首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endothelin (ET) system is involved in the regulation of myocardial function in health as well as in several diseases, such as congestive heart failure, myocardial infarction, and septic myocardial depression. Conflicting results have been reported regarding the acute contractile properties of ET-1. We therefore investigated the effects of intracoronary infusions of ET-1 and of the selective ET(B) receptor-selective agonist sarafotoxin 6c with increasing doses in anesthetized pigs. Myocardial effects were measured through analysis of the left ventricular pressure-volume relationship. ET-1 elicited increases in the myocardial contractile status (end-systolic elastance value of 0.94 +/- 0.11 to 1.48 +/- 0.23 and preload recruitable stroke work value of 68.7 +/- 4.7 to 83.4 +/- 7.2) that appear to be mediated through ET(A) receptors, whereas impairment in left ventricular isovolumic relaxation (tau = 41.5 +/- 1.4 to 58.1 +/- 5.0 and t(1/2) = 23.0 +/- 0.7 to 30.9 +/- 2.6, where tau is the time constant for pressure decay and t(1/2) is the half-time for pressure decay) was ET(B) receptor dependent. In addition, intravenous administration of ET-1 impaired ventricular relaxation but had no effect on contractility. Intracoronary sarafotoxin 6c administration caused impairments in left ventricular relaxation (tau from 43.3 +/- 1.8 to 54.4 +/- 3.4) as well as coronary vasoconstriction. In conclusion, ET-1 elicits positive inotropic and negative lusitropic myocardial effects in a pig model, possibly resulting from ET(A) and ET(B) receptor activation, respectively.  相似文献   

2.
Left ventricular dysfunction in swine with a recent myocardial infarction (MI) is associated with neurohumoral activation, including increased catecholamines and endothelin (ET). Although the increase in ET may serve to maintain blood pressure and, hence, perfusion of essential organs such as the heart and brain, it could also compromise myocardial perfusion by evoking coronary vasoconstriction. In the present study, we tested the hypothesis that endogenous ET contributes to perturbations in myocardial O2 balance during exercise in remodeled myocardium of swine with a recent MI. For this purpose, 26 chronically instrumented swine (10 with and 16 without MI) were studied at rest and while running on a treadmill at 1-4 km/h. After MI, plasma ET increased from 3.2 +/- 0.4 to 4.9 +/- 0.3 pM (P < 0.05). In normal swine, blockade of ETA (by EMD-122946) or ETA-ETB (by tezosentan) receptors resulted in an increase in coronary venous PO2, i.e., coronary vasodilation at rest, which decreased during exercise. In contrast, neither ETA nor ETA-ETB receptor blockade resulted in coronary vasodilation in swine with MI. Coronary vasoconstriction to intravenous ET-1 infusion in awake resting swine was blunted after MI. To investigate whether factors released by cardiac myocytes contributed to decreased vascular responsiveness to ET, we performed ET-1 dose-response curves in isolated coronary arterioles (70-200 microm). Vasoconstriction to ET-1 in isolated arterioles from MI swine was enhanced. In conclusion, the vasoconstrictor influence of endogenous as well as exogenous ET on coronary circulation in vivo is reduced. Because the response of isolated coronary arterioles to ET is increased after MI, the reduced vasoconstrictor influence in vivo suggests modulation of ET receptor sensitivity by cardiac myocytes, which may serve to maintain adequate myocardial perfusion.  相似文献   

3.
Endothelin (ET) contributes to the increased systemic vascular resistance and elevated cardiac filling pressures seen in congestive heart failure (CHF). We investigated to what extent ET-mediated vasoconstriction in CHF occurs through an endocrine action of elevated plasma ET or by an autocrine/paracrine mechanism related to induction of vascular ET gene expression. Three weeks of pacing (225 beats/min) induced a marked release of ET-1 from the pulmonary circulation with a sixfold elevation of arterial plasma ET in CHF pigs compared with sham-operated pigs. Arterial plasma ET was the strongest and only independent predictor of systemic vascular resistance. In contrast, vascular preproET-1 and ET-receptor mRNA expression were unaltered or decreased in CHF pigs and did not correlate with indexes of vascular tone. However, myocardial preproET-1 mRNA expression increased twofold in CHF pigs. PreproET-2 and preproET-3 mRNAs were not detectable in cardiovascular tissues. In conclusion, plasma ET was markedly increased because of an augmented release from the pulmonary circulation during CHF, and arterial plasma ET correlated with systemic vascular resistance. The absence of ET induction in the peripheral vasculature suggests that ET increases vascular tone during CHF by an endocrine, not an autocrine/paracrine, mechanism.  相似文献   

4.
目的:考察不同负荷运动训练对小鼠心肌凋亡相关miR-1,miR-21和靶蛋白的影响,探讨运动干预心肌凋亡的可能机制。方法:选取21只C57BL/6小鼠,随机分为3组(n=7):安静组(SE组)、训练1组(ET1组)、训练2组(ET2)。SE组不进行训练,ET1组完成8周递增负荷游泳训练,5天/周,1次/天,第1周30 min/count,每周增加10 min,第7、8周时间维持在90 min;ET2组在ET1组方案基础上增加负荷,前5周与ET1相同,后3周每天训练2次。TUNEL检测考察心肌凋亡水平,Western blot和RT-PCR分别测定蛋白和miRs的变化。结果:ET1组游泳训练对小鼠心肌凋亡影响不明显,miR-1表达无显著变化,但其靶蛋白Bcl-2表达显著增高(P<0.01),miR-21及其靶蛋白PDCD4表达均无显著变化。ET2组游泳训练显著降低心肌凋亡水平及miR-1表达(P<0.01)、提高Bcl-2表达(P<0.05);同时显著提高miR-21表达(P<0.05),但对PDCD4表达无明显影响。结论:ET1组训练对心肌凋亡干预不明显,ET2组运动训练可降低心肌凋亡水平,miR-1及靶蛋白Bcl-2变化可能是机制之一,PDCD4对运动训练不敏感,miR-21可能与其它靶蛋白参与运动干预心肌凋亡的分子机制。  相似文献   

5.
目的:研究雨生红球藻对长时间、大强度运动导致的大鼠运动性心肌损伤的保护作用。方法:以大强度耐力训练大鼠为模型,将65只42 d龄雄性SPF级Wistar大鼠随机分为5组:安静组(C组)、运动对照组(M组)、运动+雨生红球藻低剂量组(HM I组)、运动+雨生红球藻中剂量组(HM Ⅱ组)、运动+雨生红球藻高剂量组(HM Ⅲ组),每组12只(剔除不符合实验要求的大鼠5只)。雨生红球藻组剂量分别为0.067,0.133,0.4 g/kg,体积为5 ml/kg,每天灌胃(ig)1次,其他组ig等量生理盐水。游泳训练42 d后,测定血清谷丙转氨酶(ALT)等心肌损伤标志物含量、心肌超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量,血清、心肌内皮素(ET)及降钙素基因相关肽(CGRP)含量等相关生化指标。结果:血清ALT、乳酸脱氢酶(LDH)、肌酸激酶(CK)、a-羟丁酸脱氢酶(a-HBDH)、心肌MDA、血清与心肌ET含量,M组较C组显著升高(P<0.05或P<0.01)。心肌SOD活性、血清与心肌CGRP含量,M组较C组显著降低(P<0.05)。血清ALT (P<0.01)、LDH (P<0.01)、CK (P<0.05或P<0.01)含量,HM各组较M组均有所降低,组间无差异,且随剂量增加而递减。血清a-HBDH、ET、心肌ET含量,HM各组较M组均有所降低(P<0.05或P<0.01),且组间随剂量增加而递减;HM Ⅲ组较HM I组显著降低(P<0.05)。心肌MDA含量,HM各组较M组均显著降低(P<0.05或P<0.01),且组间随剂量增加而递减;HM Ⅱ、HM Ⅲ低于HM I组(P<0.01)。心肌SOD活性,HM各组较M组均有所升高(P<0.05或P<0.01),且组间随剂量增加而递增;HM Ⅱ、HM Ⅲ高于HM I组(P<0.01)。血清与心肌CGRP含量,HM各组较M组显著升高(P<0.05或P<0.01),且各组组间随剂量增加而递增;HM Ⅲ组较HM I组显著升高(P<0.05)。结论:不同剂量雨生红球藻可有效地清除机体长时间、大强度运动产生的过量自由基;提高机体免疫力,增强血管cNOS活性,保证ET和CGRP浓度的相对平衡,从而阻止心肌脂质过氧化作用和心肌损伤。其中以高剂量组效果为最好。  相似文献   

6.
The matrix metalloproteinases (MMPs), in particular, membrane type 1 MMP (MT1-MMP), are increased in the context of myocardial ischemia and reperfusion (I/R) and likely contribute to myocardial dysfunction. One potential upstream induction mechanism for MT1-MMP is endothelin (ET) release and subsequent protein kinase C (PKC) activation. Modulation of ET and PKC signaling with respect to MT1-MMP activity with I/R has yet to be explored. Accordingly, this study examined in vivo MT1-MMP activation during I/R following modification of ET signaling and PKC activation. With the use of a novel fluorogenic microdialysis system, myocardial interstitial MT1-MMP activity was measured in pigs (30 kg; n = 9) during I/R (90 min I/120 min R). Local ET(A) receptor antagonism (BQ-123, 1 microM) and PKC inhibition (chelerythrine, 1 microM) were performed in parallel microdialysis probes. MT1-MMP activity was increased during I/R by 122 +/- 10% (P < 0.05) and was unchanged from baseline with ET antagonism and/or PKC inhibition. Selective PKC isoform induction occurred such that PKC-betaII increased by 198 +/- 31% (P < 0.05). MT1-MMP phosphothreonine, a putative PKC phosphorylation site, was increased by 121 +/- 8% (P < 0.05) in the I/R region. These studies demonstrate for the first time that increased interstitial MT1-MMP activity during I/R is a result of the ET/PKC pathway and may be due to enhanced phosphorylation of MT1-MMP. These findings identify multiple potential targets for modulating a local proteolytic pathway operative during I/R.  相似文献   

7.
Coronary tone is determined by a balance between endogenously produced endothelin and metabolic dilators. We hypothesized that coronary vasodilation during augmented metabolism is the net result of decreased endothelin production and increased production of vasodilators. Isolated rat myocytes were stimulated at 0, 200, and 400 beats/min to modify metabolism. Supernatant from these preparations was added to isolated coronary arterioles with and without blocking vasoactive pathways (adenosine, bradykinin, and endothelin). Chronically instrumented swine were studied while resting and running on a treadmill before and after endothelin type A (ET(A)) receptor blockade. The vasodilatory properties of the supernatant increased with increased stimulation frequencies. Combined blockade of adenosine and bradykinin receptors abolished vasodilation in response to supernatant of stimulated myocytes. ET(A) blockade increased vasodilation to supernatant of unstimulated myocytes but did not affect dilation to supernatant of myocytes stimulated at 400 beats/min. In vivo, ET(A) blockade resulted in coronary vasodilation at rest, which waned during exercise. Thus endothelin has a tonic constrictor influence through the ET(A) receptor at low myocardial metabolic demand but its influence decreased during increased metabolism.  相似文献   

8.
Wu B  Wang TH  Zhu XN  Pan JY 《生理学报》1999,51(1):19-24
本实验用无血清的培养新生大鼠心肌细胞,探讨内皮素1(ET1)对原癌基因cfos表达的作用。结果显示:ET1可显著诱导cfos的表达,其表达的高峰在30min,2h恢复到正常水平,并呈剂量依赖性反应和被ETA的特异性受体拮抗剂BQ123所阻断;蛋白激酶C(PKC)激动剂PMA可诱导cfos表达,而PKC抑制剂Staurosporine则可阻断ET1诱导的cfos表达;钙通道阻断剂硝苯吡啶预处理心肌细胞对ET1诱导的心肌细胞的cfos表达无明显的作用。这些结果提示,ET1诱导cfos表达是通过ETA受体介导的,PKC在此过程中起重要作用。  相似文献   

9.
Locally released endothelin (ET)-1 has been recently identified as an important mediator of cardiac hypertrophy. It is still unclear, however, which primary stimulus specifically activates ET-dependent signaling pathways. We therefore examined in adult rats (n = 51) the effects of a selective ET(A) receptor antagonist in experimental models of cardiac hypertrophy, in which myocardial growth is predominantly initiated by a single primary stimulus. Rats were exposed to mechanical overload (ascending aortic stenosis), increased levels of circulating ANG II (ANG II infusion combined with hydralazine), or adrenergic stimulation (infusion of norepinephrine in a subpressor dose) for 7 days. All experimental treatments significantly increased left ventricular weight/body weight ratios compared with untreated rats, whereas systolic left ventricular peak pressure was increased only after ascending aortic stenosis. ET(A) receptor blockade exclusively reduced norepinephrine-induced cardiac hypertrophy and atrial natriuretic peptide gene expression. Blood pressure levels and heart rates remained unaffected during ET(A) receptor blockade in all experimental groups. These data indicate that in rat left ventricle, the ET-dependent signaling pathway leading to early development of cardiac hypertrophy and fetal gene expression is primarily activated by norepinephrine.  相似文献   

10.
Recently it was demonstrated that treatment with a nonselective endothelin (ET) receptor antagonist significantly reduces myocardial infarct size, which suggests a major role for ET in tissue repair following myocardial infarction (MI). Tissue repair and remodeling found at the site of MI are mainly attributed to myofibroblasts (myoFbs), which are phenotypically transformed fibroblasts that express alpha-smooth muscle actin. It is unclear whether myoFbs generate ET peptides and consequentially regulate pathophysiological functions de novo through expression of the ET-1 precursor (prepro-ET-1), ET-converting enzyme-1 (ECE-1), a metalloprotease that is required to convert Big ET-1 to ET-1 and ET receptors. To address these intriguing questions, we used cultured myoFbs isolated from 4-wk-old MI scar tissue. In cultured cells, we found: 1) expression of mRNA for ET precursor gene (ppET1), ECE-1, and ETA and ETB receptors by semiquantitative RT-PCR; 2) phosphoramidon-sensitive ECE-1 activity, which converts Big ET-1 to biologically active peptide ET-1; 3) expression of ETA and ETB receptors; 4) elaboration of Big ET-1 and ET-1 peptides in myoFb culture media; and 5) upregulation of type I collagen gene expression and synthesis by ET, which was blocked by bosentan (a nonselective ETA- and ETB receptor blocker). These studies clearly indicated that myoFbs express and generate ET-1 and receptor-mediated modulation of type I collagen expression by ET-1. Locally generated ET-1 may contribute to tissue repair of the infarcted heart in an autocrine/paracrine manner.  相似文献   

11.
This study investigated whether selective endothelin (ET) type A (ET(A)) or nonselective ET(A)/ET(B) receptor blockade exerted antiarrhythmic effects through attenuated sympathetic reinnervation after infarction. Twenty-four hours after ligation of the left anterior descending artery, male Wistar rats received either vehicle, ABT-627 (selective ET(A) receptor antagonist), bosentan (nonselective ET(A)/ET(B) receptor antagonist), or hydralazine for 4 wk. The measurement of myocardial ET-1 levels at the remote zone revealed a significant increase in vehicle-treated infarcted rats compared with sham-operated rats, consistent with increased activities of ET-1 after infarction. Sympathetic nerve function changes assessed by the norepinephrine content of myocardium and the dialysate and plasma dihydroxyphenylglycol levels were parallel to ET-1 levels. Immunohistochemical analysis for tyrosine hydroxylase, growth-associated protein 43, and neurofilament also confirmed the change of nerve function. This was accompanied with a significant upregulation of nerve growth factor protein expression and mRNA in the vehicle-treated infarcted rats, which reduced after the administration of either ET(A) or ET(A)/ET(B) blockade to a similar extent. The beneficial effects of ET receptor antagonists on sympathetic nerve function and structures were dissociated from their blood pressure-lowering effect because ET receptor antagonists and hydralazine reduced arterial pressure similarly. Arrhythmic severity during programmed stimulation in ET receptor antagonists-treated rats was significantly lower than that in vehicle-treated infarcted rats. Our data indicate that the ET system, especially via ET(A) receptors, plays an important role in attenuating sympathetic reinnervation after infarction. Independent of their hemodynamic effects, a chronic use of either ET(A) or ET(A)/ET(B) antagonists may modify the arrhythmogenic response to programmed electrical stimulation.  相似文献   

12.
Several studies have indicated an interaction between the renin-angiotensin (ANG II) system and endothelin (ET) in the regulation of vascular tone. Previously, we have shown that both ET and ANG II exert a vasoconstrictor influence on the coronary resistance vessels of awake normal swine. Here, we investigated whether the interaction between ANG II and ET exists in the control of coronary resistance vessel tone at rest and during exercise using single and combined blockade of angiotensin type 1 (AT(1)) and ET(A)/ET(B) receptors. Since both circulating ANG II and ET levels are increased after myocardial infarction (MI), we investigated if the interaction between these systems is altered after MI. In awake healthy swine, coronary vasodilation in response to ET(A)/ET(B) receptor blockade in the presence of AT(1) blockade was similar to vasodilation produced by ET(A)/ET(B) blockade under control conditions. In awake swine with a 2- to 3-wk-old MI, coronary vasodilator responses to individual AT(1) and ET(A)/ET(B) receptor blockade were virtually abolished, despite similar coronary arteriolar AT(1) and ET(A) receptor expression compared with normal swine. Unexpectedly, in the presence of AT(1) blockade (which had no effect on circulating ET levels), ET(A)/ET(B) receptor blockade elicited a coronary vasodilator response. These findings suggest that in normal healthy swine the two vasoconstrictor systems contribute to coronary resistance vessel control in a linear additive manner, i.e., with negligible cross-talk. In contrast, in the remodeled myocardium, cross-talk between ANG II and ET emerges, resulting in nonlinear redundant control of coronary resistance vessel tone.  相似文献   

13.
Endothelin-1 (ET-1) and nitric oxide (NO) exert opposite effects in the cardiovascular system, and there is evidence that the NO counters the potential deleterious effects of ET-1. We investigated whether NO affects the increased mRNA expression of ET-1 and endothelin receptors induced by (i) 30 min of ischemia with or without 30 min reperfusion in myocytes from isolated rat hearts or (ii) ischemic conditions (acidosis or hypoxia) in cultured rat neonatal ventricular myocytes. Ischemia with or without reperfusion produced more than a twofold increase in mRNA expression of ET-1 as well as the ET(A) and ET(B) receptor (P < 0.05), although these effects were completely blocked by the NO donor 3-morpholinosydnonimine (SIN-1; 1 microM). To assess the possible factors regulating ET expression, myocytes were exposed to acidosis (pH 6.8-6.2) or to hypoxic conditions in an anaerobic chamber for 24 h in the presence or absence of SIN-1. At all acidic pHs, ET-1 and ET(A) receptor mRNA expression was significantly (P < 0.05) elevated approximately threefold, although the magnitude of elevation was independent of the degree of acidosis. These effects were completely prevented by SIN-1. ET(B) receptor expression was unaffected by acidosis. Hypoxia increased ET-1 as well as ET(A) and ET(B) receptor expression threefold (P < 0.05), although this was unaffected by SIN-1. Our results demonstrate that myocardial ischemia and reperfusion upregulate the ET system, which is inhibited by NO. Although increased expression of the ET system can be mimicked by both acidosis and hypoxia, only the effects of the former are NO sensitive. NO may serve an endogenous inhibitory factor which regulates the expression of the ET system under pathological conditions.  相似文献   

14.
ABSTRACT: BACKGROUND: Exercise training (ET) in addition to optimal medical therapy (OMT) in patients with stable coronary artery disease (CAD) has been demonstrated to be superior to percutaneous coronary interventions (PCI) with respect to the composite endpoint of death, myocardial infarction, stroke, revascularization and hospitalization due to worsening of angina. One mechanism leading to this superiority discussed in the literature is the increase in coronary collateral blood flow due to ET. Until now, data demonstrating the positive effect of ET on the collateral blood flow and the functional capacity of the coronary collateral circulation are still lacking.Methods/designThe EXCITE trial is a three-armed randomized, prospective, single-center, open-label, controlled study enrolling 60 patients with stable CAD and at least one significant coronary stenosis (fractional flow reserve <=0.75). The study is designed to compare the influence and efficacy of two different 4-week ET programs [high-intensity interval trainings (IT) versus moderate-intensity exercise training (MT) in addition to OMT] versus OMT only on collateral blood flow (CBF). The primary efficacy endpoint is the change of the CBF of the target vessel after 4 weeks as assessed by coronary catheterization with a pressure wire during interruption of the antegrade flow of the target vessel by balloon occlusion. Secondary endpoints include the change in plaque composition as assessed by intravascular ultrasound (IVUS) after 4 weeks, myocardial perfusion as analyzed in MRI after 4 weeks and 12 months, peak oxygen uptake (V02 peak), change in endothelial function and biomarkers after 4 weeks, 3, 6 and 12 months. The safety endpoint addresses major adverse cardiovascular events (death from cardiovascular cause, myocardial infarction, stroke, TIA, target vessel revascularization or hospitalization) after 12 months. DISCUSSION: The trial investigates whether ET for 4 weeks increases the CBF in patients with significant CAD compared to a sedentary control group. It also examines the impact of two intensities of ET on the CBF as well as the histological plaque composition. The trial started recruitment in June 2009 and will complete recruitment until June 2012. First results are expected in December 2012 (4-week follow-up), final results (12-month long-term secondary endpoint) in December 2013.Trial registrationClinical trial registration information-URL: www.clinicaltrials.gov.Unique identifier: NCT01209637.  相似文献   

15.
Angiotensin (AT) II, endothelin (ET)-1, and atrial natriuretic peptide (ANP) play an important role in cardiovascular regulatory processes under physiologic and pathophysiologic conditions. All of these agents are present in the pericardial fluid, and alteration of their pericardial concentrations mirror changes in the myocardial interstitium. Moreover, the composition the pericardial fluid may also reflect the myocardial interaction of these agents. The local myocardial effects of AT II on cardiac ET-1 and ANP production, as well as on cardiovascular function, was studied by intrapericardial (ip) administration of AT II (0.125-1.0 microg/kg) to the in situ dog heart (n = 8). Big ET, ET-1, and ANP [1-28] fragment concentrations were measured by enzyme-linked immunosorbent assay in pericardial infusate samples and in peripheral blood before and after an AT II treatment of 15 mins. Systemic blood pressure (BP), heart rate (HR), and left ventricular contractility (dP/dt) were also recorded. In our studies, the pericardial big ET (but not ET-1) concentration was increased to a maximum value of 139 +/- 28 versus 74 +/- 12 pg/ml (control; P < 0.02) with ip AT II administration, with parallel elevations of the pericardial ANP levels (36.8 +/- 7.2 vs. 24.4 +/- 3.6 ng/ml; P < 0.05). The ip administration of AT II did not influence HR, and it elicited moderate changes in BP (BP(max), +14 +/- 2 mm Hg, P < 0.001; dP/dt(max), +10 +/- 3%, P < 0.02). The plasma levels of big ET, ET-1, and ANP did not change significantly. The results suggest that AT II promotes production of big ET and ANP in the heart. However, no detectable conversion of big ET-1 to ET-1 was observed within 15 mins. The myocardial formation of big ET-1 and ANP occurred, at least in part, independently of the changes in cardiovascular function.  相似文献   

16.
Monocyte exposure to mitochondrial Danger Associated Molecular Patterns (DAMPs), including mitochondrial DNA (mtDNA), induces a transient state in which these cells are refractory to further endotoxin stimulation. In this context, IRAK-M up-regulation and impaired p65 activity were observed. This phenomenon, termed endotoxin tolerance (ET), is characterized by decreased production of cytokines in response to the pro-inflammatory stimulus. We also show that monocytes isolated from patients with myocardial infarction (MI) exhibited high levels of circulating mtDNA, which correlated with ET status. Moreover, a significant incidence of infection was observed in those patients with a strong tolerant phenotype. The present data extend our current understanding of the implications of endotoxin tolerance. Furthermore, our data suggest that the levels of mitochondrial antigens in plasma, such as plasma mtDNA, should be useful as a marker of increased risk of susceptibility to nosocomial infections in MI and in other pathologies involving tissue damage.  相似文献   

17.
Endothelin (ET) A (ET(A)) receptors activate matrix metalloproteinases (MMP). Since endothelin-1 (ET) is increased in myocardium late postmyocardial infarction (MI), we hypothesized that stimulation of ET(A) receptors contributes to activation of myocardial MMPs late post-MI. Three days post-MI, rats were randomized to treatment with the ET(A)-selective receptor antagonist sitaxsentan (n = 12) or a control group (n = 12). Six weeks later, there were rightward shifts of the left ventricular (LV) end-diastolic and end-systolic pressure-volume relationships, as measured ex vivo by the isovolumic Langendorff technique. Both shifts were markedly attenuated by sitaxsentan. In LV myocardium remote from the infarct, the activities of MMP-1, MMP-2, and MMP-9 were increased in the post-MI group, and the increases were prevented by sitaxsentan treatment. Expression of tissue inhibitor of MMP-1 was decreased post-MI, and the decrease was prevented by sitaxsentan treatment. Chronic post-MI remodeling is associated with activation of MMPs in myocardium remote from the infarct. Inhibition of ET(A) receptors prevents MMP activation and LV dilation, suggesting that ET, acting via the ET(A) receptor, contributes to chronic post-MI remodeling by its effects on MMP activity.  相似文献   

18.
Endothelin (ET) levels are elevated in congestive heart failure secondary to myocardial infarction (MI) and correlate well with the severity of pulmonary hypertension (PH), suggesting that the ET peptide could contribute to the pathophysiology of venous PH. Alterations of pulmonary vasoreactivity to ET after MI and the respective roles of the ET(A) and ET(B) receptors (ET(A)-R and ET(B)-R) have never been evaluated, to our knowledge. MI was induced in rats. Three weeks later, small pulmonary resistance arteries were mounted on a microvascular myograph. Cumulative concentration-response curves to ET-1 and sarafotoxin 6c (S6c) were performed. Response to ET was also assessed in the presence of ET-R antagonists. Heterodimerization of receptors was evaluated by immunoprecipitation of the ET(B)-R, followed by western blotting for the expression of the ET(A)-R. Maximal vasoconstriction and sensitivity to ET-1 were similar in sham and MI with values of 88 +/- 3.9% and 80 +/- 3.8%, respectively. The response to S6c was similarly less in both sham (67 +/- 5.7%) and MI groups (60 +/- 6.6%). When administered alone, the ET(A)-R antagonist (10 nM A-147627.1) and the ET(B)-R antagonist (1 microM A-192621.1) had no significant effect. However, their combination markedly reduced vaso-constriction (52 +/- 5.3%; P < 0.001). The endothelial and medial distribution of ET-Rs was similar in sham and MI groups. In vitro studies demonstrated co-immunoprecipitation of the ET(A)-R and ET(B)-R. Vasoconstriction of isolated resistance pulmonary arteries to ET agonists is not altered after MI. Dual antagonism results in optimal blockade of vasoconstriction, possibly because the ET(A)-R and ET(B)-R can form functional heterodimers.  相似文献   

19.
We hypothesized that endothelin (ET) release during exercise may be triggered by alpha-adrenergic-receptor activation and thereby influence coronary hemodynamics and O(2) metabolism in dogs. Exercise resulted in coronary blood flow increases (to 1.88+/-0.26 from 1.10+/- 0.12 ml x min(-1) x g(-1)) and in a fall (P<0.01) in coronary sinus O(2) saturation (17.4+/-1.5 to 9.6+/-0.7 vol%), whereas myocardial O(2) consumption (MVO(2)) increased (109+/-13% from 145+/-16 microl O(2) min(-1) x g(-1)). Tezosentan, a dual ET(A)/ET(B)-receptor blocker, slightly reduced mean arterial pressure (MAP) and increased heart rate throughout exercise. The relationship between coronary sinus O(2) saturation and MVO(2) was shifted upward (P<0.05) after tezosentan administration; i.e., as MVO(2) increased during exercise, coronary sinus O(2) saturation was disproportionately higher after ET-receptor blockade. After propranolol, tezosentan resulted in significant decreases (P<0.05) in left ventricular pressure, the first derivative of left ventricular pressure over time, and MAP during exercise. As MVO(2) increased during exercise, coronary sinus O(2) saturation levels after tezosentan became superimposable over those observed before ET-receptor blockade. Thus dual blockade of ET(A)/ET(B) receptors alters coronary hemodynamics and O(2) metabolism during exercise, but ET activity failed to increase beyond baseline levels.  相似文献   

20.
The endothelin system and its role in acute myocardial infarction   总被引:3,自引:0,他引:3  
Immediately after an acute myocardial infarction (AMI) or in models of ischemia-reperfusion injury, cardiac endothelin (ET) system is markedly activated, and plasma levels of ET are increased. In the heart, expression of the main components of the ET system (ET-1 peptide, both receptor subtypes ETA and ETB, though not endothelin converting enzyme) are increased both at the gene level and protein level, in the viable myocardium, and--even more substantially--in the necrotic area. Despite these conspicuous abnormalities, the role of ET in this setting remains unclear. In the absence of human data, most short-term studies in animals (in terms of hours to up to 8 days post-AMI) and in the reperfused ischemic heart, have found beneficial effects of ET receptor blockade on survival rate, incidence of arrhythmias, cardiac function, and morphology. In contrast, many studies in which a long-term ET inhibition was started immediately post-infarction and the late effects were examined in animals with ensuing chronic heart failure (14-100 days postinfarction), adverse effects were also observed, such as scar thinning, further ventricular dilation, or even a worse survival rate. It appears that the ET system plays a dual role during the early post-AMI period. At present, it is not clear whether the short-term beneficial effects or long-term adverse effects of ET receptor blockade would prevail. Acute use of short-acting ET receptor antagonists in patients with AMI complicated by an acute heart failure is an attractive possibility that also remains to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号