首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the mechanisms that regulate neurogenesis is a prerequisite for brain repair approaches based on neuronal precursor cells. One important regulator of postnatal neurogenesis is polysialic acid (polySia), a post-translational modification of the neural cell adhesion molecule NCAM. In the present study, we investigated the role of polySia in differentiation of neuronal precursors isolated from the subventricular zone of early postnatal mice. Removal of polySia promoted neurite induction and selectively enhanced maturation into a calretinin-positive phenotype. Expression of calbindin and Pax6, indicative for other lineages of olfactory bulb interneurons, were not affected. A decrease in the number of TUNEL-positive cells indicated that cell survival was slightly improved by removing polySia. Time lapse imaging revealed the absence of chain migration and low cell motility, in the presence and absence of polySia. The changes in survival and differentiation, therefore, could be dissected from the well-known function of polySia as a promoter of precursor migration. The differentiation response was mimicked by exposure of cells to soluble or substrate-bound NCAM and prevented by the C3d-peptide, a synthetic ligand blocking NCAM interactions. Moreover, a higher degree of differentiation was observed in cultures from polysialyltransferase-depleted mice and after NCAM exposure of precursors from NCAM-knockout mice demonstrating that the NCAM function is mediated via heterophilic binding partners. In conclusion, these data reveal that polySia controls instructive NCAM signals, which direct the differentiation of subventricular zone-derived precursors towards the calretinin-positive phenotype of olfactory bulb interneurons.  相似文献   

2.
A main neurogenic niche in the adult human brain is the subventricular zone (SVZ). Recent data suggest that the progenitors that are born in the human SVZ migrate via the rostral migratory stream (RMS) towards the olfactory bulb (OB), similar to what has been observed in other mammals. A subpopulation of astrocytes in the SVZ specifically expresses an assembly‐compromised isoform of the intermediate filament protein glial fibrillary acidic protein (GFAP‐δ). To further define the phenotype of these GFAP‐δ expressing cells and to determine whether these cells are present throughout the human subventricular neurogenic system, we analysed SVZ, RMS and OB sections of 14 aged brain donors (ages 74‐93). GFAP‐δ was expressed in the SVZ along the ventricle, in the RMS and in the OB. The GFAP‐δ cells in the SVZ co‐expressed the neural stem cell (NSC) marker nestin and the cell proliferation markers proliferating cell nuclear antigen (PCNA) and Mcm2. Furthermore, BrdU retention was found in GFAP‐δ positive cells in the SVZ. In the RMS, GFAP‐δ was expressed in the glial net surrounding the neuroblasts. In the OB, GFAP‐δ positive cells co‐expressed PCNA. We also showed that GFAP‐δ cells are present in neurosphere cultures that were derived from SVZ precursors, isolated postmortem from four brain donors (ages 63‐91). Taken together, our findings show that GFAP‐δ is expressed in an astrocytic subpopulation in the SVZ, the RMS and the OB. Importantly, we provide the first evidence that GFAP‐δ is specifically expressed in longterm quiescent cells in the human SVZ, which are reminiscent of NSCs.  相似文献   

3.
Postnatally, the Purkinje cell degeneration mutant mice lose the main projecting neurons of the main olfactory bulb (OB): mitral cells (MC). In adult animals, progenitor cells from the rostral migratory stream (RMS) differentiate into bulbar interneurons that modulate MC activity. In the present work, we studied changes in proliferation, tangential migration, radial migration patterns, and the survival of these newly generated neurons in this neurodegeneration animal model. The animals were injected with bromodeoxyuridine 2 weeks or 2 months before killing in order to label neuroblast incorporation into the OB and to analyze the survival of these cells after differentiation, respectively. Both the organization and cellular composition of the RMS and the differentiation of the newly generated neurons in the OB were studied using specific markers of glial cells, neuroblasts, and mature neurons. No changes were observed in the cell proliferation rate nor in their tangential migration through the RMS, indicating that migrating neuroblasts are only weakly responsive to the alteration in their target region, the OB. However, the absence of MC does elicit differences in the final destination of the newly generated interneurons. Moreover, the loss of MC also produces changes in the survival of the newly generated interneurons, in accordance with the dramatic decrease in the number of synaptic targets available.  相似文献   

4.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the “trisynaptic circuit” in the adult rodent hippocampus, which display different types of long‐term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin‐R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin‐R were localized by pre‐embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre‐ or postsynaptically. Also, the extracellular matrix molecule tenascin‐R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon‐astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane‐bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 142–158, 2001  相似文献   

5.
G proteins play important roles in transmembrane signal transduction, and various isoforms of each subunit, alpha, beta and gamma, are highly expressed in the brain. The Ggamma5 subunit is a minor isoform in the adult brain, but we have previously shown it to be highly expressed in the proliferative region of the ventricular zone in the rat embryonic brain. We show here that Ggamma5 is also selectively localized in a proliferative region in the adult rat brain, including the subventricular zone of the lateral ventricle and rostral migratory stream. The Galphai2 subunit colocalized with Ggamma5 in these regions, the two subunits being present in neuronal precursors and ependymal cells but not in proliferating astrocytes. In addition, intense staining of Ggamma5 was seen in axons of the olfactory neurons, which are known to regenerate. These results suggest specific roles for Ggamma5 in precursor cells during neurogenesis so that this isoform might be a useful biological marker.  相似文献   

6.
7.
Recent advances in stem cell research, including the selective expansion of neural stem cells (NSCs) in vitro, the induction of particular neural cells from embryonic stem cells in vitro, the identification of NSCs or NSC-like cells in the adult brain and the detection of neurogenesis in the adult brain (adult neurogenesis), have laid the groundwork for the development of novel therapies aimed at inducing regeneration in the damaged central nervous system (CNS). There are two major strategies for inducing regeneration in the damaged CNS: (i) activation of the endogenous regenerative capacity and (ii) cell transplantation therapy. In this review, we summarize the recent findings from our group and others on NSCs, with respect to their role in insult-induced neurogenesis (activation of adult NSCs, proliferation of transit-amplifying cells, migration of neuroblasts and survival and maturation of the newborn neurons), and implications for therapeutic interventions, together with tactics for using cell transplantation therapy to treat the damaged CNS.  相似文献   

8.
In order to determine how glycosylation changes associated with cellular differentiation may be influenced by the basal cellular sialylation potential, the effect of retinoic acid (RA)-induced differentiation was investigated in neuroblastoma cells expressing differing levels (and activities) of the 2,6(N) sialyltransferase (ST6N) enzyme. The increase in ST activity was proportional to the basal cellular sialylation potentials with the high activity clones showing the greatest increase. This was paralleled by an up-regulation of the level of overall sialoglycoprotein glycosylation level. An increase in the levels of the polysialic acid (PSA) epitope was associated with a parallel increase in the levels of the neural cell adhesion molecule (NCAM) protein backbone although there was no overall change in the PSA:NCAM ratio following RA treatment.  相似文献   

9.
聚唾液酸与唾液酸的研究进展   总被引:3,自引:0,他引:3  
唾液酸是一族神经氨酸(Neuraminic acid)的衍生物。聚唾液酸(Polysialic acid)是唾液酸(Sialic acid)单体以α-2,8或α-2,9键连接的直链同聚物,是一些哺乳动物细胞中糖蛋白的组成部分和少数几种细菌的胞外多糖组分。综述了唾液酸和聚唾液酸的结构、性质、生物学功能、生物合成和生产应用。  相似文献   

10.
11.
Abstract

As an anti-adhesive, a reservoir for key biological molecules, and a modulator of signaling, polysialic acid (polySia) is critical for nervous system development and maintenance, promotes cancer metastasis, tissue regeneration and repair, and is implicated in psychiatric diseases. In this review, we focus on the biosynthesis and functions of mammalian polySia, and the use of polySia in therapeutic applications. PolySia modifies a small subset of mammalian glycoproteins, with the neural cell adhesion molecule, NCAM, serving as its major carrier. Studies show that mammalian polysialyltransferases employ a unique recognition mechanism to limit the addition of polySia to a select group of proteins. PolySia has long been considered an anti-adhesive molecule, and its impact on cell adhesion and signaling attributed directly to this property. However, recent studies have shown that polySia specifically binds neurotrophins, growth factors, and neurotransmitters and that this binding depends on chain length. This work highlights the importance of considering polySia quality and quantity, and not simply its presence or absence, as its various roles are explored. The capsular polySia of neuroinvasive bacteria allows these organisms to evade the host immune response. While this “stealth” characteristic has made meningitis vaccine development difficult, it has also made polySia a worthy replacement for polyetheylene glycol in the generation of therapeutic proteins with low immunogenicity and improved circulating half-lives. Bacterial polysialyltransferases are more promiscuous than the protein-specific mammalian enzymes, and new studies suggest that these enzymes have tremendous therapeutic potential, especially for strategies aimed at neural regeneration and tissue repair.  相似文献   

12.
We defined the cellular mechanisms for genesis, migration, and differentiation of the initial population of olfactory bulb (OB) interneurons. This cohort of early generated cells, many of which become postmitotic on embryonic day (E) 14.5, differentiates into a wide range of mature OB interneurons by postnatal day (P) 21, and a substantial number remains in the OB at P60. Their precursors autonomously acquire a distinct identity defined by their position in the lateral ganglionic eminence (LGE). The progeny migrate selectively to the OB rudiment in a pathway that presages the rostral migratory stream. After arriving in the OB rudiment, these early generated cells acquire cellular and molecular hallmarks of OB interneurons. Other precursors--including those from the medial ganglionic eminence (MGE) and OB--fail to generate neuroblasts with similar migratory capacity when transplanted to the LGE. The positional identity and migratory specificity of the LGE precursors is rigidly established between E12.5 and E14.5. Thus, the pioneering population of OB interneurons is generated from spatially and temporally determined LGE precursors whose progeny uniquely recognize a distinct migratory trajectory.  相似文献   

13.
何发  王欣  郭佳  李崎  关锋 《生物工程学报》2014,30(6):962-971
神经细胞黏附分子(Neural cell adhesion molecule,NCAM)是一类表达于神经元、胶质细胞、骨骼细胞以及自然杀伤细胞表面的糖蛋白。NCAM在细胞-细胞黏附及神经细胞迁移等过程中起着重要作用,也是用来研究多聚唾液酸(Polysialic acid,PSA)的模式蛋白。将来源于小鼠乳腺上皮细胞NMuMG中的NCAM基因克隆到真核表达载体pcDNA3.1(+),转染至中国仓鼠卵巢细胞突变株ldlD-14细胞中,通过抗生素G418筛选及蛋白质印迹法检测,得到过表达NCAM的永久转染细胞株。利用ldlD-14细胞的特性,通过在无血清的基本培养基中添加半乳糖与否可以轻易操纵NCAM分子上糖链的修饰,为后期研究糖基化对NCAM分子功能的影响提供工作基础。  相似文献   

14.
Electrical activity was recorded from single cells in the olfactorybulb when electrically stimulating the medial and lateral olfactorytract and when stimulating the olfactory epithelium with aminoacids. Bulbar units excited by stimulation of the medial olfactorytract were found in the medial and middle parts of the bulb.Neurones in the dorso-lateral part of the bulb were excitedby stimulation of lateral tract. Units inhibited by stimulationof the lateral or medial olfactory tracts had a reversed distributionwith the majority found in the medial or lateral parts of thebulb respectively. The chemicals tested induced changes in thedischarge of units mainly situated in the lateral part of thebulb.  相似文献   

15.
In adult rats, repeated exposure to an odorant, in absence of any experimentally delivered reinforcement, leads to a drastic decrease in mitral/tufted (M/T) cell responsiveness, not only for the familiar odor but also for other novel odors. In the present study, using two different and complementary in situ hybridization methods, we analyzed the effect of familiarization with an odorant on c‐fos and arg 3.1 mRNA expression levels, and we examined the odor specificity of this effect. Odor exposure induces a specific increase in c‐fos and arg 3.1 expression in some particular olfactory bulb quadrants. Previous familiarization with the test odor results in a decreased expression of both IEGs in these quadrants, leading to the alteration of the odor‐specific pattern of c‐fos and arg 3.1 expression. In contrast, this odor‐specific pattern is not affected when different odors are used for familiarization and test. Similarly, an odor‐specific familiarization effect leading to a reduced c‐fos and arg 3.1 expression was also detected in the cingulate cortex and in the anterior piriform cortex. These results support our hypothesis that the decrease in M/T cell responsiveness following a preceding familiarization with an odorant may be related to a particular form of synaptic plasticity involving changes at the genomic level, and reveals further insight in olfactory information processing and the cellular mechanisms underlying familiarization in the olfactory system. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 61–72, 2002  相似文献   

16.
Polysialylation is a post-translational modification of the neural cell adhesion molecule (NCAM), which in the adult brain promotes structural changes in regions of neurogenesis and neuroplasticity. Because a variety of plastic changes including neurogenesis have been suggested to be functionally involved in the pathophysiology of epilepsies, it is of specific interest to define the impact of the polysialic acid (PSA)-NCAM system on development of this disease and associated comorbidities. Therefore, we studied the impact of transient enzymatic depolysialylation of NCAM on the pathophysiology in an electrically induced rat post-status epilepticus (SE) model. Loss of PSA counteracted the SE-induced increase in neurogenesis in a significant manner. This effect of endoneuraminidase (endoN) treatment on hippocampal neurogenesis did not impact the subsequent development of spontaneous seizures. In contrast, transient lack of PSA during SE and in the early phase of epileptogenesis exhibited a cognition sparing effect as revealed in the Morris water maze paradigm. In conclusion, our data do not support a central role of neurogenesis in the development of a hyperexcitable epileptic network. However, in view of the cognition-sparing effect, the transient modulation of the PSA-NCAM system seems to allow beneficial long-term disease modification, which might be mediated by the partial normalization of neurogenesis.  相似文献   

17.
Autism is thought to be a neurodevelopmental disorder with symptoms developing during neonatal neurogenesis in the subventricular zone (SVZ). Autism associated genes alter SVZ proliferation and cytoarchitecture, yet the response of the human SVZ in autism is unknown. Epilepsy drives neurogenesis in rodents, but it is unclear how epilepsy interacts with autism in SVZ responses. The striatal and septal SVZ derive from separate lineages in rodents and generate different interneuron types. Yet it is unclear if autism unevenly regulates the striatal and septal SVZ. The human SVZ was immunohistochemically examined post‐mortem from individuals with autism (n = 11) and controls (n = 11). Autism showed a lower cell density in the septal, but not striatal, SVZ hypocellular gap only in the absence of epilepsy. There was a decline in septal hypocellular gap cells with age in autism, but no correlation with age in controls. In contrast, PCNA+ cell numbers increased only in autism with epilepsy both in the hypocellular gap and in the ependymal layer on the septal but not striatal side. Ependymal cells also became GFAP immunoreactive in autism irrespective of epilepsy co‐morbidity; however, this only occurred on the striatal side. In examining these questions we also discovered a subset of ependymal, astrocyte ribbon and RMS cells which express PCNA and Ki67, PLP, and α‐tubulin. These results are the first example of a neuropsychiatric disease differentially affecting the septal and striatal SVZ. Altered cell density in the hypocellular gap and proliferation marker expression suggest individuals with autism may follow a different growth‐trajectory. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 25–41, 2014  相似文献   

18.
19.
The sense of smell is perceived by olfactory receptor neurons (ORN) present in the olfactory epithelium located in the posterosuperior aspect of the nasal cavity. The axons of these ORN migrate to the olfactory bulb (OB), forming a nervous layer on the outermost part of the bulb, and finally synapse in glomerular structures in the OB. The ORN are unique in that they are constantly being renewed throughout life. We characterized the defects in the nasal cavity and olfactory nervous supply of Twirler (Tw) mice by histological and immunohistochemical means. Tw homozygotes have previously been shown to present with midfacial abnormalities in the form of clefts of the lip and palate (Lyon, 1958; Gong et al., 2000). We found that in the Tw homozygotes, the OB was abnormally shaped, the skeletal framework underlying the OB was disrupted, and the morphology of the nasal cavity was altered with poorly defined nasal turbinates. Immunohistochemical staining with antibodies that marked nerves in general (PGP 9.5) and mature ORN (omp) in the olfactory epithelium at two different embryonic stages and in newborn mice revealed the stratification of the olfactory epithelium in Tw homozygotes, albeit slightly thinner compared to wildtype. A striking difference in the olfactory epithelium was the lack of differentiation of the ORN in Tw homozygotes and the reduced axonal input to the OB. In Tw homozygotes at 14.5 days of embryonic development, the presence of many mature ORN found randomly in the mesenchyme suggests the loss of olfactory pathfinding cues to the OB. It is believed that the lack of appropriate pathfinding cues observed in the Tw homozygotes was responsible for the OB not having the appropriate trophic effect on the development and maturation of the ORN as had been observed in partially bulbectomized animals. The defects in the Twirler may prove to be a valuable system to analyze problems in olfactory pathfinding and maturation.  相似文献   

20.
Olfactory bulb processing results from the interaction of relay neurons with two main categories of interneurons which mediate inhibition in two distinct layers: periglomerular cells and granule cells. We present here a neural model of the mammalian olfactory bulb which allows to separately investigate the functional consequences of the two types of interneurons onto the relay neurons responsiveness to odors. The model, although built with simplified representations of neural elements generates various aspects of neural dynamics from the cellular to the populational level. We propose that the combined action of centrifugal control at two different layers of processing is complementary: reduction of the number of active relay neurons responding to a given odorant through increased activity of periglomerular cells, and an increase of response intensity of active mitral cells through decrease of granule cell inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号