共查询到20条相似文献,搜索用时 0 毫秒
1.
A. Ebneth R. Godemann K. Stamer S. Illenberger B. Trinczek E.-M. Mandelkow E. Mandelkow 《The Journal of cell biology》1998,143(3):777-794
The neuronal microtubule-associated protein tau plays an important role in establishing cell polarity by stabilizing axonal microtubules that serve as tracks for motor-protein–driven transport processes. To investigate the role of tau in intracellular transport, we studied the effects of tau expression in stably transfected CHO cells and differentiated neuroblastoma N2a cells. Tau causes a change in cell shape, retards cell growth, and dramatically alters the distribution of various organelles, known to be transported via microtubule-dependent motor proteins. Mitochondria fail to be transported to peripheral cell compartments and cluster in the vicinity of the microtubule-organizing center. The endoplasmic reticulum becomes less dense and no longer extends to the cell periphery. In differentiated N2a cells, the overexpression of tau leads to the disappearance of mitochondria from the neurites. These effects are caused by tau''s binding to microtubules and slowing down intracellular transport by preferential impairment of plus-end–directed transport mediated by kinesin-like motor proteins. Since in Alzheimer''s disease tau protein is elevated and mislocalized, these observations point to a possible cause for the gradual degeneration of neurons. 相似文献
2.
Tansley Review No. 108 总被引:2,自引:0,他引:2
3.
Strappazzon F Vietri-Rudan M Campello S Nazio F Florenzano F Fimia GM Piacentini M Levine B Cecconi F 《The EMBO journal》2011,30(7):1195-1208
BECLIN 1 is a central player in macroautophagy. AMBRA1, a BECLIN 1-interacting protein, positively regulates the BECLIN 1-dependent programme of autophagy. In this study, we show that AMBRA1 binds preferentially the mitochondrial pool of the antiapoptotic factor BCL-2, and that this interaction is disrupted following autophagy induction. Further, AMBRA1 can compete with both mitochondrial and endoplasmic reticulum-resident BCL-2 (mito-BCL-2 and ER-BCL-2, respectively) to bind BECLIN 1. Moreover, after autophagy induction, AMBRA1 is recruited to BECLIN 1. Altogether, these results indicate that, in normal conditions, a pool of AMBRA1 binds preferentially mito-BCL-2; after autophagy induction, AMBRA1 is released from BCL-2, consistent with its ability to promote BECLIN 1 activity. In addition, we found that the binding between AMBRA1 and mito-BCL-2 is reduced during apoptosis. Thus, a dynamic interaction exists between AMBRA1 and BCL-2 at the mitochondria that could regulate both BECLIN 1-dependent autophagy and apoptosis. 相似文献
4.
Changes in intracellular Ca2+ induced by extracellular acidification to pH = 6 were studied in isolated rat spinal dorsal horn neurons using indo-1 fluorescent technique. In all neurons such treatment induced a decrease of basal [Ca2+]i level by 20.8%, preceded in some of them by temporary increase. The changes were completely reversible. The depolarization-induced [Ca2+]i transients became strongly and also reversibly depressed. If tested after termination of acidification, they demonstrated substantial prolongation of their decay phase, reaching 310% at 120 sec after the application of depolarization. To analyze the mechanisms of such changes, mitochondrial protonophore CCCP has been applied between the end of acidification and the depolarizing pulse. This completely eliminated the described slowing of the transients' decay. To the contrary, application of caffeine to induce Ca2+ release from the endoplasmic reticulum did not show significant changes in the corresponding [Ca2+]i transients. A conclusion is made that in mammalian neurons extracellular acidification, apart from inhibiting voltage-operated Ca2+ channels, also substantially alters the Ca2+ exchange function of mitochondria responsible for rapid accumulation of ions and their delayed release back into the cytosol. 相似文献
5.
6.
Rudner J Jendrossek V Belka C 《Apoptosis : an international journal on programmed cell death》2002,7(5):441-447
The oncogenic protein Bcl-2 which is expressed in membranes of different subcellular organelles protects cells from apoptosis induced by endogenic stimuli. Most of the results published so far emphasise the importance of Bcl-2 at the mitochondria. Several recent observations suggest a role of Bcl-2 at the endoplasmic reticulum (ER). Bcl-2 located at the ER was shown to interfere with apoptosis induction by Bax, ceramides, ionising radiation, serum withdrawal and c-myc expression. Although the detailed functions of Bcl-2 at the ER remain elusive, several speculative mechanisms may be supposed. For instance, Bcl-2 at the ER may regulate calcium fluxes between the ER and the mitochondria. In addition, Bcl-2 is able to interact with the endoplasmic protein Bap31 thus avoiding caspase activation at the ER. Bcl-2 may also abrogate the function of ER located pro-apoptotic Bcl-2 like proteins by heterodimerization. Current data on the function of Bcl-2 at the ER, its role for the modulation of calcium fluxes and its influence on caspase activation at the ER are reviewed. 相似文献
7.
Antoine Tesniere Ann‐Charlotte Bjorklund Daniel C Chapman Michael Durchschlag Nicholas Joza Gérard Pierron Peter van Endert Junying Yuan Laurence Zitvogel Frank Madeo David B Williams Guido Kroemer 《The EMBO journal》2009,28(5):578-590
Dying tumour cells can elicit a potent anticancer immune response by exposing the calreticulin (CRT)/ERp57 complex on the cell surface before the cells manifest any signs of apoptosis. Here, we enumerate elements of the pathway that mediates pre‐apoptotic CRT/ERp57 exposure in response to several immunogenic anticancer agents. Early activation of the endoplasmic reticulum (ER)‐sessile kinase PERK leads to phosphorylation of the translation initiation factor eIF2α, followed by partial activation of caspase‐8 (but not caspase‐3), caspase‐8‐mediated cleavage of the ER protein BAP31 and conformational activation of Bax and Bak. Finally, a pool of CRT that has transited the Golgi apparatus is secreted by SNARE‐dependent exocytosis. Knock‐in mutation of eIF2α (to make it non‐phosphorylatable) or BAP31 (to render it uncleavable), depletion of PERK, caspase‐8, BAP31, Bax, Bak or SNAREs abolished CRT/ERp57 exposure induced by anthracyclines, oxaliplatin and ultraviolet C light. Depletion of PERK, caspase‐8 or SNAREs had no effect on cell death induced by anthracyclines, yet abolished the immunogenicity of cell death, which could be restored by absorbing recombinant CRT to the cell surface. 相似文献
8.
Cerqua C Anesti V Pyakurel A Liu D Naon D Wiche G Baffa R Dimmer KS Scorrano L 《EMBO reports》2010,11(11):854-860
Trichoplein/mitostatin (TpMs) is a keratin-binding protein that partly colocalizes with mitochondria and is often downregulated in epithelial cancers, but its function remains unclear. In this study, we report that TpMs regulates the tethering between mitochondria and endoplasmic reticulum (ER) in a Mitofusin 2 (Mfn2)-dependent manner. Subcellular fractionation and immunostaining show that TpMs is present at the interface between mitochondria and ER. The expression of TpMs leads to mitochondrial fragmentation and loosens tethering with ER, whereas its silencing has opposite effects. Functionally, the reduced tethering by TpMs inhibits apoptosis by Ca(2+)-dependent stimuli that require ER-mitochondria juxtaposition. Biochemical and genetic evidence support a model in which TpMs requires Mfn2 to modulate mitochondrial shape and tethering. Thus, TpMs is a new regulator of mitochondria-ER juxtaposition. 相似文献
9.
10.
Ageing is driven by the inexorable and stochastic accumulation of damage in biomolecules vital for proper cellular function. Although this process is fundamentally haphazard and uncontrollable, senescent decline and ageing is broadly influenced by genetic and extrinsic factors. Numerous gene mutations and treatments have been shown to extend the lifespan of diverse organisms ranging from the unicellular Saccharomyces cerevisiae to primates. It is becoming increasingly apparent that most such interventions ultimately interface with cellular stress response mechanisms, suggesting that longevity is intimately related to the ability of the organism to effectively cope with both intrinsic and extrinsic stress. Here, we survey the molecular mechanisms that link ageing to main stress response pathways, and mediate age-related changes in the effectiveness of the response to stress. We also discuss how each pathway contributes to modulate the ageing process. A better understanding of the dynamics and reciprocal interplay between stress responses and ageing is critical for the development of novel therapeutic strategies that exploit endogenous stress combat pathways against age-associated pathologies. 相似文献
11.
Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretioninTcells.However,whetherhomocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivoand in vitrostudies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition ofERstress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming. 相似文献
12.
Siqi Tian Akinori Ohta Hiroyuki Horiuchi 《Bioscience, biotechnology, and biochemistry》2013,77(10):1608-1614
To elucidate the mechanism of interorganelle sterol transport, a system to evaluate sterol transport from the endoplasmic reticulum (ER) to the mitochondria was constructed. A bacterial glycerophospholipid: cholesterol acyltransferase fused with a mitochondria-targeting sequence and a membrane-spanning domain of the mitochondrial inner membrane protein Pet100 and enhanced green fluorescent protein was expressed in a Saccharomyces cerevisiae mutant deleted for ARE1 and ARE2 encoding acyl-CoA:sterol acyltransferases. Microscopic observation and subcellular fractionation suggested that this fusion protein, which was named mito-SatA-EGFP, was localized in the mitochondria. Steryl esters were synthesized in the mutant expressing mito-SatA-EGFP. This system will be applicable for evaluations of sterol transport from the ER to the mitochondria in yeast by examining sterol esterification in the mitochondria. 相似文献
13.
Mahmoud Morsi Ahmed Maher Omnia Aboelmagd Dina Johar Larry Bernstein 《Journal of cellular biochemistry》2018,119(2):1249-1256
14.
Mahmoud Morsi Firas Kobeissy Sameh Magdeldin Ahmed Maher Omnia Aboelmagd Dina Johar Larry Bernstein 《Journal of cellular biochemistry》2019,120(9):14318-14325
Diabetes mellitus (DM), one of the most prevalent metabolic diseases in the world population, is associated with a number of comorbid conditions including obesity, pancreatic endocrine changes, and renal and cardio-cerebrovascular alterations, coupled with peripheral neuropathy and neurodegenerative disease, some of these disorders are bundled into metabolic syndrome. Type 1 DM (T1DM) is an autoimmune disease that destroys the insulin-secreting islet cells. Type 2 DM (T2DM) is diabetes that is associated with an imbalance in the glucagon/insulin homeostasis that leads to the formation of amyloid deposits in the brain, pancreatic islet cells, and possibly in the kidney glomerulus. There are several layers of molecular pathologic alterations that contribute to the DM metabolic pathophysiology and its associated neuropathic manifestations. In this review, we describe the general signature metabolic features of DM and the cross-talk with neurodegeneration. We will assess the underlying molecular key players associated with DM-induced neuropathic disorders that are associated with both T1DM and T2DM. In this context, we will highlight the role of tau and amyloid protein deposits in the brain as well in the pancreatic islet cells, and possibly in the kidney glomerulus. Furthermore, we will discuss the central role of mitochondria, oxidative stress, and the unfolded protein response in mediating the DM-associated neuropathic degeneration. This study will elucidate the relationship between DM and neurodegeneration which may account for the evolution of other neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease as discussed later. 相似文献
15.
Hyun Ku Yeo Tae Hyun Park Hee Yeon Kim Hyonchol Jang Jueun Lee GeumSook Hwang Seong Eon Ryu Si Hoon Park Hyun Kyu Song Hyun Seung Ban HyeJin Yoon Byung Il Lee 《EMBO reports》2021,22(6)
In eukaryotic cells, mitochondria are closely tethered to the endoplasmic reticulum (ER) at sites called mitochondria‐associated ER membranes (MAMs). Ca2+ ion and phospholipid transfer occurs at MAMs to support diverse cellular functions. Unlike those in yeast, the protein complexes involved in phospholipid transfer at MAMs in humans have not been identified. Here, we determine the crystal structure of the tetratricopeptide repeat domain of PTPIP51 (PTPIP51_TPR), a mitochondrial protein that interacts with the ER‐anchored VAPB protein at MAMs. The structure of PTPIP51_TPR shows an archetypal TPR fold, and an electron density map corresponding to an unidentified lipid‐like molecule probably derived from the protein expression host is found in the structure. We reveal functions of PTPIP51 in phospholipid binding/transfer, particularly of phosphatidic acid, in vitro. Depletion of PTPIP51 in cells reduces the mitochondrial cardiolipin level. Additionally, we confirm that the PTPIP51–VAPB interaction is mediated by the FFAT‐like motif of PTPIP51 and the MSP domain of VAPB. Our findings suggest that PTPIP51 is a phospholipid transfer protein with a MAM‐tethering function. 相似文献
16.
Summary The nuclear-associated endoplasmic reticulum of L-929 cells was found to contain the highest amount of labeled phosphatidylcholine
after a 60 min incubation with14C-choline. Radioactivity was otherwise distributed relatively evenly among other membrane-containing organelles (nuclei, mitochondria,
plasma membranes and endoplasmic reticulum membranes). During a 120 min chase following removal of isotope and addition of
cold choline chloride, there was a considerable reduction in labeled phosphatidylcholine in the NER and nuclei. The decrease
in radioactivity in these fractions was matched by an almost identical increase in the fraction containing mitochondria and
plasma membranes. Separation of mitochondria and plasma membranes by centrifugation on discontinuous gradients showed that14C-choline labeled phosphatidylcholine appeared most rapidly in the plasma membranes. The results indicate that phospholipid
molecules migrate within a short period of time from their site of synthesis in the NER to plasma membranes. 相似文献
17.
PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis 总被引:3,自引:0,他引:3
Simmen T Aslan JE Blagoveshchenskaya AD Thomas L Wan L Xiang Y Feliciangeli SF Hung CH Crump CM Thomas G 《The EMBO journal》2005,24(4):717-729
The endoplasmic reticulum (ER) and mitochondria form contacts that support communication between these two organelles, including synthesis and transfer of lipids, and the exchange of calcium, which regulates ER chaperones, mitochondrial ATP production, and apoptosis. Despite the fundamental roles for ER-mitochondria contacts, little is known about the molecules that regulate them. Here we report the identification of a multifunctional sorting protein, PACS-2, that integrates ER-mitochondria communication, ER homeostasis, and apoptosis. PACS-2 controls the apposition of mitochondria with the ER, as depletion of PACS-2 causes BAP31-dependent mitochondria fragmentation and uncoupling from the ER. PACS-2 also controls formation of ER lipid-synthesizing centers found on mitochondria-associated membranes and ER homeostasis. However, in response to apoptotic inducers, PACS-2 translocates Bid to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated Bid, the release of cytochrome c, and the activation of caspase-3, thereby causing cell death. Together, our results identify PACS-2 as a novel sorting protein that links the ER-mitochondria axis to ER homeostasis and the control of cell fate, and provide new insights into Bid action. 相似文献
18.
Steroid hormones participate in various metabolic processes, and dysfunction of the adrenocortical system leads to numerous pathologies in humans. One of the factors that can influence the secretory properties of adrenocorticocytes is changes in the cell volume observed during osmotic shock. In our study, we tested the hypothesis that osmotic stress modifies intracellular Ca2+ signalling and in such a way can influence the secretion of steroids by adrenocorticocytes. The effects of hyperosmotic stress on the cytosolic Ca2+ concentration ([Ca]i) in cultured adrenocortical cells from the zona fasciculata of the rat adrenals were investigated using the indicator fura-2 technique. Our experiments have shown that exposure of the cells to a hyperosmotic solution caused a decrease in the cell volume, as well as a reversible rise in the [Ca]i. Calcium-free media partly eliminated [Ca]i responses. Pretreatment of the cells with thapsigargin or CCCP (blockers of internal calcium stores) significantly decreased the magnitude of responses induced by osmotic stress. These findings indicate that osmotic shock causes an increase in the [Ca]i in adrenocortical cells, mostly due to depletion of the intracellular stores, and may in such a way stimulate steroidogenesis. 相似文献
19.
Prinz WA Grzyb L Veenhuis M Kahana JA Silver PA Rapoport TA 《The Journal of cell biology》2000,150(3):461-474
We find that the peripheral ER in Saccharomyces cerevisiae forms a dynamic network of interconnecting membrane tubules throughout the cell cycle, similar to the ER in higher eukaryotes. Maintenance of this network does not require microtubule or actin filaments, but its dynamic behavior is largely dependent on the actin cytoskeleton. We isolated three conditional mutants that disrupt peripheral ER structure. One has a mutation in a component of the COPI coat complex, which is required for vesicle budding. This mutant has a partial defect in ER segregation into daughter cells and disorganized ER in mother cells. A similar phenotype was found in other mutants with defects in vesicular trafficking between ER and Golgi complex, but not in mutants blocked at later steps in the secretory pathway. The other two mutants found in the screen have defects in the signal recognition particle (SRP) receptor. This receptor, along with SRP, targets ribosome-nascent chain complexes to the ER membrane for protein translocation. A conditional mutation in SRP also disrupts ER structure, but other mutants with translocation defects do not. We also demonstrate that, both in wild-type and mutant cells, the ER and mitochondria partially coalign, and that mutations that disrupt ER structure also affect mitochondrial structure. Our data suggest that both trafficking between the ER and Golgi complex and ribosome targeting are important for maintaining ER structure, and that proper ER structure may be required to maintain mitochondrial structure. 相似文献
20.
Our previous work has demonstrated that while the Ca(2+) and Pi ions acting in concert function as a potent osteoblast apoptogen, the underlying mechanisms by which it activates cell death is not known. We hypothesize that the ion pair causes release of Ca(2+) from intracellular stores ([Ca(2+)]i); the increase in intracellular calcium prompts the mitochondria to uptake more calcium. This accumulation of calcium eventually results in the loss of mitochondrial membrane potential (MMP) and, subsequently, apoptosis. To test this hypothesis, we evaluated apoptosome formation in MC3T3-E1 osteoblast-like cells treated with the ion pair. Western blot analysis indicated migration of cytochrome-c and Smac/DIABLO from mitochondria to the cytoplasm. Inhibition of either the electron transfer chain (with antimycin a and rotenone), or the activation of a MMP transition (with bongkrekic acid) inhibited apoptosis in a dose-dependent manner. Pre-treating osteoblasts with ruthenium red, a Ca(2+) uniporter inhibitor of both mitochondria and the endoplasmic reticulum (ER), also completely abolished Ca(2+.)Pi-induced apoptosis. Moreover, we showed that an increase in [Ca(2+)]i preceded the increase in MMP over the first 45 min of treatment; a mitochondrial membrane permeability transition was evident at 75 min. To determine the role of ER, Ca(2+) stores in the generation of the apoptotic signal by the ion pair, cells were treated with several inhibitors. Apoptosis was inhibited when cells were treated with dantrolene, an inhibitor of ER ryanodine receptors, and 2-aminodiphenylborate, an IP3 Ca(2+) channel inhibitor, but not cyclopiazonic acid, an ER Ca(2)-ATPase inhibitor. Together, these data demonstrate that Ca(2+) Pi-induced osteoblast apoptosis is characterized by the generation of an apoptosome and that Ca(2+) release from ER stores may promote ion pair-dependent cell death. 相似文献