首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differential adhesion hypothesis of development states that patterning of organisms, organs and tissues is mediated in large part by expression of cell adhesion molecules. The cues provided by cell adhesion molecules are also hypothesized to facilitate specific connectivity within the nervous system. In this study we characterize a novel mouse mutation in the gene Dscam (Down Syndrome Cell Adhesion Molecule). Vertebrate DSCAM is required for normal development of the central nervous system and has been best characterized in the visual system. In the visual system DSCAM is required for regulation of cell number, mosaic formation, laminar specificity, and refinement of retinal-tectal projections. We have identified a novel mutation in Dscam that results in a single amino acid substitution, R1018P, in the extracellular domain of the DSCAM protein. Mice homozygous for the R1018P mutation develop a subset of defects observed in Dscam null mice. In vitro analysis identified defects in DSCAMR1018P localization to filopodia. We also find that wild type DSCAM protein is constitutively cleaved and shed from transfected cells. This secretion is inhibited by the R1018P mutation. We also characterized a novel splice isoform of Dscam and identified defects in lamination of type 2 and type 6 cone bipolar cells in Dscam mutant mice. The identification and characterization of partial loss of function mutations in genes such as Dscam will be helpful in predicting signs and symptoms that may be observed in human patients with partial loss of DSCAM function.  相似文献   

2.
The Down syndrome cell adhesion molecule (DSCAM) is a member of the immunoglobulin superfamily that maps to a Down syndrome region of chromosome 21q22.2-22.3. In Drosophila, Dscam functions as an axon guidance receptor regulating targeting and branching. Genetic and biochemical studies have shown that in Drosophila, Dscam activates Pak1 via the Dock adaptor molecule. The extracellular domain of human DSCAM is highly homologous to the Drosophila protein; however, the intracellular domains of both human and Drosophila DSCAM share no obvious sequence identity. To study the signaling mechanisms of human DSCAM, we investigated the interaction between DSCAM and potential downstream molecules. We found that DSCAM directly binds to Pak1 and stimulates Pak1 phosphorylation and activity, unlike Drosophila where an adaptor protein Dock mediates the interaction between Dscam and Pak1. We also observed that DSCAM activates both JNK and p38 MAP kinases. Furthermore, expression of the cytoplasmic domain of DSCAM induces a morphological change in cultured cells that is JNK-dependent. These observations suggest that human DSCAM also signals through Pak1 and may function in axon guidance similar to the Drosophila Dscam.  相似文献   

3.
During embryogenesis, the basic axon scaffold of the nervous system is formed by special axons that pioneer pathways between groups of cells. To find their way, the pioneer growth cones detect specific cues in their extracellular environment. One of these guidance cues is netrin. Observations and experimental manipulations in vertebrates and nematodes have shown that netrin is a bifunctional guidance cue that can simultaneously attract and repel axons. During the formation of this basic axon scaffold in Caenorhabditis elegans, the netrin UNC-6 is expressed by neuroglia and pioneer neurons, providing hierarchical guidance cues throughout the animal. Each cue has a characteristic role depending on the cell type, its position and the developmental stage. These roles include activities as global, decussation and labeled-pathway cues. This hierarchical model of UNC-6 netrin-mediated guidance suggests a method by which guidance cues can direct formation of basic axon scaffolds in developing nervous systems.  相似文献   

4.
The JNK family of MAPKs is involved in a large variety of physiological and pathological processes in brain development, such as neural survival, migration, and polarity as well as axon regeneration. However, whether JNK activation is involved in axon guidance remains unknown. Here, we provide evidence indicating the JNK pathway is required for Netrin signaling in the developing nervous system. Netrin-1 increased JNK1, not JNK2 or JNK3, activity in the presence of deleted in colorectal cancer (DCC) or Down syndrome cell adhesion molecule (DSCAM), and expression of both of them further enhanced Netrin-1-induced JNK1 activity in vitro. Inhibition of JNK signaling either by a JNK inhibitor, SP600125, or expression of a dominant negative form of MKK4, a JNK upstream activator, blocked Netrin-1-induced JNK1 activation in HEK293 cells. Netrin-1 increased endogenous JNK activity in primary neurons. Netrin-1-induced JNK activation was inhibited either by the JNK inhibitor or an anti-DCC function-blocking antibody. Combination of the anti-DCC function-blocking antibody with expression of DSCAM shRNA in primary neurons totally abolished Netrin-1-induced JNK activation, whereas knockdown of DSCAM partially inhibited the Netrin-1 effect. In the developing spinal cord, phospho-JNK was strongly expressed in commissural axons before and as they crossed the floor plate, and Netrin-1 stimulation dramatically increased the level of endogenous phospho-JNK in commissural axon growth cones. Inhibition of JNK signaling either by JNK1 RNA interference (RNAi) or the JNK inhibitor suppressed Netrin-1-induced neurite outgrowth and axon attraction. Knockdown of JNK1 in ovo caused defects in spinal cord commissural axon projection and pathfinding. Our study reveals that JNK1 is important in the coordination of DCC and DSCAM in Netrin-mediated attractive signaling.  相似文献   

5.
《Developmental neurobiology》2017,77(9):1038-1056
Receptor for activated C kinase 1 (RACK1) is a multifunctional ribosomal scaffolding protein that can interact with multiple signaling molecules concurrently through its seven WD40 repeats. We recently found that RACK1 is localized to mammalian growth cones, prompting an investigation into its role during neural development. Here, we show for the first time that RACK1 localizes to point contacts within mouse cortical growth cones. Point contacts are adhesion sites that link the actin network within growth cones to the extracellular matrix, and are necessary for appropriate axon guidance. Our experiments show that RACK1 is necessary for point contact formation. Brain‐derived neurotrophic factor (BDNF) stimulates an increase in point contact density, which was eliminated by RACK1 shRNA or overexpression of a nonphosphorylatable mutant form of RACK1. We also found that axonal growth requires both RACK1 expression and phosphorylation. We have previously shown that the local translation of β‐actin mRNA within growth cones is necessary for appropriate axon guidance and is dependent on RACK1. Thus, we examined the location of members of the local translation complex relative to point contacts. Indeed, both β‐actin mRNA and RACK1 colocalize with point contacts, and this colocalization increases following BDNF stimulation. This implies the novel finding that local translation is regulated at point contacts. Taken together, these data suggest that point contacts are a targeted site of local translation within growth cones, and RACK1 is a critical member of the point contact complex and necessary for appropriate neural development. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1038–1056, 2017  相似文献   

6.
The name netrin is derived from the Sanskrit Netr, meaning ''guide''. Netrins are a family of extracellular proteins that direct cell and axon migration during embryogenesis. Three secreted netrins (netrins 1, 3 and 4), and two glycosylphosphatidylinositol (GPI)-anchored membrane proteins, netrins G1 and G2, have been identified in mammals. The secreted netrins are bifunctional, acting as attractants for some cell types and repellents for others. Receptors for the secreted netrins include the Deleted in Colorectal Cancer (DCC) family, the Down''s syndrome cell adhesion molecule (DSCAM), and the UNC-5 homolog family: Unc5A, B, C and D in mammals. Netrin Gs do not appear to interact with these receptors, but regulate synaptic interactions between neurons by binding to the transmembrane netrin G ligands NGL1 and 2. The chemotropic function of secreted netrins has been best characterized with regard to axon guidance during the development of the nervous system. Extending axons are tipped by a flattened, membranous structure called the growth cone. Multiple extracellular guidance cues direct axonal growth cones to their ultimate targets where synapses form. Such cues can be locally derived (short-range), or can be secreted diffusible cues that allow target cells to signal axons from a distance (long-range). The secreted netrins function as short-range and long-range guidance cues in different circumstances. In addition to directing cell migration, functional roles for netrins have been identified in the regulation of cell adhesion, the maturation of cell morphology, cell survival and tumorigenesis.  相似文献   

7.
Ly A  Nikolaev A  Suresh G  Zheng Y  Tessier-Lavigne M  Stein E 《Cell》2008,133(7):1241-1254
During nervous system development, spinal commissural axons project toward and across the ventral midline. They are guided in part by netrin-1, made by midline cells, which attracts the axons by activating the netrin receptor DCC. However, previous studies suggest that additional receptor components are required. Here, we report that the Down's syndrome Cell Adhesion Molecule (DSCAM), a candidate gene implicated in the mental retardation phenotype of Down's syndrome, is expressed on spinal commissural axons, binds netrin-1, and is necessary for commissural axons to grow toward and across the midline. DSCAM and DCC can each mediate a turning response of these neurons to netrin-1. Similarly, Xenopus spinal neurons exogenously expressing DSCAM can be attracted by netrin-1 independently of DCC. These results show that DSCAM is a receptor that can mediate turning responses to netrin-1 and support a key role for netrin/DSCAM signaling in commissural axon guidance in vertebrates.  相似文献   

8.
9.
Reduced levels of the SMN (survival of motoneuron) protein cause spinal muscular atrophy, the main form of motoneuron disease in children and young adults. In cultured motoneurons, reduced SMN levels lead to disturbed axon growth that correlates with reduced actin mRNA and protein in growth cones, indicating that anterograde transport and local translation of β-actin mRNA are altered in this disease. However, it is not fully understood how local translation of the β-actin mRNA is regulated in SMN-deficient motoneurons. Here, we established a lentiviral GFP-based reporter construct to monitor local translation of β-actin mRNA. Time-lapse imaging of fluorescence recovery after photobleaching (FRAP) in living motoneurons revealed that β-actin is locally translated in the growth cones of embryonic motoneurons. Interestingly, local translation of the β-actin reporter construct was differentially regulated by various Laminin isoforms, indicating that Laminins provide extracellular cues for the regulation of local translation in growth cones. Notably, local translation of β-actin mRNA was deregulated in motoneurons from a mouse model for the most severe form of SMA (Smn ?/? ;SMN2). Taken together our findings suggest that local translation of β-actin in growth cones of motoneurons is regulated by Laminin signalling and that this signalling is disturbed in SMA.  相似文献   

10.
DSCAMs are cell adhesion molecules that play several important roles in neurodevelopment. Mouse alleles of Dscam identified to date do not survive on an inbred C57BL/6 background, complicating analysis of DSCAM‐dependent developmental processes because of phenotypic variability related to the segregating backgrounds needed for postnatal survival. A novel spontaneous allele of Dscam, hereafter referred to as Dscam2J, has been identified. This allele contains a four base pair duplication in exon 19, leading to a frameshift and truncation of the open reading frame. Mice homozygous for the Dscam2J mutant allele survive into adulthood on the C3H/HeJ background on which the mutation was identified. Using the Dscam2J allele, retinal phenotypes that have variable severity on a segregating background were examined. A neurite lamination defect similar to that described in chick was discovered in mice. These results indicate that, in the retina, additional DSCAM‐dependent processes can be found by analysis of mutations on different genetic backgrounds. © genesis 48:578–584, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
In the developing nervous system, neuronal growth cones explore the extracellular environment for guidance cues, which can guide them along specific trajectories toward their targets. Netrin-1, a bifunctional guidance cue, binds to deleted in colorectal cancer (DCC) and DSCAM mediating axon attraction, and UNC5 mediating axon repulsion. Here, we show that DSCAM interacts with UNC5C and this interaction is stimulated by netrin-1 in primary cortical neurons and postnatal cerebellar granule cells. DSCAM partially co-localized with UNC5C in primary neurons and brain tissues. Netrin-1 induces axon growth cone collapse of mouse cerebellum external granule layer (EGL) cells, and the knockdown of DSCAM or UNC5C by specific shRNAs or blocking their signaling by overexpressing dominant negative mutants suppresses netrin-1-induced growth cone collapse. Similarly, the simultaneous knockdown of DSCAM and UNC5C also blocks netrin-1-induced growth cone collapse in EGL cells. Netrin-1 increases tyrosine phosphorylation of endogenous DSCAM, UNC5C, FAK, Fyn, and PAK1, and promotes complex formation of DSCAM with these signaling molecules in primary postnatal cerebellar neurons. Inhibition of Src family kinases efficiently reduces the interaction of DSCAM with UNC5C, FAK, Fyn, and PAK1 and tyrosine phosphorylation of these proteins as well as growth cone collapse of mouse EGL cells induced by netrin-1. The knockdown of DSCAM inhibits netrin-induced tyrosine phosphorylation of UNC5C and Fyn as well as the interaction of UNC5C with Fyn. The double knockdown of both receptors abolishes the induction of Fyn tyrosine phosphorylation by netrin-1. Our study reveals the first evidence that DSCAM coordinates with UNC5C in netrin-1 repulsion.  相似文献   

12.
Local protein synthesis directs growth cone turning of nascent axons, but mechanisms governing this process within compact, largely autonomous microenvironments remain poorly understood. In this issue, Wang et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201510107) demonstrate that the calcineurin regulator Down syndrome critical region 1 protein modulates both basal neurite outgrowth and growth cone turning.Connectivity and function of a mature nervous system requires precise wiring between neurons and with target cells throughout embryonic development. Severe to mild errors in connectivity lead to neurodevelopmental disorders ranging from profound intellectual deficits to subtle behavioral abnormalities (Van Battum et al., 2015). For example, evidence from many groups has shown defective neuronal connections in several autism spectrum disorders, such as Fragile X syndrome and tuberous sclerosis complex, as well as in motor deficits and degenerative muscle diseases (Nie et al., 2010; Doers et al., 2014; Bakos et al., 2015). However, most disease etiologies cannot be unilaterally attributed to abnormal axon guidance, as many of the relevant proteins are functional in other important neurological processes, such as dendritic spine maturation and function (Hoeffer and Klann, 2010; Holt and Schuman, 2013).One key player involved in morphogenesis and innervation of developing neurons is the nerve growth cone, the dynamic and motile sensory tip of growing axons and dendrites. Growth cones function with a large degree of autonomy from the cell soma, as they transduce contacted soluble and substratum-bound ligands into signals that coordinate cytoskeletal changes to regulate the rate and direction of axon outgrowth (Lowery and Van Vactor, 2009). Both growth-promoting and -inhibiting molecules are expressed along the pathways of developing axons and local discontinuities (e.g., gradients and borders) of extracellular cues are amplified into local biochemical changes within growth cones. Although many groups have given us insight into these processes over the past few decades, crucial mechanisms underlying guidance are still poorly understood (Goodhill, 2016). In this issue, Wang et al. demonstrate that Down syndrome critical region 1 protein (DSCR1) has two distinct roles in growth cones to control neurite outgrowth and guidance.Importantly, biochemical changes within growth cones have been shown to both directly modulate the cytoskeleton and indirectly affect motility by regulating local synthesis of new proteins (Holt and Schuman, 2013). Despite significant advances, it is still unclear why and how growth cones use protein synthesis–independent and –dependent mechanisms to regulate motility. Precise spatiotemporal control of translation likely provides additional levels of cellular regulation. For example, local protein synthesis is controlled by numerous mRNA binding and trafficking proteins, which may be regulated by classic second messengers (Akiyama and Kamiguchi, 2015). Many proteins synthesized at the growth cone are ubiquitinated at a higher rate than those trafficked from the cell body, and protein degradation is regulated by axon guidance cues (Deglincerti et al., 2015). Distinct pathways could also be activated by newly synthesized proteins via their relative lack of posttranslational modifications. Finally, new protein synthesis may sensitize growth cones to different types and concentrations of ligands. Interestingly, in vitro experiments have shown that basal axon outgrowth is independent of local protein synthesis, whereas local protein synthesis is necessary for guidance. For example, Nie et al. (2010) found that in a mouse model of tuberous sclerosis complex, which displays a defect in the regulation of the mTOR complex (a translational hub in the growth cone), Ephrin A–dependent local protein synthesis was required for proper retinogeniculate mapping, but no defects in retinal axon growth were observed (Nie et al., 2010). It is also interesting to note that several inherited autism spectrum disorders exhibit misregulation of protein synthesis (Van Battum et al., 2015), suggesting these mechanisms have important roles in human central nervous system assembly.Down syndrome, or trisomy 21, affects human development and is caused, in part, by elevated expression of genes encoded by chromosome 21, resulting in intellectual disabilities. One particular protein implicated is DSCR1 (Fuentes et al., 2000), also known as regulator of calcineurin (RCAN1). One established function of DSCR1 is to inhibit calcineurin (CaN), which is a calcium- and calmodulin-dependent serine/threonine protein phosphatase. DSCR1 binds and inhibits CaN, whereas phosphorylation of DSCR1 releases CaN, which may actively or passively lead to CaN activation. DSCR1 and CaN are highly expressed in developing neurons (Fuentes et al., 2000), where they may cooperate to control morphological differentiation. DSCR1 also interacts with Fragile X mental retardation protein (FMRP), which is lost in Fragile X syndrome (Verkerk et al., 1991; Wang et al., 2012). FMRP is an mRNA binding protein that regulates local protein synthesis in dendritic spines and neuronal growth cones (Ashley et al., 1993; Sidorov et al., 2013). Moreover, previous results from Chang et al. (2013) suggest that DSCR1 and FMRP1 may participate in common biological pathways leading to intellectual disability, including the maturation of dendritic spines.In their most recent work, Wang et al. (2016) demonstrate that DSCR1 serves a dual function in growth cones to regulate both neurite outgrowth and guidance. Gain and loss of function of DSCR1 leads to increased and decreased axon extension in developing mouse hippocampal neurons, respectively. Consistent with the role of DSCR1 as a CaN inhibitor, DSCR1−/− growth cones have elevated CaN activity as indicated by reduced phosphorylated cofilin (nonphosphorylated cofilin is the active form of this actin depolymerizing factor), which leads to loss of F-actin and short axons. In contrast, DSCR1 transgenic neurons, which express 1.5-fold excess DSCR1 compared with wild-type neurons, display elevated phosphorylated cofilin (the inactive form) and increased F-actin in their growth cones, increasing neurite extension.In chemotropic turning assays, DSCR1−/− neurons fail to orient toward brain-derived neurotrophic factor (BDNF), whereas transgenic DSCR1 neurons exhibit enhanced turning. Interestingly, Wang et al. (2016) find that although activation of CaN and cofilin caused by loss of DSCR1 function reduces axon extension, misregulation of CaN is not responsible for defective chemotropic turning toward BDNF by DSCR1−/− neurons. This result suggests that a different DSCR1-dependent target regulates axon turning. Here, Wang et al. (2016) find that local protein synthesis in response to BDNF depends on DSCR1 and Fmr1. They show that enhanced protein synthesis in growth cones and axon turning in DSCR1 transgenic neurons is abrogated in Fmr1 knockdown neurons. Together these results support a model where DSCR1 functions as an important regulatory switch to direct distinct aspects of axon growth and guidance machinery.Wang et al. (2016) illustrate for the first time divergent activities of DSCR1 in the regulation of axon outgrowth and guidance, but many open questions remain. For example, there appears to be an important difference between the regulation of DSCR1 in axon guidance versus dendritic spine morphogenesis. Previous work by Wang et al. (2012) showed that Fmr1 is dephosphorylated by CaN in response to BDNF, which promotes protein translation. However, in their current work, inhibition of CaN does not prevent chemotropic turning toward a BDNF, which depends on DSCR1, Fmr1 and protein synthesis. Therefore, the role of CaN-mediated dephosphorylation of Fmr1 downstream of BDNF and DSCR1 is unclear in growth cone turning. It is also interesting to note that Wang et al. (2016) observe changes in total cofilin levels in growth cones from DSCR1 transgenic and knockout neurons, as well as after inhibition of CaN, suggesting that there may be homeostatic aspects of regulation of these pathways yet to be explored. Given the complexities of cofilin regulation in actin polymerization and evidence that cofilin can be locally translated in axons (Piper et al., 2006), it is clear that additional work is necessary to understand these pathways more completely.Finally, how DSCR1 dysfunction contributes specifically to neural developmental disorders associated with Down syndrome is not known. DSCR1 gain-of-function experiments may most closely match chromosomal triplication conditions in developing trisomy 21 neurons. Under these conditions, Wang et al. (2016) find increased axon extension, as well as enhanced turning toward BDNF by mouse hippocampal neurons. However, it is not clear how elevated DSCR1 expression will affect CaN-cofilin signaling and protein synthesis downstream of the wide range of growth promoting and inhibiting guidance cues that use these signals (Gomez and Letourneau, 2014). It is also not clear how DSCR1 overexpression will affect human neurons under similar conditions. To address this question, specific classes of excitatory and inhibitory neurons differentiated from human embryonic stem cells and induced pluripotent stem cells (hiPSCs) should be tested. For example, in these in vitro systems, Crispr-Cas–mediated correction of specific genes of hiPSCs from Down syndrome patients or selected triplication of chromosome 21 target genes of unaffected hiPSCs could be used to test the necessity and sufficiency of specific genes on cellular phenotypes observed in vitro. If specific requirements for DSCR1 or other candidate genes can be identified by assaying neuronal morphogenesis of human cells in vitro, these findings would provide an excellent platform for therapeutic drug screening of treatments that rescue these cellular phenotypes.  相似文献   

13.
Neural development in metazoans is characterized by the establishment of initial process tracts by pioneer axons and the subsequent extension of follower axons along these pioneer processes. Mechanisms governing the fidelity of follower extension along pioneered routes are largely unknown. In C. elegans, formation of the right angle‐shaped lumbar commissure connecting the lumbar and preanal ganglia is an example of pioneer/follower dynamics. We find that the dystroglycan ortholog DGN‐1 mediates the fidelity of follower lumbar commissure axon extension along the pioneer axon route. In dgn‐1 mutants, the axon of the pioneer PVQ neuron faithfully establishes the lumbar commissure, but axons of follower lumbar neurons, such as PVC, frequently bypass the lumbar commissure and extend along an oblique trajectory directly toward the preanal ganglion. In contrast, disruption of the UNC‐6/netrin guidance pathway principally perturbs PVQ ventral guidance to pioneer the lumbar commissure. Loss of DGN‐1 in unc‐6 mutants has a quantitatively similar effect on follower axon guidance regardless of PVQ axon route, indicating that DGN‐1 does not mediate follower/pioneer adhesion. Instead, DGN‐1 appears to block premature responsiveness of follower axons to a preanal ganglion‐directed guidance cue, which mediates ventral‐to‐anterior reorientation of lumbar commissure axons. Deletion analysis shows that only the most N‐terminal DGN‐1 domain is required for these activities. These studies suggest that dystroglycan modulation of growth cone responsiveness to conflicting guidance cues is important for restricting follower axon extension to the tracts laid down by pioneers. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

14.
Schmucker D  Clemens JC  Shu H  Worby CA  Xiao J  Muda M  Dixon JE  Zipursky SL 《Cell》2000,101(6):671-684
A Drosophila homolog of human Down syndrome cell adhesion molecule (DSCAM), an immunoglobulin superfamily member, was isolated by its affinity to Dock, an SH3/SH2 adaptor protein required for axon guidance. Dscam binds directly to both Dock's SH2 and SH3 domains. Genetic studies revealed that Dscam, Dock and Pak, a serine/threonine kinase, act together to direct pathfinding of Bolwig's nerve, containing a subclass of sensory axons, to an intermediate target in the embryo. Dscam also is required for the formation of axon pathways in the embryonic central nervous system. cDNA and genomic analyses reveal the existence of multiple forms of Dscam with a conserved architecture containing variable Ig and transmembrane domains. Alternative splicing can potentially generate more than 38,000 Dscam isoforms. This molecular diversity may contribute to the specificity of neuronal connectivity.  相似文献   

15.
Attractive growth cone turning requires Igf2bp1-dependent local translation of β-actin mRNA in response to external cues in vitro. While in vivo studies have shown that Igf2bp1 is required for cell migration and axon terminal branching, a requirement for Igf2bp1 function during axon outgrowth has not been demonstrated. Using a timelapse assay in the zebrafish retinotectal system, we demonstrate that the β-actin 3’UTR is sufficient to target local translation of the photoconvertible fluorescent protein Kaede in growth cones of pathfinding retinal ganglion cells (RGCs) in vivo. Igf2bp1 knockdown reduced RGC axonal outgrowth and tectal coverage and retinal cell survival. RGC-specific expression of a phosphomimetic Igf2bp1 reduced the density of axonal projections in the optic tract while sparing RGCs, demonstrating for the first time that Igf2bp1 is required during axon outgrowth in vivo. Therefore, regulation of local translation mediated by Igf2bp proteins may be required at all stages of axon development.  相似文献   

16.
Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin‐1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F‐actin). ADF/cofilin (AC) family proteins facilitate F‐actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF‐ or netrin‐1‐treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin‐1 to increase growth cone protrusion and F‐actin levels. Extracellular gradients of NGF, netrin‐1, and a cell‐permeable AC elicit attractive growth cone turning and increased F‐actin barbed ends, F‐actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin‐1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 565–588, 2010  相似文献   

17.
mRNA localization and regulated translation take central roles in axon guidance and synaptic plasticity. By spatially restricting gene expression within neurons, local protein synthesis provides growth cones and synapses with the capacity to autonomously regulate their structure and function. Studies in a variety of systems have provided insight into the specific roles of local protein synthesis during axonal navigation and during synaptic plasticity, and have begun to delineate the mechanisms underlying mRNA localization and regulated translation. Several powerful new tools have recently been developed to visualize each of these processes.  相似文献   

18.
Netrin-1 influences retinal ganglion cell (RGC) axon pathfinding and also participates in the branching and synaptic differentiation of mature RGC axons at their target. To investigate whether netrin also serves as an early target recognition signal in the brain, we examined the dynamic behavior of Xenopus RGC axons soon after they innervate the optic tectum. Time-lapse confocal microscopy imaging of RGC axons expressing enhanced yellow fluorescent protein demonstrated that netrin-1 is involved in early axon branching, as recombinant netrin-1 halted further advancement of growth cones into the tectum and induced back branching. RGC growth cones exhibited differential responses to netrin-1 that depended on the degree of differentiation of the axon and the developmental stage of the tadpole. Netrin-1 decreased the total number of branches on newly arrived RGC growth cones at the target, but increased the dynamic branching of more mature arbors at the later developmental stage. To further explore the response of axonal growth cones to netrin, Xenopus RGC axons were followed in culture by time-lapse imaging. Exposure to netrin-1 rapidly increased the forward advancement of the axon and decreased the size and expanse of the growth cone, while also inducing back branching. Taken together, the differential in vivo and in vitro responses to netrin-1 suggest that netrin alone is not sufficient to induce the cessation of growth cone advancement in the absence of a target but can independently modulate axon branching. Collectively, our findings reveal a novel role for netrin on RGC axon branch initiation as growth cones innervate their target.  相似文献   

19.
D S Campbell  C E Holt 《Neuron》2001,32(6):1013-1026
Growth cones contain mRNAs, translation machinery, and, as we report here, protein degradation machinery. We show that isolated retinal growth cones immediately lose their ability to turn in a chemotropic gradient of netrin-1 or Sema3A when translation is inhibited. Translation inhibition also prevents Sema3A-induced collapse, while LPA-induced collapse is not affected. Inhibition of proteasome function blocks responses to netrin-1 and LPA but does not affect Sema3A responses. We further demonstrate in isolated growth cones that netrin-1 and Sema3A activate translation initiation factors and stimulate a marked rise in protein synthesis within minutes, while netrin-1 and LPA elicit similar rises in ubiquitin-protein conjugates. These results suggest that guidance molecules steer axon growth by triggering rapid local changes in protein levels in growth cones.  相似文献   

20.
In neuronal development, dynamic rearrangement of actin promotes axonal growth cone extension, and spatiotemporal translation of local mRNAs in response to guidance cues directs axonal growth cone steering, where cofilin plays a critical role. While regulation of cofilin activity is well studied, regulatory mechanism for cofilin mRNA translation in neurons is unknown. In eukaryotic cells, proteins can be synthesized by cap‐dependent or cap‐independent mechanism via internal ribosome entry site (IRES)‐mediated translation. IRES‐mediated translation has been reported in various pathophysiological conditions, but its role in normal physiological environment is poorly understood. Here, we report that 5′UTR of cofilin mRNA contains an IRES element, and cofilin is predominantly translated by IRES‐mediated mechanism in neurons. Furthermore, we show that IRES‐mediated translation of cofilin is required for both axon extension and axonal growth cone steering. Our results provide new insights into the function of IRES‐mediated translation in neuronal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号