-crystallin B, alpha-synuclein, dimethylargininases, and reticulocalbin. Real-time PCR analysis of selected genes showed which were expressed in the nerve versus the dorsal root ganglion neurons. In conclusion, this study highlights the complexity and temporal aspect of the molecular process underlying nerve regeneration and points to the importance of glial and inflammatory determinants.  相似文献   

14.
15.
16.
Growth‐associated protein 43 (GAP‐43), a novel axonal phosphoprotein, is originally identified as a growth‐cone‐specific protein of developing neurons in vitro. The expression of GAP‐43 is also shown to be up‐regulated concomitant with increased synaptic plasticity in the brains in vivo, but how GAP‐43 is concerned with synaptic plasticity is not well understood. In the present study, therefore, we aimed to elucidate subcellular localization of GAP‐43 as culture development of rat hippocampal neurons. Western blotting showed that the expression of GAP‐43 in the cerebral and hippocampal tissues was prominently high at postnatal days 14 and 21 or the active period of synaptogenesis. Double‐labelling immunohistochemistry with an axonal marker Tau revealed that the immunoreactivity of GAP‐43 was seen throughout axons of cultured hippocampal neurons but stronger at axonal puncta of developing neurons than axonal processes. Double‐labelling immunohistochemistry with presynaptic terminal markers of synapsin and synaptotagmin revealed that the immunoreactivity of GAP‐43 was observed mostly at weak synapsin‐ and synaptotagmin‐positive puncta rather than strong ones. The quantitative analysis of immunofluorescent intensity showed a clear inverse correlation between GAP‐43 and either synapsin or synaptotagmin expression. These data indicate that GAP‐43 is highly expressed at immature growing axonal terminals and its expression is decreased along with the maturation of synaptogenesis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The OX-2 and GAP-43 glycoproteins are two proteins involved in neuronal cell-to-cell interaction and/or growing of dendrites and axons. Therefore, for the auditory receptor the expression of these proteins could provide information on the afferent and efferent nerve fiber organization. The expression and distribution of OX-2 and GAP-43 were analyzed during the auditory receptor development and maturation (from embryonic day E13 to postnatal day P22). Both glycoproteins were early recognized in the cochleae of E13 rats. Then, they slowly but progressively disappeared, being absent when the animals reached the P22 postnatal day. At E13, a weak OX-2 expression was restricted to the perikaryon of the spiral ganglion neurons, while in the same period a strong GAP-43 immunostaining was found in both the neuronal perikaryon and the neurites. During the rat embryonic period (E13 to birth) the expression of both glycoproteins appeared progressively restricted to the neurites. During the rat postnatal period (P0 to P22), OX-2 and GAP-43 exhibited a dissimilar distribution pattern. The OX-2 glycoprotein appeared in the afferent, efferent and fibers of the auditory nerve, while the GAP-43 glycoprotein only appeared in the efferent nerve fibers. Present data suggest that OX-2 and GAP-43 could act as two complementary glycoproteins during the development, organization, and maturation of the cochlear nerve fibers. While both glycoproteins could participate in axonal growing and orientation, OX-2 could also be involved in a similar process for auditory dendrites.  相似文献   

18.
An expressional lack of fibroblast growth factor 9 (FGF9) would cause male-to-female sex reversal in the mouse, implying the essential role of FGF9 in testicular organogenesis and maturation. However, the temporal expression of FGF9 and its receptors during testicular development remains elusive. In this study, immunohistochemistry was used to identify the localization of FGF9 and its receptors at different embryonic and postnatal stages in mice testes. Results showed that FGF9 continuously expressed in the testis during development. FGF9 had highest expression in the interstitial region at 17–18 d post coitum (dpc) and in the spermatocytes, spermatids and Leydig cell on postnatal days (pnd) 35–65. Regarding receptor expression, FGFR1 and FGFR4 were evenly expressed in the whole testis during the embryonic and postnatal stages. However, FGFR2 and FGFR3 were widely expressed during the embryonic testis development with higher FGFR2 expression in seminiferous tubules at 16–18 dpc and higher FGFR3 expression in interstitial region at 17–18 dpc. In postnatal stage, FGFR2 extensively expressed with higher expression at spermatids and Leydig cells on 35–65 pnd and FGFR3 widely expressed in the whole testis. Taken together, these results strongly suggest that FGF9 is correlated with the temporal expression profiles of FGFR2 and FGFR3 and possibly associated with testis development.  相似文献   

19.
With the aid of microarray and PCR analysis, this investigation sought expression profiles of BDNF-regulated genes in cultured mouse cerebellar granule cells and addressed their relevance to gene regulation in developing granule cells in vivo. Many of the BDNF-upregulated and downregulated genes identified were upregulated and downregulated, respectively, during cerebellar development. This developmental change was, at least partly, prevented in the TrkB receptor-deficient cerebellum. The BDNF-upregulated genes were distributed in either postmigratory or both premigratory and postmigratory granule cells at postnatal day 8 (P8) and were still present in mature granule cells at P21. In contrast, the BDNF-downregulated genes were predominantly expressed in premigratory granule cells at P8 and disappeared at P21. Furthermore, many of the BDNF-upregulated gene products are implicated in signaling cascades of N-methyl-D-aspartate receptors and MAP kinase. The results indicate that BDNF signaling plays a pivotal role in promoting gene expression in granule cell development and maturation.  相似文献   

20.
Calcitonin receptor-immunoreactivity (CTR-ir) was found in enteric neurons of the mouse gastrointestinal tract from embryonic day 13.5 (E13.5) to post-natal day 28 (P28). CTR-ir occurred in cell bodies in ganglia of the myenteric plexus extending from the esophagus to the colon and in nerve cells of the submucosal ganglia of the small and large intestines. CTR-ir was also found in vagal nerve trunks and mesenteric nerves. Counts in the ileal myenteric plexus revealed CTR-ir in 80% of neurons. CTR-ir was clearly evident in the cell bodies of enteric neurons by E15.5. The immunoreactivity reached maximum intensity between P1.5 and P12 but was weaker at P18 and barely detectable at P28. The receptor was detected in nerve processes in the intestine for only a brief period around E17.5, when it was present in one to two axonal processes per villus in the small intestine. In late gestation and soon after birth, CTR-ir was also evident in the mucosal epithelium. The perinatal expression of CTR within the ENS suggests that the calcitonin/CTR system may have a role in the maturation of enteric neurons. Signals may reach enteric neurons in milk, which contains high levels of calcitonin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号