首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and modification of the cell wall must involve the production of new cell wall polymers and enzymes. Their targeted secretion to the apoplast is one of many potential control points. Since Rab GTPases have been strongly implicated in the regulation of vesicle trafficking, a review of their involvement in cell wall metabolism should throw light on this possibility. Cell wall polymer biosynthesis occurs mainly in the Golgi apparatus, except for cellulose and callose, which are made at the plasma membrane by an enzyme complex that cycles through the endomembrane system and which may be regulated by this cycling. Several systems, including the growth of root hairs and pollen tubes, cell wall softening in fruit, and the development of root nodules, are now being dissected. In these systems, secretion of wall polymers and modifying enzymes has been documented, and Rab GTPases are highly expressed. Reverse genetic experiments have been used to interfere with these GTPases and this is revealing their importance in regulation of trafficking to the wall. The role of the RabA (or Rab11) GTPases is particularly exciting in this respect.  相似文献   

2.
Enzyme technology has progressed from the biotransformation of small substrates to biotransformation of synthetic polymers. Important breakthroughs have been the isolation and design of novel enzymes with enhanced activity on synthetic polymer substrates. These were made possible by efficient screening procedures and genetic engineering approaches based on an in-depth understanding of the mechanisms of enzymes on synthetic polymers. Enhancement of the hydrophilicity of synthetic polymers is a key requirement for many applications, ranging from electronics to functional textile production. This review focuses on enzymes that hydrolyse polyalkyleneterephthalates, polyamides or polyacrylonitriles, specifically on the polymer surface thereby replacing harsh chemical processes currently used for hydrophilisation.  相似文献   

3.
The use of lipases in the modification of lipids has grown significantly in recent years. This increased interest is mainly due to the ability of these enzymes to catalyze the production of lipids with specific distributions of fatty acids that better fit the current needs of consumers, who are looking for healthier foods that are manufactured with the highest quality. The successful use of lipases to obtain modified lipids with low caloric content, high concentrations of n?3 fatty acids or high amounts of phenolic compounds demonstrate the great potential of these enzymes. The lipase-catalyzed production of lipids with reduced caloric content is made possible by the addition of a medium or a very long chain fatty acid to the triacylglyceride. Diacylglicerols with low caloric content can also be produced using lipases. Due to the deficiency of n?3 fatty acids in the current diet, strategies for the lipase-mediated incorporation of these acids in the TAG have shown promising results. Finally, studies have successfully used lipases for the incorporation of phenolic compounds in the lipid structure, which produce compounds with improved oxidative stability and more beneficial health effects.  相似文献   

4.
Recent studies clearly indicate that the modification of synthetic polymers with enzymes is an environmentally friendly alternative to traditional chemical methods requiring harsh conditions. Some work already performed on polyamide 6.6 (nylon 6.6), polyethyleneterephthalate (PET) and polyacrylonitrile (PAN) revealed that surface functionalization of these materials is a key requirement for an extensive range of applications, such as textiles, electronics, biomedical field and others. Research performed on PET with lipases, cutinases and other esterases has previously been reported, whilst enzymatic treatment of PAN with nitrilases and cutinase has also been the subject of study. However, at present, few studies have been done on nylon fabrics, mainly with esterases and proteases. This work is intended as a brief review of research in the area of biocatalytic functionalization of synthetic fibres, with a special focus on work recently performed by our research group with cutinase from Fusarium solani pisi.  相似文献   

5.
Cold active microbial lipases: some hot issues and recent developments   总被引:8,自引:1,他引:7  
Lipases are glycerol ester hydrolases that catalyze the hydrolysis of triglycerides to free fatty acids and glycerol. Lipases catalyze esterification, interesterification, acidolysis, alcoholysis and aminolysis in addition to the hydrolytic activity on triglycerides. The temperature stability of lipases has regarded as the most important characteristic for use in industry. Psychrophilic lipases have lately attracted attention because of their increasing use in the organic synthesis of chiral intermediates due to their low optimum temperature and high activity at very low temperatures, which are favorable properties for the production of relatively frail compounds. In addition, these enzymes have an advantage under low water conditions due to their inherent greater flexibility, wherein the activity of mesophilic and thermophilic enzymes are severely impaired by an excess of rigidity. Cold-adapted microorganisms are potential source of cold-active lipases and they have been isolated from cold regions and studied. Compared to other lipases, relatively smaller numbers of cold active bacterial lipases were well studied. Lipases isolated from different sources have a wide range of properties depending on their sources with respect to positional specificity, fatty acid specificity, thermostability, pH optimum, etc. Use of industrial enzymes allows the technologist to develop processes that closely approach the gentle, efficient processes in nature. Some of these processes using cold active lipase from C. antarctica have been patented by pharmaceutical, chemical and food industries. Cold active lipases cover a broad spectrum of biotechnological applications like additives in detergents, additives in food industries, environmental bioremediations, biotransformation, molecular biology applications and heterologous gene expression in psychrophilic hosts to prevent formation of inclusion bodies. Cold active enzymes from psychrotrophic microorganisms showing high catalytic activity at low temperatures can be highly expressed in such recombinant strains. Thus, cold active lipases are today the enzymes of choice for organic chemists, pharmacists, biophysicists, biochemical and process engineers, biotechnologists, microbiologists and biochemists.  相似文献   

6.
New and strong ionic exchange resins have been prepared by the simple and rapid ionic adsorption of anionic polymers (sulfate-dextran) on porous supports activated with the opposite ionic group (DEAE/MANAE). Ionic exchange properties of such composites were strongly dependent on the size of the ionic polymers as well as on the conditions of the ionic coating of the solids with the ionic polymers (optimal conditions were 400 mg of sulfate-dextran 5000 kDa per gram of support). Around 80% of the proteins contained in crude extracts from Escherichia coli and Acetobacter turbidans could be adsorbed on these porous composites even at pH 7. This interaction was stronger than that using conventional carboxymethyl cellulose (CMC) and even others such as supports coated with aspartic-dextran polymer. By means of the sequential use of the new supports and supports coated with polyethyleneimine (PEI), all proteins from crude extracts could be immobilized. In fact, a large percentage (over 50%) could be immobilized on both supports. Finally, some industrially relevant enzymes (beta-galactosidases from Aspergillus oryzae, Kluyveromyces lactis, and Thermussp. strain T2, lipases from Candida antarctica A and B, Candida rugosa, Rhizomucor miehei, and Rhyzopus oryzae and bovine pancreas trypsin and chymotrypsin) have been immobilized on these supports with very high activity recoveries and immobilization rates. After enzyme inactivation, the protein could be fully desorbed from the support, and then the support could be reused for several cycles. Moreover, in some instances the enzyme stability was significantly improved, mainly in the presence of organic solvents, perhaps as a consequence of the highly hydrophilic microenvironment of the support.  相似文献   

7.
Lipases as practical biocatalysts   总被引:6,自引:0,他引:6  
Lipases are the most used enzymes in synthetic organic chemistry, catalyzing the hydrolysis of carboxylic acid esters in aqueous medium or the reverse reaction in organic solvents. Recent methodological advancements regarding practical factors affecting lipase activity and enantioselectivity are reviewed. Select practical examples concerning the use of lipases in the production of chiral intermediates are also highlighted.  相似文献   

8.
This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.  相似文献   

9.
In recent years, metagenomic strategies have been widely used to isolate and identify new enzymes from uncultivable components of microbial communities. Among these enzymes, various lipases have been obtained from metagenomic libraries from different environments and characterized. Although many of these lipases have characteristics that could make them interesting for application in biocatalysis, relatively little work has been done to evaluate their potential to catalyze industrially important reactions. In the present article, we highlight the latest research on lipases obtained through metagenomic tools, focusing on studies of activity and stability and investigations of application in biocatalysis. We also discuss the challenges of metagenomic approaches for the bioprospecting of new lipases.  相似文献   

10.
Up to date more than 70 lipases from the Bacillus and Geobacillus genera have been isolated, but for most of them only basic biochemical properties have been reported. In general, Bacillus lipases are easily produced and display high tolerance toward organic solvents, proving them useful in the synthesis of esters for food industry, cosmetics and biodiesel production. Many lipases preserve their activity at extreme temperatures and pH, and in the presence of surfactants, hydrogen peroxide, sodium hypochlorite, and therefore they can be applied in laundry formulations. Bacillus lipases display diverse selectivity to the chain length of the acid, and few enzymes show positional specificity. Several enzymes can be applied in the production of enantiopure compounds for the pharmaceutical industry due to their remarkable enantioselectivity. The immobilization experiments with Bacillus lipases, though a limited number, illustrate the vast possibilities for optimization of the properties of the biocatalysts for a particular application. The paper summarizes available experimental data on Bacillus and Geobacillus lipases and identifies areas for further research.  相似文献   

11.
Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. Increasingly, raw materials such as crude oil are in short supply for the synthesis of plastics, and the recycling of waste plastics is becoming more important. As the importance of recycling increases, so do studies on elucidation of the biodegradability of polyurethanes. Polyurethanes are an important and versatile class of man-made polymers used in a wide variety of products in the medical, automotive and industrial fields. Polyurethane is a general term used for a class of polymers derived from the condensation of polyisocyanates and polyalcohols. Despite its xenobiotic origins, polyurethane has been found to be susceptible to biodegradation by naturally occurring microorganisms. Microbial degradation of polyurethanes is dependent on the many properties of the polymer such as molecular orientation, crystallinity, cross-linking and chemical groups present in the molecular chains which determine the accessibility to degrading-enzyme systems. Esterase activity (both membrane-bound and extracellular) has been noted in microbes which allow them to utilize polyurethane. Microbial degradation of polyester polyurethane is hypothosized to be mainly due to the hydrolysis of ester bonds by these esterase enzymes.  相似文献   

12.
There are four main sources of enzymes in foods—these being the inherent enzymes, enzymes from microbial contaminants, enzymes elaborated by microorganisms added to foods, and specific enzymes added to foods. This study primarily deals with the latter two sources of enzymes in food. Although both plants and animals serve as sources of enzymes, they are not as economical or versatile sources as are enzymes obtained from microorganisms. In the meat industry, proteases are used to tenderize muscle and to obtain flavor precursors. In the preparation of cured meat products such as sausages, lipases, and proteases from bacterial cultures are utilized. Similarly, proteases and lipases are used in the dairy industry to develop flavor compounds. Proteases and amylases also have applications in the baking and milling industries where they are used to produce precursors for the nonenzymatic browning reactions. Carbohydrases such as amylase, amyloglucosidase, and glucose isomerase have found usage in the starch and syrup industry for the production of high dextrose and high fructose syrups. Other enzymes such as glucose oxidase, pectinase, and naringinase are of value to the wine and fruit juice industries. A better understanding of the mode of action of enzymes as well as the mechanisms of development of flavor compounds will further enhance the use of microbial enzymes to develop specific and desired flavors in foods.  相似文献   

13.
We have purified and examined the substrate specificity of four lipases from two strains of the mould Geotrichum candidum, ATCC 34614 and CMICC 335426. We have designated the lipases I and II (ATCC 34614), and A and B (CMICC 335426). The enzymes are monomeric and have similar molecular masses and pI. Thus, lipases I and II have native molecular masses of 50.1 kDa and 55.5 kDa, and pI of 4.61 and 4.47, respectively. Lipases A and B are very similar to lipases I and II with native molecular masses of 53.7 kDa and 48.9 kDa, and pI of 4.71 and 4.50, respectively. Treatment with endo-beta-N-acetylglucosaminidase caused a reduction in molecular mass of approximately 4.5 kDa for all four lipases, indicating that these enzymes are glycosylated. Western blotting shows that the lipases are related. However, lipase B from CMICC 335426 shows a remarkable specificity for unsaturated substrates with a double bond at position 9 (cis configuration), and this specificity is not exhibited by the other three lipases. No lipase of this unique specificity has previously been purified to homogeneity. Structural studies using these four lipases should allow insight into the molecular basis of this remarkable specificity.  相似文献   

14.
Abstract: During the past 3 years, the tertiary structures of several lipases have been solved by X-ray analysis. The structures revealed unique features such as hydrophobic 'patches' on the surface, presumably involved in lipid supersubstrate binding, and a lid structure which covers the active site in the absence of substrate. Only very recently the first X-ray structure of a bacterial lipase has been solved, and further structural features different from lipases of eukaryotic origin became apparent. Many lipase genes have been cloned and sequenced recently, and expression systems for the preparation of recombinant enzymes in good yields are available. As an example, the lipase from Rhizopus oryzae has been successfully expressed by us in Escherichia coli , and the resulting inclusion bodies were renatured in high yields. Consequently, the mechanism of action of lipases is now being studied via site-directed mutagenesis, and the rational design of lipases for the selective transformation of substrates is presently addressed in several laboratories.  相似文献   

15.
Laccases: A Useful Group of Oxidoreductive Enzymes   总被引:1,自引:0,他引:1  
Using enzymes as decontaminating agents has received great attention. One of the most promising groups of enzymes, laccases, are used to decontaminate phenol-polluted systems and for bio technological applications. Higher plants and fungi, mostly wood-rotting fungi, are the main producers of laccases, but bacterial laccases also have been found. Belonging to the class of phenoloxidases, laccases catalyze the polymerization of several phenolic substances to polymeric products. In addition, they have transformed lignin and lignin-related compounds, showing a very broad substrate specificity. Specific compounds acting as protein-synthesis inducers historically have been used to improve the production of the enzyme. Recent success in fungal molecular and cellular engineering technology has contributed to significantly increase the industrial production of recombinant laccase. Kinetic (Michaelis-Menten parameters, optimum pH, kcat) and stability properties of laccases may vary according to the source of the enzymes. Laccases are used in a variety of applications, such as to remove toxic compounds from aquatic and terrestrial systems, to produce and treat beverages, as analytical tools, and as biosensors to estimate the quantity of phenols in natural juices or the presence of other enzymes. Laccases have been used successfully in immobilized form as well as dissolved in organic solvents.  相似文献   

16.
Owing to our increasing concerns on the environment, climate change, and limited natural resources, there has recently been considerable effort exerted to produce chemicals and materials from renewable biomass. Polymers we use everyday can also be produced either by direct fermentation or by polymerization of monomers that are produced by fermentation. Recent advances in metabolic engineering combined with systems biology and synthetic biology are allowing us to more systematically develop superior strains and bioprocesses for the efficient production of polymers and monomers. Here, we review recent trends in microbial production of building block chemicals that can be subsequently used for the synthesis of polymers. Also, recent successful cases of direct one-step production of polymers are reviewed. General strategies for the production of natural and unnatural platform chemicals are described together with representative examples.  相似文献   

17.
Nanostructured polystyrene (PS) and polymethylmethacrylate (PMMA) were used as carriers for the preparation of bioconjugates with lipolytic enzymes, such as Candida rugosa lipase (CRL) and Pseudomonas cepacia lipase (PCL). Simple addition of the lipase solution to the polymeric nanoparticles under protein-friendly conditions (pH 7.6) led to the formation of polymer-enzyme bioconjugates. Energy filtered-transmission electron microscopy (EF-TEM) performed on immuno-gold labeled samples revealed that the enzyme preferentially binds to the polymer nanoparticles and that the binding does not affect the nanostructured features of the carriers. The studies performed on the activity of the bioconjugates pointed out that the lipases adsorbed onto polymeric nanoparticles show an improved performance in terms of activity and selectivity with respect to those shown by lipases adsorbed on the same non-nanostructured carriers. The residual activities of CRL and PCL immobilized on nanostructured PMMA and PS reached 60% and 74%, respectively. Moreover, we found that enantioselectivity and pH and thermal stability increase upon immobilization. These results highlight the fact that new protein conformers with improved enantioselectivity stabilized after adsorption on nanoparticles are obtained. On the basis of the chemical structures of the selected polymers and the slopes of the adsorption isotherms, a hydrophobic binding model for lipase/nanostructured polymers is suggested.  相似文献   

18.
Organogels based on water-in-oil microemulsions can be formed using various natural polymers such as gelatin, agar or cellulose derivatives. Enzymes entrapped in the water core of the microemulsion can keep their activity and enhance their stability within the gel matrix. The importance of the microemulsion based organogels (MBGs) leans on their numerous potential biotechnological applications. An important example is the use of various lipase microemulsion systems for hydrolytic or synthetic reactions. In this review, several MBGs are being evaluated as immobilization matrices for various enzymes. The main subject focuses on the parameters that affect the use of MBGs as media for bioorganic reactions using lipases as catalysts.  相似文献   

19.
In the last decade, there has been increased interest in lipase/esterase-catalyzed ring-opening polymerization as an alternative to metal-based catalytic processes. This review focuses on three components in the reaction system, namely biocatalysts, reaction medium and monomers. Novel lipases or esterases are described with particular emphasis on, those derived from thermophiles, immobilized enzymes and recombinant whole-cell biocatalysts. Green solvents in enzymatic ring-opening polymerization, including water, ionic liquids, supercritical carbon dioxide and hydrofluorocarbon solvents, are also discussed. Enzymatic ring-opening polymerization is reviewed with regard to the variety of polymers obtainable, such as polyesters, polycarbonates, polyphosphates and polythioesters. Among these, enzymatic synthesis of polyesters has been most widely investigated, and is discussed for lactones with small to large ring sizes. Finally, the mechanism of enzymatic ring-opening polymerization is described, which is generally accepted as a monomer-activated mechanism. Overall, the review demonstrates that lipase/esterase-catalyzed synthesis of polymers via ring-opening polymerization provides an effective platform for conducting “green polymer chemistry”.  相似文献   

20.
Microbial lipases are a versatile and attractive class of biocatalysts for a wide variety of applications. Lipases can be produced by bacteria, yeasts or filamentous fungi. Nevertheless, they are often not optimal for direct use in industrial conditions due to low yields, low specific activities and a limited spectrum of activities. Improvements in the productivity of lipases have been made by genetic manipulation of the cell factory production hosts and by optimizing production media and conditions. Advances in protein engineering technology, ranging from directed evolution to rational design, have also been able to tailor lipases to particular applications. This review describes various approaches used to improve lipase production and applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号