首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggregation of acetylcholine receptors (AChRs) in muscle fibers by nerve-derived agrin plays a key role in the formation of neuromuscular junctions. So far, the effects of agrin on muscle fibers have been studied in culture systems, transgenic animals, and in animals injected with agrin--cDNA constructs. We have applied purified recombinant chick neural and muscle agrin to rat soleus muscle in vivo and obtained the following results. Both neural and muscle agrin bind uniformly to the surface of innervated and denervated muscle fibers along their entire length. Neural agrin causes a dose-dependent appearance of AChR aggregates, which persist > or = 7 wk after a single application. Muscle agrin does not cluster AChRs and at 10 times the concentration of neural agrin does not reduce binding or AChR-aggregating activity of neural agrin. Electrical muscle activity affects the stability of agrin binding and the number, size, and spatial distribution of the neural agrin--induced AChR aggregates. Injected agrin is recovered from the muscles together with laminin and both proteins coimmunoprecipitate, indicating that agrin binds to laminin in vivo. Thus, the present approach provides a novel, simple, and efficient method for studying the effects of agrin on muscle under controlled conditions in vivo.  相似文献   

2.
The formation of the neuromuscular junction (NMJ) is regulated by the nerve-derived heparan sulfate proteoglycan agrin and the muscle-specific kinase MuSK. Agrin induces a signal transduction pathway via MuSK, which promotes the reorganization of the postsynaptic muscle membrane. Activation of MuSK leads to the phosphorylation and redistribution of acetylcholine receptors (AChRs) and other postsynaptic proteins to synaptic sites. The accumulation of high densities of AChRs at postsynaptic regions represents a hallmark of NMJ formation and is required for proper NMJ function. Here we show that phosphoinositide 3-kinase (PI3-K) represents a component of the agrin/MuSK signaling pathway. Muscle cells treated with specific PI3-K inhibitors are unable to form full-size AChR clusters in response to agrin and AChR phosphorylation is reduced. Moreover, agrin-induced activation of Rac and Cdc42 is impaired in the presence of PI3-K inhibitors. PI3-K is localized to the postsynaptic muscle membrane consistent with a role during agrin/MuSK signaling. These results put PI3-K downstream of MuSK as regulator of AChR phosphorylation and clustering. Its role during agrin-stimulated Rac and Cdc42 activation suggests a critical function during cytoskeletal reorganizations, which lead to the redistribution of actin-anchored AChRs.  相似文献   

3.
We have studied presynaptic and postsynaptic differentiation at neuromuscular junctions in vitro by examining the localization of synapse-specific proteins. In nerve–muscle co-cultures, the synaptic vesicle protein synaptotagmin (p65) accumulated in the nerve terminal overlying myotubes in association with postsynaptic cluster of acetylcholine receptors (AChRs), heparan sulfate proteoglycan (HSPG), laminin, and agrin. Inhibition of collagen synthesis with cis-hydroxyproline decreased the nerve-induced clustering of AChRs in muscle cells as well as that caused by exogenous agrin in muscle-only cultures. Moreover, accumulation of HSPG at contacts was also inhibited in cis-hydroxyproline–treated cultures. However, accumulation of p65 in nerve fibers at sites of muscle contact, a sign of presynaptic differentiation, was unaffected by cis-hydroxyproline treatment. In addition, even in cis-hydroxyproline–inhibited cultures, agrin was evident at more than 90% of contacts showing accumulation of p65 in the nerve terminal. Therefore, a mechanism exists to maintain agrin concentrations at nerve–muscle contacts, even when at least some extracellular matrix (ECM) proteins are disrupted. Our results suggest that HSPG is not required for the induction of nerve terminal differentiation but are consistent with the idea that HSPG or other ECM proteins are important in both nerve-and agrin-induced AChR clustering. In particular, agrin accumulation at sites of nerve–muscle contact is not sufficient to induce AChR clusters when the ECM at these contacts is disrupted. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Agrin is a motoneuron‐derived factor that initiates neuromuscular synapse formation; however, the signaling pathway underlying postsynaptic differentiation is not yet understood. We have investigated the role of calcium in agrin signaling through the MuSK receptor tyrosine kinase and in the intracellular signaling cascade that leads to AChR phosphorylation and clustering. We find that agrin‐ and neuramindase‐induced MuSK activation in cultured myotubes is completely blocked by removal of extracellular calcium, but only slightly reduced by clamping of intracellular calcium transients with BAPTA. Following agrin's activation of MuSK, we find that the downstream tyrosine phosphorylation of the AChR β‐subunit was inhibited by BAPTA but not by a slower acting chelator, EGTA. Similarly, agrin‐induced clustering of the AChR was blocked by BAPTA but not EGTA. These findings indicate that extracellular calcium is required for the formation of a MuSK signaling complex, and that intracellular calcium regulates phosphorylation and clustering of the AChR in the postsynaptic membrane. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 69–79, 2002  相似文献   

5.
Changes in the distribution of agrin and acetylcholine receptors (AChRs) were examined during reinnervation and following permanent denervation as a means of understanding mechanisms controlling the distribution of these molecules. Following nerve damage in the peripheral nervous system, regenerating nerve terminals preferentially return to previous synaptic sites leading to the restoration of synaptic activity. However, not all portions of original synaptic sites are reoccupied: Some of the synaptic sites are abandoned by both the nerve terminal and the Schwann cell. Abandoned synaptic sites contain agrin, AChRs, and acetylcholinesterase (AChE) without an overlying nerve terminal or Schwann cell providing a unique location to observe changes in the distribution of these synapse-specific molecules. The distribution of anti-agrin and AChR staining at abandoned synaptic sites was altered during the process of reinnervation, changing from a dense, wide distribution to a punctate, pale pattern, and finally becoming entirely absent. Agrin and AChRs were removed from abandoned synaptic sites in reinnervated frog neuromuscular junctions, while in contralateral muscles which were permanently denervated, anti-agrin and AChR staining remained at abandoned synaptic sites. Decreasing synaptic activity during reinnervation delayed the removal of agrin and AChRs from abandoned synaptic sites. Altogether, these results support the hypothesis that synaptic activity controls a cellular mechanism that directs the removal of agrin from synaptic basal lamina and the loss of agrin leads to the dispersal of AChRs. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 999–1018, 1997  相似文献   

6.
Fast and accurate synaptic transmission requires high-density accumulation of neurotransmitter receptors in the postsynaptic membrane. During development of the neuromuscular junction, clustering of acetylcholine receptors (AChR) is one of the first signs of postsynaptic specialization and is induced by nerve-released agrin. Recent studies have revealed that different mechanisms regulate assembly vs stabilization of AChR clusters and of the postsynaptic apparatus. MuSK, a receptor tyrosine kinase and component of the agrin receptor, and rapsyn, an AChR-associated anchoring protein, play crucial roles in the postsynaptic assembly. Once formed, AChR clusters and the postsynaptic membrane are stabilized by components of the dystrophin/utrophin glycoprotein complex, some of which also direct aspects of synaptic maturation such as formation of postjunctional folds. Nicotinic receptors are also expressed across the peripheral and central nervous system (PNS/CNS). These receptors are localized not only at the pre- but also at the postsynaptic sites where they carry out major synaptic transmission. In neurons, they are found as clusters at synaptic or extrasynaptic sites, suggesting that different mechanisms might underlie this specific localization of nicotinic receptors. This review summarizes the current knowledge about formation and stabilization of the postsynaptic apparatus at the neuromuscular junction and extends this to explore the synaptic structures of interneuronal cholinergic synapses.  相似文献   

7.
At the developing neuromuscular junction, a motoneuron-derived factor called agrin signals through the muscle-specific kinase receptor to induce postsynaptic aggregation of the acetylcholine receptor (AChR). The agrin signaling pathway involves tyrosine phosphorylation of the AChR beta subunit, and we have tested its role in receptor localization by expressing tagged, tyrosine-minus forms of the beta subunit in mouse Sol8 myotubes. We find that agrin-induced phosphorylation of the beta subunit occurs only on cell surface AChR, and that AChR-containing tyrosine-minus beta subunit is targeted normally to the plasma membrane. Surface AChR that is tyrosine phosphorylated is less detergent extractable than nonphosphorylated AChR, indicating that it is preferentially linked to the cytoskeleton. Consistent with this, we find that agrin treatment reduces the detergent extractability of AChR that contains tagged wild-type beta subunit but not tyrosine-minus beta subunit. In addition, agrin-induced clustering of AChR containing tyrosine-minus beta subunit is reduced in comparison to wild-type receptor. Thus, we find that agrin-induced phosphorylation of AChR beta subunit regulates cytoskeletal anchoring and contributes to the clustering of the AChR, and this is likely to play an important role in the postsynaptic localization of the receptor at the developing synapse.  相似文献   

8.
At the neuromuscular junction (NMJ), the postsynaptic localization of muscle acetylcholine receptor (AChR) is regulated by neural signals and occurs via several processes including metabolic stabilization of the receptor. However, the molecular mechanisms that influence receptor stability remain poorly defined. Here, we show that neural agrin and the tyrosine phosphatase inhibitor, pervanadate slow the degradation of surface receptor in cultured muscle cells. Their action is mediated by tyrosine phosphorylation of the AChR β subunit, as agrin and pervandate had no effect on receptor half‐life in AChR‐β3F/3F muscle cells, which have targeted mutations of the β subunit cytoplasmic tyrosines. Moreover, in wild type AChR‐β3Y muscle cells, we found a linear relationship between average receptor half‐life and the percentage of AChR with phosphorylated β subunit, with half‐lives of 12.7 and 23 h for nonphosphorylated and phosphorylated receptor, respectively. Surprisingly, pervanadate increased receptor half‐life in AChR‐β3Y myotubes in the absence of clustering, and agrin failed to increase receptor half‐life in AChR‐β3F/3F myotubes even in the presence of clustering. The metabolic stabilization of the AChR was mediated specifically by phosphorylation of βY390 as mutation of this residue abolished β subunit phosphorylation but did not affect δ subunit phosphorylation. Receptor stabilization also led to higher receptor levels, as agrin increased surface AChR by 30% in AChR‐β3Y but not AChR‐β3F/3F myotubes. Together, these findings identify an unexpected role for agrin‐induced phosphorylation of βY390 in downregulating AChR turnover. This likely stabilizes AChR at developing synapses, and contributes to the extended half‐life of AChR at adult NMJs. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 399–410, 2013  相似文献   

9.
Agrin induces the formation of specializations on chick myotubes in culture at which several components of the postsynaptic apparatus accumulate, including acetylcholine receptors (AChRs). Agrin also induces AChR phosphorylation. Several lines of evidence suggest that agrininduced phosphorylation of tyrosine residues in the β subunit of the AChR is an early step in receptor aggregation: agrin-induced phosphorylation and aggregation have the same dose dependence; treatments that prevent aggregation block phosphorylation; phosphorylation begins before any detectable change in receptor distribution, reaches a maximum hours before aggregation is complete, and declines slowly together with the disappearance of aggregates after agrin is withdrawn; agrin slows the rate at which receptors are solubilized from intact myotubes by detergent extraction; and the change in receptor extractability parallels the change in phosphorylation. A model for agrin-induced AChR aggregation is presented in which phosphorylation of AChRs by an agrin-activated protein tyrosine kinase causes receptors to become attached to the cytoskeleton, which reduces their mobility and detergent extractability, and leads to the accumulation of receptors in the vicinity of the activated kinase, forming an aggregate. © 1992 John Wiley & Sons, Inc.  相似文献   

10.
Clustering of acetylcholine receptors (AChRs) is a critical step in neuromuscular synaptogenesis, and is induced by agrin and laminin which are thought to act through different signaling mechanisms. We addressed whether laminin redistributes postsynaptic proteins and requires key elements of the agrin signaling pathway to cause AChR aggregation. In myotubes, laminin-1 rearranged dystroglycans and syntrophins into a laminin-like network, whereas inducing AChR-containing clusters of dystrobrevin, utrophin, and, to a marginal degree, MuSK. Laminin-1 also caused extensive coclustering of rapsyn and phosphotyrosine with AChRs, but none of these clusters were observed in rapsyn -/- myotubes. In parallel with clustering, laminin-1 induced tyrosine phosphorylation of AChR beta and delta subunits. Staurosporine and herbimycin, inhibitors of tyrosine kinases, prevented laminin-induced AChR phosphorylation and AChR and phosphotyrosine clustering, and caused rapid dispersal of clusters previously induced by laminin-1. Finally, laminin-1 caused normal aggregation of AChRs and phosphotyrosine in myotubes lacking both Src and Fyn kinases, but these clusters dispersed rapidly after laminin withdrawal. Thus, laminin-1 redistributes postsynaptic proteins and, like agrin, requires tyrosine kinases for AChR phosphorylation and clustering, and rapsyn for AChR cluster formation, whereas cluster stabilization depends on Src and Fyn. Therefore, the laminin and agrin signaling pathways overlap intracellularly, which may be important for neuromuscular synapse formation.  相似文献   

11.
Nitric oxide (NO), previously demonstrated to participate in the regulation of the resting membrane potential in skeletal muscles via muscarinic receptors, also regulates non-quantal acetylcholine (ACh) secretion from rat motor nerve endings. Non-quantal ACh release was estimated by the amplitude of endplate hyperpolarization (H-effect) following a blockade of skeletal muscle post-synaptic nicotinic receptors by (+)-tubocurarine. The muscarinic agonists oxotremorine and muscarine lowered the H-effect and the M1 antagonist pirenzepine prevented this effect occurring at all. Another muscarinic agonist arecaidine but-2-ynyl ester tosylate (ABET), which is more selective for M2 receptors than for M1 receptors and 1,1-dimethyl-4-diphenylacetoxypiperidinium (DAMP), a specific antagonist of M3 cholinergic receptors had no significant effect on the H-effect. The oxotremorine-induced decrease in the H-effect was calcium and calmodulin-dependent. The decrease was negated when either NO synthase was inhibited by N(G)-nitro-L-arginine methyl ester or soluble guanylyl cyclase was inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. The target of muscle-derived NO is apparently nerve terminal guanylyl cyclase, because exogenous hemoglobin, acting as an NO scavenger, prevented the oxotremorine-induced drop in the H-effect. These results suggest that oxotremorine (and probably also non-quantal ACh) selectively inhibit the non-quantal secretion of ACh from motor nerve terminals acting on post-synaptic M1 receptors coupled to Ca(2+) channels in the sarcolemma to induce sarcoplasmic Ca(2+)-dependent synthesis and the release of NO. It seems that a substantial part of the H-effect can be physiologically regulated by this negative feedback loop, i.e., by NO from muscle fiber; there is apparently also Ca(2+)- and calmodulin-dependent regulation of ACh non-quantal release in the nerve terminal itself, as calmidazolium inhibition of the calmodulin led to a doubling of the resting H-effect.  相似文献   

12.
The degradation rates of acetylcholine receptors (AchRs) were evaluated at the neuromuscular junction during and just after reinnervation of denervated muscles. When mouse sternomastoid muscles are denervated by multiple nerve crush, reinnervation begins 2-4 days later and is complete by day 7-9 after the last crush. In fully innervated muscles, the AChR degradation rate is stable and slow (t1/2 approximately 10 days), whereas after denervation the newly inserted receptors degrade rapidly (t1/2 approximately 1.2 days). The composite profile of degradation, which a mixture of the stable and the rapid receptors would give, is not observed during reinnervation. Instead, the receptors inserted between 2.5 and 7.5 days after the last crush all have an intermediate degradation rate of t1/2 approximately 3.7 days with standard error +/- 0.3 days. The total receptor site density at the endplate was evaluated during denervation and during reinnervation. As predicted theoretically, the site density increased substantially, but temporarily, after denervation. An analogous deleterious substantial decrease in density would be expected during reinnervation, without the intermediate receptor. This decrease is not observed, however, because of a large insertion rate at intermediate times (3000 +/- 700 receptor complexes per micro m2 per day). The endplate density of receptors thus remains relatively constant.  相似文献   

13.
Agrin released from motor nerve terminals activates a muscle-specific receptor tyrosine kinase (MuSK) in muscle cells to trigger formation of the skeletal neuromuscular junction. A key step in synaptogenesis is the aggregation of acetylcholine receptors (AChRs) in the postsynaptic membrane, a process that requires the AChR-associated protein, rapsyn. Here, we mapped domains on MuSK necessary for its interactions with agrin and rapsyn. Myotubes from MuSK(-/)- mutant mice form no AChR clusters in response to agrin, but agrin-responsiveness is restored by the introduction of rat MuSK or a Torpedo orthologue. Thus, MuSK(-/)- myotubes provide an assay system for the structure-function analysis of MuSK. Using this system, we found that sequences in or near the first of four extracellular immunoglobulin-like domains in MuSK are required for agrin responsiveness, whereas sequences in or near the fourth immunoglobulin-like domain are required for interaction with rapsyn. Analysis of the cytoplasmic domain revealed that a recognition site for the phosphotyrosine binding domain-containing proteins is essential for MuSK activity, whereas consensus binding sites for the PSD-95/Dlg/ZO-1-like domain-containing proteins and phosphatidylinositol-3-kinase are dispensable. Together, our results indicate that the ectodomain of MuSK mediates both agrin- dependent activation of a complex signal transduction pathway and agrin-independent association of the kinase with other postsynaptic components. These interactions allow MuSK not only to induce a multimolecular AChR-containing complex, but also to localize that complex to a primary scaffold in the postsynaptic membrane.  相似文献   

14.
During neuromuscular junction formation, agrin secreted from motor neurons causes muscle cell surface acetylcholine receptors (AChRs) to cluster at synaptic sites by mechanisms that are insufficiently understood. The Rho family of small guanosine triphosphatases (GTPases), including Rac and Cdc42, can mediate focal reorganization of the cell periphery in response to extracellular signals. Here, we investigated the role of Rac and Cdc42 in coupling agrin signaling to AChR clustering. We found that agrin causes marked muscle-specific activation of Rac and Cdc42 in differentiated myotubes, as detected by biochemical measurements. Moreover, this activation is crucial for AChR clustering, since the expression of dominant interfering mutants of either Rac or Cdc42 in myotubes blocks agrin-induced AChR clustering. In contrast, constitutively active Rac and Cdc42 mutants cause AChR to aggregate in the absence of agrin. By indicating that agrin-dependent activation of Rac and Cdc42 constitutes a critical step in the signaling pathway leading to AChR clustering, these findings suggest a novel role for these Rho-GTPases: the coupling of neuronal signaling to a key step in neuromuscular synaptogenesis.  相似文献   

15.
16.
Specific forelimb muscles in anurans are sexually dimorphic and underlie the androgen-dependent clasping response of males during amplexus. Previous studies have reported that androgen treatment slows the contractile properties of these sexually dimorphic forelimb muscles. In amphibians, the expression of functionally distinct acetycholine (ACh) receptors, the levels of acetylcholinesterase (AChE), the extent of multiple innervation, and the structure of individual end plates vary with the contractile properties of the muscle fibers. In higher vertebrates, androgens have been reported to alter the expression of ACh receptors, AChE, and the neuromodulator, calcitonin gene-related peptide (CGRP). To determine whether the known androgen-dependent changes in contraction of androgen-sensitive forelimb muscles are accompanied by concomitant changes in synaptic structure or function, we have compared functional neuromuscular transmission, the pattern of innervation, and CGRP immunoreactivity in nerve or muscle preparation from castrated (C) and castrated and testosterone-treated (CT) adult male Xenopus laevis. CGRP expression in androgen receptor (AR)-immunopositive neurons was increased in CT animals. However, no significant differences were found in ACh-mediated single channel or macroscopic currents, the extent of multiple end plates, or end plate morphology for forelimb fibers isolated from C and CT Xenopus. In contrast, analysis of forelimb fibers from gonadally intact adult females and juvenile animals of both sexes revealed that macroscopic synaptic currents were significantly shorter in these animals than in either C or CT adult males. Our data suggest that forelimb fibers in sexually dimorphic muscles of Xenopus do show significant differences in synaptic transmission; however, neither end-plate organization nor functional neuromuscular transmission are subject to activational effects of androgens in adult male frogs. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Fluorescence resonance energy transfer (FRET) experiments at neuromuscular junctions in the mouse tibialis anterior muscle show that postsynaptic acetylcholine receptors (AChRs) become more tightly packed during the first month of postnatal development. Here, we report that the packing of AChRs into postsynaptic aggregates was reduced in 4-week postnatal mice that had reduced amounts of the AChR-associated protein, rapsyn, in the postsynaptic membrane (rapsyn(+/-) mice). We hypothesize that nerve-derived agrin increases postsynaptic expression and targeting of rapsyn, which then drives the developmental increase in AChR packing. Neural agrin treatment elevated the expression of rapsyn in C2 myotubes by a mechanism that involved slowing of rapsyn protein degradation. Similarly, exposure of synapses in postnatal muscle to exogenous agrin increased rapsyn protein levels and elevated the intensity of anti-rapsyn immunofluorescence, relative to AChR, in the postsynaptic membrane. This increase in the rapsyn-to-AChR immunofluorescence ratio was associated with tighter postsynaptic AChR packing and slowed AChR turnover. Acute blockade of synaptic AChRs with alpha-bungarotoxin lowered the rapsyn-to-AChR immunofluorescence ratio, suggesting that AChR signaling also helps regulate the assembly of extra rapsyn in the postsynaptic membrane. The results suggest that at the postnatal neuromuscular synapse agrin signaling elevates the expression and targeting of rapsyn to the postsynaptic membrane, thereby packing more AChRs into stable, functionally-important AChR aggregates.  相似文献   

18.
Reciprocal signals between the motor axon and myofiber induce structural and functional differentiation in the developing neuromuscular junction (NMJ). Elevation of presynaptic acetylcholine (ACh) release on nerve-muscle contact and the correlated increase in axonal-free calcium are triggered by unidentified membrane molecules. Restriction of axon growth to the developing NMJ and formation of active zones for ACh release in the presynaptic terminal may be induced by molecules in the synaptic basal lamina, such as S-laminin, heparin binding growth factors, and agrin. Acetylcholine receptor (AChR) synthesis by muscle cells may be increased by calcitonin gene-related peptide (CGRP), ascorbic acid, and AChR-inducing activity (ARIA)/heregulin, which is the best-established regulator. Heparin binding growth factors, proteases, adhesion molecules, and agrin all may be involved in the induction of AChR redistribution to form postsynaptic-like aggregates. However, the strongest case has been made for agrin's involvement. “Knockout” experiments have implicated agrin as a primary anterograde signal for postsynaptic differentiation and muscle-specific kinase (MuSK), as a putative agrin receptor. It is likely that both presynaptic and postsynaptic differentiation are induced by multiple molecular signals. Future research should reveal the physiological roles of different molecules, their interactions, and the identity of other molecular participants.  相似文献   

19.
Using optical imaging assays, we investigated the dynamics of acetylcholine receptors (AChRs) at laminin-associated clusters on cultured myotubes in the absence or presence of the nerve-derived clustering factor, agrin. Using fluorescence recovery after photobleaching (FRAP) on fluorescent bungarotoxin-labeled receptors, we found that approximately 9% of original fluorescence was recovered after 8 h as surface AChRs were recruited into clusters. By quantifying the loss of labeled receptors and the recovery of fluorescence after photobleaching, we estimated that the half-life of clustered receptors was approximately 4.5 h. Despite the rapid removal of receptors, the accumulation of new receptors at clusters was robust enough to maintain receptor density over time. We also found that the AChR half-life was not affected by agrin despite its role in inducing the aggregation of AChRs. Interestingly, when agrin was added to myotubes grown on laminin-coated substrates, most new receptors were not directed into preexisting laminin-induced clusters but instead formed numerous small aggregates on the entire muscle surface. Time-lapse imaging revealed that the agrin-induced clusters could be seen as early as 1 h, and agrin treatment resulted in the complete dissipation of laminin-associated clusters by 24 h. These results reveal that while laminin and agrin are involved in the clustering of receptors they are not critical to the regulation of receptor metabolic stability at these clusters, and further argue that agrin is able to rapidly and fully negate the laminin substrate clustering effect while inducing the rapid formation of new clusters.  相似文献   

20.
As the mammalian neuromuscular junction matures, its acetylcholine receptor (AChR)-rich postsynaptic apparatus is transformed from an oval plaque into a pretzel-shaped array of branches that precisely mirrors the branching pattern of the motor nerve terminal. Although the nerve has been believed to direct postsynaptic maturation, we report here that myotubes cultured aneurally on matrix-coated substrates form elaborately branched AChR-rich domains remarkably similar to those seen in vivo. These domains share several characteristics with the mature postsynaptic apparatus, including colocalization of multiple postsynaptic markers, clustering of subjacent myonuclei, and dependence on the muscle-specific kinase and rapsyn for their formation. Time-lapse imaging showed that branched structures arise from plaques by formation and fusion of AChR-poor perforations through a series of steps mirroring that seen in vivo. Multiple fluorophore imaging showed that growth occurs by circumferential, asymmetric addition of AChRs. Analysis in vivo revealed similar patterns of AChR addition during normal development. These results reveal the sequence of steps by which a topologically complex domain forms on a cell and suggest an unexpected nerve-independent role for the postsynaptic cell in generating this topological complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号