首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kim WH  Goo SY  Shin MH  Chun SJ  Lee H  Lee KH  Park SJ 《Cellular immunology》2008,253(1-2):81-91
Vibrio vulnificus, a pathogenic bacterium causing primary septicemia, exhibited cytotoxicity towards Jurkat cells of T-lymphocytes through intracellular reactive oxygen species (ROS) production. Pretreatment of Jurkat T-cells with diphenyleneiodonium chloride (DPI) abolished V. vulnificus-induced ROS generation and bacterial ability to cause cell death. Jurkat T-cells expressing dominant-negative protein of Rac subunit of NADPH oxidase (NOX) did not show increased ROS production and cell death by V. vulnificus. Vibrio vulnificus also triggered phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 and ERK1/2 in Jurkat T-cells. Experiments using inhibitors or small interfering RNAs for each MAPK showed that both MAPKs are involved in V. vulnificus-induced cell death. DPI only blocked the phosphorylation of p38 MAPK in Jurkat T-cells exposed by V. vulnificus. This study demonstrates that V. vulnificus induces death of Jurkat T-cells via ROS-dependent activation of p38 MAPK, and that NOX plays a major role in ROS generation in V. vulnificus-exposed cells.  相似文献   

2.
3.
Treatment of human U-937 myeloid leukemia cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with protein kinase C (PKC) betaII-mediated activation of the stress-activated protein kinase (SAPK) pathway. The present studies demonstrate that the TPA response of U-937 cells includes the generation of reactive oxygen species (ROS). By contrast, the TPA-resistant U-937 cell variant (TUR), which is deficient in PKCbetaII expression, failed to respond to TPA with the induction of ROS. Moreover, we show that TPA-induced ROS production is restored in TUR cells stably transfected to express PKCbetaII. The results also demonstrate that TPA-induced ROS production is required for activation of the MEK kinase-1 (MEKK-1)--> SAPK pathway. In concert with this observation, treatment of U-937 with H(2)O(2) as a source of ROS is associated with activation of the MEKK-1-->SAPK cascade. These findings indicate that PKCbetaII is required for TPA-induced ROS production and that the MEKK-1-->SAPK pathway is activated by a ROS-mediated mechanism.  相似文献   

4.
Stimulation of normal mouse neutrophils with phorbol 12-myristate 13-acetate resulted in an acceleration of chromatin condensation and phosphatidylserine externalization that was not associated with caspase-3 activation. Caspase-independent death was completely inhibited by GF109203X and SB202190, specific inhibitors for protein kinase C and p38 mitogen-activated protein kinase respectively. Activation of p38 mitogen-activated protein kinase was completely suppressed by GF109203X, indicating that this enzyme is regulated by protein kinase C. On the other hand, cell death was abolished in NADPH oxidase-deficient neutrophils lacking superoxide production. Of note, p38 mitogen-activated protein kinase was activated by phorbol 12-myristate 13-acetate in normal and myeloperoxidase-deficient neutrophils lacking production of HOCl, whereas no activation was observed in NADPH oxidase-deficient neutrophils. These results strongly suggest that activation of p38 mitogen-activated protein kinase is regulated by endogenously generated superoxide or its metabolites other than HOCl, a critical regulator of inducer-stimulated death of neutrophils.  相似文献   

5.
6.
The p38alpha MAPK participates in a variety of biological processes. Activation of p38alpha is mediated by phosphorylation on specific regulatory tyrosine and threonine sites, and the three dual kinases, MAPK kinase 3 (MKK3), MKK4, and MKK6, are known to be the upstream activators of p38alpha. In addition to activation by upstream kinases, p38alpha can autoactivate when interacting with transforming growth factor-beta-activated protein kinase 1-binding protein 1 (TAB1). Here we used MKK3 and MKK6 double knock-out (MKK3/6 DKO) and MKK4/7 DKO mouse embryonic fibroblast (MEF) cells to examine activation mechanisms of p38alpha. We confirmed that the MKK3/6 pathway is a primary mechanism for p38alpha phosphorylation in MEF cells, and we also showed the presence of other p38alpha activation pathways. We show that TAB1-mediated p38alpha phosphorylation in MEF cells did not need MKK3/4/6, and it accounted for a small portion of the total p38alpha phosphorylation that was induced by hyperosmolarity and anisomycin. We observed that a portion of peroxynitrite-induced phospho-p38alpha is associated with an approximately 85-kDa disulfide complex in wild-type MEF cells. Peroxynitrite-induced phosphorylation of p38alpha in the approximately 85-kDa complex is independent from MKK3/6 because only phospho-p38alpha not associated with the disulfide complex was diminished in MKK3/6 DKO cells. In addition, our data suggest interference among different pathways because TAB1 had an inhibitory effect on p38alpha phosphorylation in the peroxynitrite-induced approximately 85-kDa complex. Mutagenesis analysis of the cysteines in p38alpha revealed that no disulfide bond forms between p38alpha and other proteins in the approximately 85-kDa complex, suggesting it is a p38alpha binding partner(s) that forms disulfide bonds, which enable it to bind to p38alpha. Therefore, multiple mechanisms of p38alpha activation exist that can influence each other, be simultaneously activated by a given stimulus, and/or be selectively used by different stimuli in a cell type-specific manner.  相似文献   

7.
Reactive oxygen species (ROS) are implicated in coronary collateral growth (CCG). We evaluated the requirement for ROS in human coronary artery endothelial cell (HCAEC) tube formation, CCG in vivo, and signaling (p38 MAP kinase) by which ROS may stimulate vascular growth. The flavin-containing oxidase inhibitor diphenyleneiodonium (DPI) or the superoxide dismutase inhibitor diethyldithiocarbamate (DETC) blocked vascular endothelial growth factor-induced HCAEC tube formation in Matrigel. We assessed the effect of DPI and DETC on CCG in a rat model of repetitive ischemia (RI) (40 s left anterior descending coronary artery occlusion every 20 min for 2 h 20 min, 3 times/day, 10 days). DPI or DETC was given intraperitoneally, or the NAD(P)H oxidase inhibitor apocynin was given in drinking water. Collateral-dependent flow (measured by using microspheres) was expressed as a ratio of normal and ischemic zone flows. In sham-operated rats, collateral flow in the ischemic zone was 18 +/- 6% of normal zone; in the RI group, collateral flow in the ischemic zone was 83 +/- 5% of normal zone. DPI prevented the increase in collateral flow after RI (25 +/- 4% of normal zone). Similar results were obtained with apocynin following RI (32 +/- 7% of that in the normal zone). DETC achieved similar results (collateral flow after RI was 21 +/- 2% of normal zone). DPI and DETC blocked RI-induced p38 MAP kinase activation in response to vascular endothelial growth factor and RI. These results demonstrate a requirement for optimal ROS concentration in HCAEC tube formation, CCG, and p38 MAP kinase activation. p38 MAP kinase inhibition prevented HCAEC tube formation and partially blocked RI-induced CCG (42 +/- 7% of normal zone flow), indicating that p38 MAP kinase is a critical signaling mediator of CCG.  相似文献   

8.
Basic fibroblast growth factor (FGF-2) is a member of a family of polypeptides that have roles in a wide range of biological processes. To determine why different cell types show distinct responses to treatment with FGF-2, the array of FGF receptors present on the surface of a cell which differentiates in response to FGF-2 (PC12 cells) was compared with that present on the surface of a cell that proliferates in response to FGF-2 (Swiss 3T3 fibroblasts). Both cell types express exclusively FGFR1, suggesting that there are cell type-specific FGFR1 signaling pathways. Since mitogen-activated protein kinases function as mediators of cellular responses to a variety of stimuli, the roles of these proteins in FGF-mediated responses were examined. FGF-2 activates extracellular signal-regulated kinases with similar kinetics in both fibroblasts and PC12 cells, and a specific inhibitor of extracellular signal-regulated kinase activation blocks differentiation but has little effect on proliferation. In contrast, while p38 mitogen-activated protein kinase is activated weakly and transiently in PC12 cells treated with FGF-2, a much stronger and sustained activation of this kinase is seen in FGF-2-treated fibroblasts. Furthermore, specific inhibitors of this kinase block proliferation but have no effect on differentiation. This effect on proliferation is specific for FGF-2 since the same concentrations of inhibitors have little or no effect on proliferation induced by serum.  相似文献   

9.
Disruption of the actin cytoskeleton in subconfluent mesenchymal cells induces chondrogenic differentiation via protein kinase C (PKC) alpha signaling. In this study, we investigated the role of p38 mitogen-activated protein (MAP) kinase in the chondrogenic differentiation of mesenchymal cells that is induced by depolymerization of the actin cytoskeleton. Treatment of mesenchymal cells derived from chick embryonic limb buds with cytochalasin D (CD) disrupted the actin cytoskeleton with concomitant chondrogenic differentiation. The chondrogenesis was accompanied by an increase in p38 MAP kinase activity and inhibition of p38 MAP kinase with SB203580 blocked chondrogenesis. Together these results suggest an essential role for p38 MAP kinase in chondrogenesis. In addition, inhibition of p38 MAP kinase did not alter CD-induced increased expression and activity of PKC alpha, whereas down-regulation of PKC by prolonged exposure of cells to phorbol ester inhibited CD-induced p38 MAP kinase activation. Our results therefore suggest that PKC is involved in the regulation of chondrogenesis induced by disruption of the actin cytoskeleton via a p38 MAP kinase signaling pathway.  相似文献   

10.
It is well known that zinc (Zn) is one of the micronutrients essential for normal growth and development of plants. However, the molecular mechanisms responsible for the regulation of plant growth by Zn are still not completely understood. The aim of this study was to investigate the signalling transduction pathways activated by Zn. We show that Zn elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot analysis, we suggest that Zn-activated 40- and 42-kDa MBP kinases are mitogen-activated protein kinases (MAPK). Pre-treatment of rice roots with reactive oxygen species (ROS) scavenger, sodium benzoate, was able to effectively prevent Zn-induced MAPK activation. However, phosphoinositide 3-kinase (PI-3K) inhibitor, LY294002, was unable to inhibit Zn-induced MAPK activation. These results suggest that the ROS may function in the Zn-triggered MAPK signalling pathway in rice roots.  相似文献   

11.
Until now, a lack of inhibitors with high potency and selectivity in vivo has hampered investigation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. We describe the design of skepinone-L, which is, to our knowledge, the first ATP-competitive p38 MAPK inhibitor with excellent in vivo efficacy and selectivity. Therefore, skepinone-L is a valuable probe for chemical biology research, and it may foster the development of a unique class of kinase inhibitors.  相似文献   

12.
13.
14.
15.
Activation of AMP-activated protein kinase (AMPK) has been recently demonstrated to be associated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)-stimulated glucose transport mediated by both GLUT1 and GLUT4 transporters. However, signaling events upstream and downstream of AMPK are unknown. Here we report that 1) p38 mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase 3 (MKK3) were activated by AICAR in Clone 9 cells, which express only the GLUT1 transporters, and 2) activation of p38 was required for AICAR-stimulated glucose transport since treatment of the cells with p38 inhibitor SB203580 or overexpression of dominant negative p38 mutant inhibited glucose transport. Moreover, we found that overexpression of the constitutively active form of AMPK mutant also resulted in a significant activation of p38, and inhibition of p38 activity by SB203580 did not affect AICAR-stimulated activation of AMPK. These findings demonstrate that AICAR-stimulated activation of p38 is indeed mediated by AMPK, and the p38 MAPK cascade is downstream of AMPK in the signaling pathway of AICAR-stimulated glucose transport in Clone 9 cells.  相似文献   

16.
Inflammatory bowel diseases (IBD)--Crohn's disease and ulcerative colitis--are relapsing chronic inflammatory disorders which involve genetic, immunological, and environmental factors. The regulation of TNF-alpha, a key mediator in the inflammatory process in IBD, is interconnected with mitogen-activated protein kinase pathways. The aim of this study was to characterize the activity and expression of the four p38 subtypes (p38alpha-delta), c-Jun N-terminal kinases (JNKs), and the extracellular signal-regulated kinases (ERK)1/2 in the inflamed intestinal mucosa. Western blot analysis revealed that p38alpha, JNKs, and ERK1/2 were significantly activated in IBD, with p38alpha showing the most pronounced increase in kinase activity. Protein expression of p38 and JNK was only moderately altered in IBD patients compared with normal controls, whereas ERK1/2 protein was significantly down-regulated. Immunohistochemical analysis of inflamed mucosal biopsies localized the main expression of p38alpha to lamina propria macrophages and neutrophils. ELISA screening of the supernatants of Crohn's disease mucosal biopsy cultures showed that incubation with the p38 inhibitor SB 203580 significantly reduced secretion of TNF-alpha. In vivo inhibition of TNF-alpha by a single infusion of anti-TNF-alpha Ab (infliximab) resulted in a highly significant transient increase of p38alpha activity during the first 48 h after infusion. A significant infliximab-dependent p38alpha activation was also observed in THP-1 myelomonocytic cells. In human monocytes, infliximab enhanced TNF-alpha gene expression, which could be inhibited by SB 203580. In conclusion, p38alpha signaling is involved in the pathophysiology of IBD.  相似文献   

17.
The cytokine tumor necrosis factor alpha (TNF-alpha) stimulates the NF-kappaB, SAPK/JNK, and p38 mitogen-activated protein (MAP) kinase pathways by recruiting RIP1 and TRAF2 proteins to the tumor necrosis factor receptor 1 (TNFR1). Genetic studies have revealed that RIP1 links the TNFR1 to the IkappaB kinase (IKK) complex, whereas TRAF2 couples the TNFR1 to the SAPK/JNK cascade. In transfection studies, RIP1 and TRAF2 stimulate p38 MAP kinase activation, and dominant-negative forms of RIP1 and TRAF2 inhibit TNF-alpha-induced p38 MAP kinase activation. We found TNF-alpha-induced p38 MAP kinase activation and interleukin-6 (IL-6) production impaired in rip1(-/-) murine embryonic fibroblasts (MEF) but unaffected in traf2(-/-) MEF. Yet, both rip1(-/-) and traf2(-/-) MEF exhibit a normal p38 MAP kinase response to inducers of osmotic shock or IL-1alpha. Thus, RIP1 is a specific mediator of the p38 MAP kinase response to TNF-alpha. These studies suggest that TNF-alpha-induced activation of p38 MAP kinase and SAPK/JNK pathways bifurcate at the level of RIP1 and TRAF2. Moreover, endogenous RIP1 associates with the MAP kinase kinase kinase (MAP3K) MEKK3 in TNF-alpha-treated cells, and decreased TNF-alpha-induced p38 MAP kinase activation is observed in Mekk3(-/-) cells. Taken together, these studies suggest a mechanism whereby RIP1 may mediate the p38 MAP kinase response to TNF-alpha, by recruiting the MAP3K MEKK3.  相似文献   

18.
Gong K  Li Z  Xu M  Du J  Lv Z  Zhang Y 《The Journal of biological chemistry》2008,283(43):29028-29036
A growing body of evidence has demonstrated that p38 mitogen-activated protein kinase (MAPK) has a crucial role in various physiological and pathological processes mediated by beta(2)-adrenergic receptors (beta(2)-ARs). However, the detailed mechanism of beta(2)-ARs-induced p38 MAPK activation has not yet been fully defined. The present study demonstrates a novel kinetic model of p38 MAPK activation induced by beta(2)-ARs in human embryonic kidney 293A cells. The beta(2)-AR agonist isoproterenol induced a time-dependent biphasic phosphorylation of p38 MAPK: the early phase peaked at 10 min, and was followed by a delayed phase that appeared at 90 min and was sustained for 6 h. Interestingly, inhibition of the cAMP/protein kinase A (PKA) pathway failed to affect the early phosphorylation but abolished the delayed activation. By contrast, silencing of beta-arrestin-1 expression by small interfering RNA inhibited the early phase activation of p38 MAPK. Furthermore, the NADPH oxidase complex is a downstream target of beta-arrestin-1, as evidenced by the fact that isoproterenol-induced Rac1 activation was also suppressed by beta-arrestin-1 knockdown. In addition, early phase activation of p38 MAPK was prevented by inactivation of Rac1 and NADPH oxidase by pharmacological inhibitors, overexpression of a dominant negative mutant of Rac1, and p47(phox) knockdown by RNA interference. Of note, we demonstrated that only early activation of p38 MAPK is involved in isoproterenol-induced F-actin rearrangement. Collectively, these data suggest that the classic cAMP/PKA pathway is responsible for the delayed activation, whereas a beta-arrestin-1/Rac1/NADPH oxidase-dependent signaling is a heretofore unrecognized mechanism for beta(2)-AR-mediated early activation of p38 MAPK.  相似文献   

19.
20.
The adhesion molecules known as selectins mediate the capture of neutrophils from the bloodstream. We have previously reported that ligation and cross-linking of L-selectin on the neutrophil surface enhances the adhesive function of beta(2)-integrins in a synergistic manner with chemotactic agonists. In this work, we examined degranulation and adhesion of neutrophils in response to cross-linking of L-selectin and addition of interleukin-8. Cross-linking of L-selectin induced priming of degranulation that was similar to that observed with the alkaloid cytochalasin B. Activation mediated by L-selectin of neutrophil shape change and adhesion through CD11b/CD18 were strongly blocked by Merck C, an imidazole-based inhibitor of p38 mitogen-activated protein kinase (MAPK), but not by a structurally similar non-binding regioisomer. Priming by L-selectin of the release of secondary, tertiary, and secretory, but not primary, granules was blocked by inhibition of p38 MAPK. Peak phosphorylation of p38 MAPK was observed within 1 min of cross-linking L-selectin, whereas phosphorylation of ERK1/2 was highest at 10 min. Phosphorylation of p38 MAPK, but not ERK1/2, was inhibited by Merck C. These data suggest that signal transduction as a result of clustering L-selectin utilizes p38 MAPK to effect neutrophil shape change, integrin activation, and the release of secondary, tertiary, and secretory granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号