首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Differential adhesion between migrating neurons and transient radial glial fibers enables the deployment of neurons into appropriate layers in the developing cerebral cortex. The identity of radial glial signals that regulate the termination of migration remains unclear. Here, we identified a radial glial surface antigen, SPARC (secreted protein acidic and rich in cysteine)-like 1, distributed predominantly in radial glial fibers passing through the upper strata of the cortical plate (CP) where neurons end their migration. Neuronal migration and adhesion assays indicate that SPARC-like 1 functions to terminate neuronal migration by reducing the adhesivity of neurons at the top of the CP. Cortical neurons fail to achieve appropriate positions in the absence of SPARC-like 1 function in vivo. Together, these data suggest that antiadhesive signaling via SPARC-like 1 on radial glial cell surfaces may enable neurons to recognize the end of migration in the developing cerebral cortex.  相似文献   

2.
3.
Neuronal migration is crucial for the construction of neuronal architecture such as layers and nuclei. Most inhibitory interneurons in the neocortex derive from the basal forebrain and migrate tangentially; however, little is known about the mode of migration of these neurons in the cortex. We used glutamate decarboxylase (Gad)67-green fluorescent protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)-ergic neurons and performed time-lapse analysis. In coronal slices, many GFP-positive neurons in the lower intermediate zone (IZ) and subventricular zone (SVZ) showed robust tangential migration from lateral to medial cortex, while others showed radial and non-radial migration mostly towards the pial surface. In flat-mount preparations, GFP-positive neurons of the marginal zone (MZ) showed multidirectional tangential migration. Some of these neurons descended toward the cortical plate (CP). Intracortical migration of these neurons was largely unaffected by a treatment that cleaves glycosylphosphatidylinositol (GPI) anchors. These findings suggest that tangential migration of cortical interneurons from lateral to medial cortex predominantly occurs in the IZ/SVZ and raise the possibility that a part of the pial surface-directed neurons in the IZ/SVZ reach the MZ, whereby they spread into the whole area of the cortex. At least a part of these neurons may descend toward the CP. Our results also suggest that intracortical migration of GABAergic neurons occurs independent of GPI-anchored proteins.  相似文献   

4.
5.
6.
We show that alpha3 integrin mutation disrupts distinct aspects of neuronal migration and placement in the cerebral cortex. The preplate develops normally in alpha3 integrin mutant mice. However, time lapse imaging of migrating neurons in embryonic cortical slices indicates retarded radial and tangential migration of neurons, but not ventricular zone-directed migration. Examination of the actin cytoskeleton of alpha3 integrin mutant cortical cells reveals aberrant actin cytoskeletal dynamics at the leading edges. Deficits are also evident in the ability of developing neurons to probe their cellular environment with filopodial and lamellipodial activity. Calbindin or calretinin positive upper layer neurons as well as the deep layer neurons of alpha3 integrin mutant mice expressing EGFP were misplaced. These results suggest that alpha3beta1 integrin deficiency impairs distinct patterns of neuronal migration and placement through dysregulated actin dynamics and defective ability to search and respond to migration modulating cues in the developing cortex.  相似文献   

7.
EGFRs mediate chemotactic migration in the developing telencephalon.   总被引:2,自引:0,他引:2  
Epidermal growth factor receptors (EGFRs) have been implicated in the control of migration in the telencephalon, but the mechanism underlying their contribution is unclear. We show that expression of a threshold level of EGFRs confers chemotactic competence in stem cells, neurons and astrocytes in cortical explants. This level of receptor expression is normally achieved by a subpopulation of cells during mid-embryonic development. Cells that express high levels of EGFR are located in migration pathways, including the tangential pathway to the olfactory bulb via the rostral migratory stream (RMS), the lateral cortical stream (LCS) leading to ventrolateral cortex and the radial pathway from proliferative zones to cortical plate. The targets of these pathways express the ligands HB-EGF and/or TGFalpha. To test the idea that EGFRs mediate chemotactic migration these pathways, we increased the size of the population of cells expressing threshold levels of EGFRs in vivo by viral transduction. Our results suggest that EGFRs mediate migration radially to the cortical plate and ventrolaterally in the LCS, but not tangentially in the RMS. Within the bulb, however, EGFRs also mediate radial migration. Our findings suggest that developmental changes in EGFR expression, together with changes in ligand expression regulate the migration of specific populations of cells in the telencephalon by a chemoattractive mechanism.  相似文献   

8.
Cellular migration patterns in the developing mouse cerebral cortex   总被引:6,自引:0,他引:6  
The migration patterns of embryonic mouse cortical cells were investigated using a replication-incompetent retrovirus vector (BAG). The lateral ventricles of embryonic day 12 mouse embryos were infected with BAG and brains were harvested 2, 3, 4 and 6 days after infection. The location and morphology of all infected cortical cells were recorded from serial sections of entire brains, which were then reconstructed in three dimensions. Examination of the distribution of labelled cells revealed that there were migration patterns characteristic of each medial-lateral domain of the cortex. In the medial and dorsal areas, migration was often radial, although tangential spread increased with survival time, in large part due to ramification of cells in the intermediate zone. In the dorsolateral and lateral areas of the cortex, radial migration was generally not observed. Rather, variable extents of tangential migration occurred, and often resulted in wide separation of cells in the cortical plate. Almost all of the cellular dispersion occurred in the intermediate zone, although a modest degree of dispersion also occurred within the cortical plate itself. Most dispersion occurred in the mediolateral plane, with relatively little dispersion along the anteroposterior axis. Though characteristic migration patterns could be defined, wide variability in the extents of radial migration and tangential separation of cells was seen. The patterns of migration paralleled the distribution of radial glial fibers in all areas, and are most likely a reflection of the role of this network in supporting the migration of cortical neurons. The extent and variability of cellular dispersion supports a lineage-independent mechanism of cortical column ontogenesis.  相似文献   

9.
Morphogenesis of the central nervous system relies in large part upon the correct migration of neuronal cells from birthplace to final position. Two general modes of migration govern CNS morphogenesis: radial, which is mostly glia-guided and topologically relatively simple; and tangential, which often involves complex movement of neurons in more than one direction. We describe the consequences of loss of function of presenilin 1 on these fundamental processes. Previous studies of the central nervous system in presenilin 1 homozygote mutant embryos identified a premature neuronal differentiation that is transient and localized, with cortical dysplasia at later stages. We document widespread effects on CNS morphogenesis that appear strongly linked to defective neuronal migration. Loss of presenilin 1 function perturbs both radial and tangential migration in cerebral cortex, and several tangential migratory pathways in the brainstem. The inability of cells to execute their migratory trajectories affects cortical lamination, formation of the facial branchiomotor nucleus, the spread of cerebellar granule cell precursors to form the external granule layer and development of the pontine nuclei. Finally, overall morphogenesis of the mid-hindbrain region is abnormal, resulting in incomplete midline fusion of the cerebellum and overgrowth of the caudal midbrain. These observations indicate that in the absence of presenilin 1 function, the ability of a cell to move can be severely impaired regardless of its mode of migration, and, at a grosser level, brain morphogenesis is perturbed. Our results demonstrate that presenilin 1 plays a much more important role in brain development than has been assumed, consistent with a pleiotropic involvement of this molecule in cellular signaling.  相似文献   

10.
14‐3‐3 proteins are ubiquitously‐expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14‐3‐3epsilon and 14‐3‐3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14‐3‐3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14‐3‐3gamma‐deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14‐3‐3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time‐lapse live imaging of brain slices revealed that the ablation of the 14‐3‐3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14‐3‐3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14‐3‐3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14‐3‐3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 600–614, 2016  相似文献   

11.
Anton ES  Kreidberg JA  Rakic P 《Neuron》1999,22(2):277-289
Changes in specific cell-cell recognition and adhesion interactions between neurons and radial glial cells regulate neuronal migration as well as the establishment of distinct layers in the developing cerebral cortex. Here, we show that alpha3beta1 integrin is necessary for neuron-glial recognition during neuronal migration and that alpha(v) integrins provide optimal levels of the basic neuron-glial adhesion needed to maintain neuronal migration on radial glial fibers. A gliophilic-to-neurophilic switch in the adhesive preference of developing cortical neurons occurs following the loss of alpha3beta1 integrin function. Furthermore, the targeted mutation of the alpha3 integrin gene results in abnormal layering of the cerebral cortex. These results suggest that alpha3beta1 and alpha(v) integrins regulate distinct aspects of neuronal migration and neuron-glial interactions during corticogenesis.  相似文献   

12.
The tyrosine kinase receptor cKit and its ligand stem cell factor (SCF) are well known mediators in proliferation, survival, and positive chemotaxis of different cell types in the hematopoietic system. However, and in spite of previous reports showing robust expression of cKit and SCF in the brain during development, their possible function in the cerebral cortex has not been clarified. In this study, embryonic knockdown expression of cKit in the rat cortex by in utero electroporation of specific RNAi resulted in delayed radial migration of cortical neurons. In conditional Nestin‐cKit KO homozygous mutants, radial migration in the cortex was also delayed. The opposite phenotype was observed after overexpressing cKit in the cortex: radial migration was accelerated. Callosal fibers electroporated with cKit RNAi were also delayed in their extension within the contralateral cortex and eventually failed to innervate their target area. In vitro experiments showed that, whereas SCF was able to promote migration of cortical neurons, it had no effect on cortical neurite outgrowth. In summary, our results demonstrate that (1) cKit is necessary for radial migration of cortical neurons, probably through SCF binding and (2) cKit is necessary for the correct formation of the callosal projection, most likely by a mechanism not involving SCF. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 871–887, 2013  相似文献   

13.
Projection neurons in the developing cerebral cortex of rodents are basically born near the ventricle and migrate radially to beneath the marginal zone, whereas their cortical interneurons are generated in the ventral telencephalon and migrate tangentially to the cortex. The origins and migratory profiles of each interneuron subtype have been studied extensively in the last decade, and an enormous effort has been made to clarify the cellular and molecular mechanisms that regulate interneuron migration. More recently, the interaction between projection neurons and migrating interneurons, including how they are incorporated into their proper layers, has begun to be analyzed. In this review, I outline the most recent findings in regard to these issues and discuss the mechanisms underlying the development of cortical cytoarchitecture.  相似文献   

14.
Altman  Joseph  Bayer  Shirley A. 《Brain Cell Biology》2002,31(8-9):613-632
The neurons of the cerebral cortex originate in the proliferative neuroepithelium and settle in the cortical plate during embryonic development. Interposed between these two sites is a large transitional field. We have earlier demonstrated experimentally in rats with 3H-thymidine autoradiography that this transitional field is a stratified structure composed of discrete layers of migrating and sojourning cells, and fiber bands. Here we show that the different layers of the stratified transitional field are identifiable without experimental procedures in the developing human cerebral cortex and that there are conspicuous regional differences in its stratification. At the peak of its development, the stratified transitional field contains three fibrous bands in an inside-out order: the commissural fibers of the corpus callosum, the thalamocortical and corticofugal projection fibers, and the expanding white matter. There are regional differences in the thickness of these fibrous layers as well as in the number and configuration of the perikaryal layers. This preview focuses on laminar differences of the transitional fields of the agranular frontal lobe and the granular parietal and occipital lobes. At the latter sites, but not in the frontal lobe, there is a distinctive multi-layered band, the honeycomb matrix, where radially oriented fiber columns are sandwiched between two perikaryal sublayers and are separated from one another by radially oriented cells. We postulate that the radial fiber columns of the honeycomb matrix are composed of topographically organized thalamocortical fibers and that the unspecified young neurons acquire their enduring topographic identity by making selective contacts with tagged fibers here before they resume their radial or tangential migration to the cortical plate.  相似文献   

15.
Neuronal migration is integral to the development of the cerebral cortex and higher brain function. Cortical neuron migration defects lead to mental disorders such as lissencephaly and epilepsy. Interaction of neurons with their extracellular environment regulates cortical neuron migration through cell surface receptors. However, it is unclear how the signals from extracellular matrix proteins are transduced intracellularly. We report here that mouse embryos lacking the Ras family guanine nucleotide exchange factor, C3G (Rapgef1, Grf2), exhibit a cortical neuron migration defect resulting in a failure to split the preplate into marginal zone and subplate and a failure to form a cortical plate. C3G-deficient cortical neurons fail to migrate. Instead, they arrest in a multipolar state and accumulate below the preplate. The basement membrane is disrupted and radial glial processes are disorganised and lack attachment in C3G-deficient brains. C3G is activated in response to reelin in cortical neurons, which, in turn, leads to activation of the small GTPase Rap1. In C3G-deficient cells, Rap1 GTP loading in response to reelin stimulation is reduced. In conclusion, the Ras family regulator C3G is essential for two aspects of cortex development, namely radial glial attachment and neuronal migration.  相似文献   

16.
The mammalian cerebral cortex consists of six layers that are generated via coordinated neuronal migration during the embryonic period. Recent studies identified specific phases of radial migration of cortical neurons. After the final division, neurons transform from a multipolar to a bipolar shape within the subventricular zone-intermediate zone (SVZ-IZ) and then migrate along radial glial fibres. Mice lacking Cdk5 exhibit abnormal corticogenesis owing to neuronal migration defects. When we introduced GFP into migrating neurons at E14.5 by in utero electroporation, we observed migrating neurons in wild-type but not in Cdk5(-/-) embryos after 3-4 days. Introduction of the dominant-negative form of Cdk5 into the wild-type migrating neurons confirmed specific impairment of the multipolar-to-bipolar transition within the SVZ-IZ in a cell-autonomous manner. Cortex-specific Cdk5 conditional knockout mice showed inverted layering of the cerebral cortex and the layer V and callosal neurons, but not layer VI neurons, had severely impaired dendritic morphology. The amount of the dendritic protein Map2 was decreased in the cerebral cortex of Cdk5-deficient mice, and the axonal trajectory of cortical neurons within the cortex was also abnormal. These results indicate that Cdk5 is required for proper multipolar-to-bipolar transition, and a deficiency of Cdk5 results in abnormal morphology of pyramidal neurons. In addition, proper radial neuronal migration generates an inside-out pattern of cerebral cortex formation and normal axonal trajectories of cortical pyramidal neurons.  相似文献   

17.
Numerous functions related to neuronal migration are linked to the glycoprotein reelin. Reelin also elongates radial glia, which are disrupted in mutant reeler mice. Our lab developed a model of cortical dysplasia in ferrets that shares features with the reeler mouse, including impaired migration of neurons into the cerebral cortex and disrupted radial glia. Explants of normal ferret cortex in coculture with dysplastic ferret cortex restore the deficits in this model. To determine if reelin is integral to the repair, we used explants of P0 mouse cortex either of the wild type (WT) or heterozygous (het) for the reelin gene, as well as P0 reeler cortex (not containing reelin), in coculture with organotypic cultures of dysplastic ferret cortex. This arrangement revealed that all types of mouse cortical explants (WT, het, reeler) elongated radial glia in ferret cortical dysplasia, indicating that reelin is not required for proper radial glial morphology. Migration of cells into ferret neocortex, however, did not improve with explants of reeler cortex, but was almost normal after pairing with WT or het explants. We also placed an exogenous source of reelin in ferret cultures at the pial surface to reveal that migrating cells move toward the reelin source in dysplastic cortex; radial glia in these cultures were also improved toward normal. Our results demonstrate that the normotopic position of reelin is important for proper neuronal positioning, and that reelin is capable of elongating radial glial cells but is not the only radialization factor.  相似文献   

18.
During cortical development, neurons generated at the same time in the ventricular zone migrate out into the cortical plate and form a cortical layer (Berry and Eayrs, 1963, Nature 197:984-985; Berry and Rogers, 1965, J. Anat. 99:691-709). We have been studying both the formation and maintenance of cortical layers in slice cultures from rat cortex. The bromodeoxyuridine (BrdU) method was used to label cortical neurons on their birthday in vivo. When slice cultures were prepared from animals at different embryonic and postnatal ages, all cortical layers that have already been established in vivo remained preserved for several weeks in vitro. In slice cultures prepared during migration in the cortex, cells continued to migrate towards the pial side of the cortical slice, however, migration ceased after about 1 week in culture. Thus, cortical cells reached their final laminar position only in slice cultures from postnatal animals, whereas in embryonic slice, migrating cells became scattered throughout the cortex. Previous studies demonstrated that radial glia fibers are the major substrate for migrating neurons (Rakic, 1972, J. Comp. Neurol. 145:61-84; Hatten and Mason, 1990, Experientia 46:907-916). Using antibodies directed against the intermediate filament Vimentin, radial glial cells were detected in all slice cultures where cell migration did occur. Comparable to the glia development in vivo, radial glial fibers disappeared and astrocytes containing the glia fibrillary-associated protein (GFAP) differentiated in slice cultures from postnatal cortex, after the neurons have completed their migration. In contrast, radial glial cells were detected over the whole culture period, and very few astrocytes differentiated in embryonic slices, where cortical neurons failed to finish their migration. The results of this study indicate that the local environment is sufficient to sustain the layered organization of the cortex and support the migration of cortical neurons. In addition, our results reveal a close relationship between cell migration and the developmental status of glial cells.  相似文献   

19.
Reelin binds alpha3beta1 integrin and inhibits neuronal migration   总被引:23,自引:0,他引:23  
Mice that are mutant for Reelin or Dab1, or doubly mutant for the VLDL receptor (VLDLR) and ApoE receptor 2 (ApoER2), show disorders of cerebral cortical lamination. How Reelin and its receptors regulate laminar organization of cerebral cortex is unknown. We show that Reelin inhibits migration of cortical neurons and enables detachment of neurons from radial glia. Recombinant and native Reelin associate with alpha3beta1 integrin, which regulates neuron-glia interactions and is required to achieve proper laminar organization. The effect of Reelin on cortical neuronal migration in vitro and in vivo depends on interactions between Reelin and alpha3beta1 integrin. Absence of alpha3beta1 leads to a reduction of Dab1, a signaling protein acting downstream of Reelin. Thus, Reelin may arrest neuronal migration and promote normal cortical lamination by binding alpha3beta1 integrin and modulating integrin-mediated cellular adhesion.  相似文献   

20.
Formation of our highly structured human brain involves a cascade of events, including differentiation, fate determination, and migration of neural precursors. In humans, unlike many other organisms, the cerebral cortex is the largest component of the brain. As in other mammals, the human cerebral cortex is located on the surface of the telencephalon and generally consists of six layers that are formed in an orderly fashion. During neuronal development, newly born neurons, moving in a radial direction, must migrate through previously formed layers to reach their proper cortical position. This is one of several neuronal migration routes that takes place in the developing brain; other modes of migration are tangential. Abnormal neuronal migration may in turn result in abnormal development of the cortical layers and deleterious consequences, such as Lissencephaly. Lissencephaly, a severe brain malformation, can be caused by mutations in one of two known genes:LIS1 anddoublecortin (DCX). Recent in vitro and in vivo studies, report on possible functions for these gene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号