首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prolactin release in polycystic ovarian syndrome   总被引:1,自引:0,他引:1  
To evaluate the prevalence of hyperprolactinemia in patients with polycystic ovarian syndrome (PCO), 72 patients with oligo- or anovulation were studied. All of the patients had persisting elevated LH (greater than 25 mIU/ml), normal FSH, high LH/FSH ratio (greater than 2.5), and exaggerated LH responses to LHRH. Mean testosterone and androstenedione concentrations were appreciably increased in these patients. Out of 171 samples for prolactin (PRL) determination from these 72 patients, only 5 patients had a PRL value above 30 ng/ml during the first sampling. The next sampling from these same 5 women disclosed that they were transiently hyperprolactinemic because the next samples showed a normal PRL value. To further investigate the PRL secretory capacity 500 micrograms of TRH and 10 mg of metoclopramide (MCP) were administered to these 72 and 44 patients, respectively. The PRL response to MCP was significantly blunted in these patients compared to normal women while the PRL response to TRH in these patients was not indistinguishable from that in normal women. These results indicate that the true prevalence rate of hyperprolactinemia in PCO may be low rather than high and the association of hyperprolactinemia with PCO may be coincidental rather than a pathogenically related phenomenon.  相似文献   

2.
It has been previously demonstrated that patients with hyperprolactinemia have impaired PRL response to dopaminergic blockade and increased TSH response. Since inhibitory dopaminergic modulation of aldosterone is well established, we have examined whether prolactinoma patients have an altered aldosterone response to dopaminergic blockade. To investigate this possibility we compared the plasma PRL, TSH and aldosterone responses to the dopamine (DA) antagonist metoclopramide (MCP; 10 mg i.v.) in 10 women with prolactinomas and 7 healthy female controls. Basal PRL levels in prolactinoma patients were elevated and showed a blunted rise following MCP. Although basal TSH levels were similar in the 2 groups of subjects, they significantly increased (p = 0.017) in prolactinoma patients while in contrast they did not significantly change in control subjects. Basal supine plasma aldosterone was similar in patients with prolactinomas (0.23 +/- 0.03 nmol/l) and in healthy subjects (0.25 +/- 0.04 nmol/l) and the increased aldosterone concentrations from 15 to 120 min following MCP were not significantly different in prolactinoma patients and in control subjects. It is concluded that in patients with prolactinomas, the alteration in the dopaminergic regulation is specifically related to the lactotroph.  相似文献   

3.
To investigate the hypothesis of an altered dopaminergic activity in hypothyroidism, seven patients without thyroid tissue were studied by means of three consecutive tests: an iv bolus of TRH (200 micrograms); a continuous iv infusion (5 mg during 30 min) of metoclopramide (MCP); and a second, post-MCP, iv bolus of TRH (200 micrograms). The study was performed three times: (A) without treatment; (B) on the 15th day while on L-T4 (150 micrograms i.d.); and (C) on the 30th day with the same treatment. Each time was a different situation of thyroid function; on the basis of basal serum TSH (P less than 0.001, A vs B vs C). The response of PRL to the first (non-primed) TRH, expressed as the sum of increments in ng/ml (mean +/- SE), was significantly higher in A (659 +/- 155) than in C (185 +/- 61). Individual PRL responses correlated with circulating T3 (P less than 0.02), but not with T4. A significant increase of PRL occurred after MCP in the three situations, but there were no differences among them. Likewise, the responses to the second (MCP-primed) TRH showed no differences. Although there was an expected high correlation (P less than 0.001) between basal TSH and circulating thyroid hormones, the maximal response of TSH to both non-primed and MCP-primed TRH was in B. After MCP, no measurable increase of TSH could be demonstrated at any of the three levels of thyroid function. These results do not support the hypothesis of an altered dopaminergic activity in hypothyroidism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The responses of the adenohypophyseal hormones to metoclopramide (MCP) were evaluated in hyperprolactinemic women with various radiological findings on the sella turcica. Serum PRL concentrations significantly increased after MCP administration in normal women, hyperprolactinemic patients with normal sella and patients with microadenoma, but not in macroadenoma patients with and without suprasellar expansion (SSE). The PRL response to MCP administration was significantly lower in hyperprolactinemic patients than in normal women. Serum TSH concentrations significantly increased after MCP administration in each group of subjects. The TSH response to MCP was significantly higher in patients with normal sella and patients with microadenoma than in normal women. However, the responses of PRL and TSH to MCP were not significantly different between patients with normal sella and patients with microadenoma. Therefore, they were not considered useful in distinguishing tumorous from nontumorous hyperprolactinemia. Serum LH concentrations significantly increased after MCP administration in patients with normal sella, patients with microadenoma and macroadenoma patients without SSE, but not in normal women or macroadenoma patients with SSE. The LH response to MCP was significantly higher in patients with microadenoma than in patients with normal sella. Serum FSH concentrations significantly increased after MCP administration only in patients with microadenoma. The different responses of the adenohypophyseal hormones to MCP in hyperprolactinemic women with various radiological findings on the sella turcica may be explained by the difference in the hypothalamic dopamine activity and in the impairment of the hypothalamic-pituitary system due to pituitary tumor.  相似文献   

5.
Plasma PRL, TSH, total and free T4, total and free T3, and 17 beta-estradiol were evaluated in 29 premenopausal women with well-documented fibrocystic disease of the breast and in 29 healthy matched controls. Plasma PRL and TSH dynamics after acute TRH injection (200 micrograms i.v.) were also determined. All hormonal measurements were performed in the follicular phase of the menstrual cycle. Neither patients nor controls showed any thyroid function impairment. Basal plasma levels of the examined hormones were in the normal range in both groups. When considering data pertinent to PRL and TSH secretory patterns after TRH stimulation, no difference was recorded between patients and controls for TSH secretion, evaluated in terms of maximum peak, net (delta) and percent (delta %) increase above the baseline level and integrated area of response. On the contrary, the response of PRL was significantly higher in patients than controls (maximum peak at 20 min, mean +/- SE, 119.9 +/- 14.1 vs. 60.8 +/- 5.5 ng/ml, p less than 0.001; integrated area of response, 5,725 +/- 908 vs. 3,243 +/- 266 ng/ml/120 min, p less than 0.01). The results are compatible with the view that, in most patients with fibrocystic disease of the breast, there are abnormalities in the control of PRL secretion, which lead to enhanced release of the hormone after stimulation. In such cases the control of TSH appears to be operating normally.  相似文献   

6.
Serum prolactin (PRL) concentrations at baseline and after TRH stimulation were determined in 15 healthy women and in 51 premenopausal patients suffering from Gross Cystic Breast Disease. All women were in the luteal phase of the menstrual cycle and patients were divided into three groups according to cyst type at presentation. Basal hormone levels were within the normal range in the control group and in the three cystic breast disease groups. The maximum PRL response to TRH stimulation was significantly higher (p < 0.001) in patients with type I cysts (low Na+/K+ intracystic ratio and apocrine epithelium) than in patients with type II cysts (high Na+/K+ intracystic ratio and flattened epithelium), type III cysts (intermediate Na+/K+ intracystic ratio and mixed epithelium) and in normal women. Serum PRL concentrations corresponding to samples obtained 60 and 90 minutes after stimulation remained higher in the first group of patients. These results led us to consider the existence of an altered central regulation of PRL secretion in patients with type I cysts at presentation.  相似文献   

7.
We have assessed the gonadotropin, TSH and PRL responses to the non aromatizable androgens, mesterolone and fluoxymestrone, in 27 patients with primary testicular failure. All patients were given a bolus of LHRH (100 micrograms) and TRH (200 micrograms) at zero time. Nine subjects received a further bolus of TRH at 30 mins. The latter were then given mesterolone 150 mg daily for 6 weeks. The remaining subjects received fluoxymesterone 5 mg daily for 4 weeks and 10 mg daily for 2 weeks. On the last day of the androgen administration, the subjects were re-challenged with LHRH and TRH according to the identical protocol. When compared to controls, the patients had normal circulating levels of testosterone, estradiol, PRL and thyroid hormones. However, basal LH, FSH and TSH levels, as well as gonadotropin responses to LHRH and TSH and PRL responses to TRH, were increased. Mesterolone administration produced no changes in steroids, thyroid hormones, gonadotropins nor PRL. There was, however, a reduction in the integrated and incremental TSH secretion after TRH. Fluoxymesterone administration was accompanied by a reduction in thyroid binding globulin (with associated decreases in T3 and increases in T3 resin uptake). The free T4 index was unaltered, which implies that thyroid function was unchanged. In addition, during fluoxymesterone administration, there was a reduction in testosterone, gonadotropins and LH response to LHRH. Basal TSH did not vary, but there was a reduction in the peak and integrated TSH response to TRH. PRL levels were unaltered during fluoxymesterone treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A study was carried out in 10 patients with multiple pituitary hormone deficiencies to determine the response of thyroid-stimulating hormone (TSH) and prolactin (PRL) to thyrotropin-releasing hormone (TRH) and their suppressibility by treatment with triiodothyronine (T3) given at a dose of 60 microgram/day for 1 week. In 3 patients the basal tsh values were normal and in 7 patients, 2 of whom had not received regular thyroid replacement therapy, they were elevated. The response of TSH to TRH was normal in 6 patients and exaggerated in 4 (of these, 1 patient had not received previous substitution therapy and 2 had received only irregular treatment). The basal and stimulated levels of TSH were markedly suppressed by the treatment with T3. The basal PRL levels were normal in 7 and slightly elevated in 3 patients. The response of PRL to TRH stimulation was exaggerated in 2, normal in 6 and absent in 2 patients. The basal PRL levels were not suppressible by T3 treatment but in 4 patients this treatment reduced the PRL response to TRH stimulation. From these findings the following conclusions are drawn: (1) T3 suppresses TSH at the pituitary level, and (2) the hyperreactivity of TSH to TRH and the low set point of suppressibility are probably due to a lack of TRH in the type of patients studied.  相似文献   

9.
Galactorrhea was found in 5 patients with subclinical hypothyroidism. The galactorrhea consisted of the discharge of a few drops of milk only under pressure. Serum T4 was in the lower level of the normal range, but serum T3 was normal (T4: 6.3 +/- 1.2 micrograms/dl, T3: 113 +/- 7 ng/dl). Basal serum TSH and PRL were slightly increased only in 2 and 1 cases, respectively. The PRL responses to TRH stimulation were exaggerated in all cases, although the basal levels were normal. An enlarged pituitary gland was observed in 1 patient by means of CT scanning. All patients were treated by T4 replacement. In serial TRH tests during the T4 replacement therapy, the PRL response was still increased even when the TSH response was normalized. Galactorrhea disappeared when the patients were treated with an increased dose of T4 (150-200 micrograms/day). Recurrence of galactorrhea was not observed even though replacement dose of T4 was later decreased to 100 micrograms/day in 4 cases. In patients with galactorrhea of unknown origin, subclinical hypothyroidism should not be ruled out even when their serum T4, T3, TSH and PRL are in the normal range. The TRH stimulation test is necessary to detect an exaggerated PRL response, as the cause of the galactorrhea. To differentiate this from pituitary microadenoma, observation of the effects of T4 replacement therapy on galactorrhea is essential.  相似文献   

10.
In 16 patients with metastatic testicular cancer and 10 age matched male control subjects growth hormone (GH) responses to growth hormone releasing hormone (GHRH; 1 microgram/kg body weight iv.) and thyrotropin releasing hormone (TRH; 200 micrograms iv.) were measured. Basal GH levels and GH levels following stimulation with GHRH or TRH were significantly increased in cancer patients compared to control subjects. 9 patients with testicular cancer were studied both in the stage of metastatic disease and after they had reached a complete remission. In complete remission GH responses to GHRH tended to decrease but the differences did not reach statistical significance. Our data suggest an alteration of hypothalamic and/or pituitary regulation of GH secretion in patients with metastatic testicular cancer.  相似文献   

11.
It has been demonstrated that hyperprolactinemia is sometimes present even in patients with idiopathic diabetes insipidus (DI). In this study, we examined the responses of serum prolactin (PRL) to hypertonic saline infusion and TRH injection in 11 patients with idiopathic DI diagnosed by clinical examinations. Serum sodium in these patients (147.5 +/- 3.2 mEq/L) was significantly higher at baseline than in normal subjects (139.7 +/- 2.4 mEq/L). The plasma arginine vasopressin (AVP) level was significantly lower in DI (0.42 +/- 0.24 pg/ml) at baseline than in normal subjects (2.53 +/- 1.03 pg/ml). However, the serum PRL level in both groups did not differ significantly except in one patient with idiopathic DI (35.6 ng/ml). There was no significant correlation between the basal serum sodium and basal serum PRL in either group. After an infusion of hypertonic saline, the serum sodium level gradually increased to 155.6 +/- 3.4 mEq/L in DI and to 146.5 +/- 4.3 mEq/L in the normal subjects. However, this increase did not affect PRL secretion in either group. PRL response to TRH was essentially normal in all patients with idiopathic DI. These results indicate that the secretion of PRL is not generally affected by chronic mild hypernatremic hypovolemia in the patients with idiopathic DI.  相似文献   

12.
The present study was designed to examine the effect of low-dose dopamine (DA) infusion rates (0.02 and 0.1 microgram/kg X min) on both basal and TRH-stimulated prolactin release in normal and hyperprolactinemic individuals. Sixteen normally menstruating women in the early follicular phase of a cycle and 23 hyperprolactinemic patients were studied. 0.1 microgram/kg X min DA was infused in 8 normal women and 15 patients with pathological hyperprolactinemia, while 8 normal controls and 8 patients received 0.02 microgram/kg X min DA TRH (200 micrograms, i.v.) was administered alone and at the 180th min of the 5-hour DA infusion in all controls and patients. A significant reduction in serum PRL levels, which was similar in normal women (-59.5 +/- 4.0%, mean +/- SE) and hyperprolactinemic patients (-48.2 +/- 5.5) was observed in response to 0.1 microgram/kg X min DA. In normal cycling women DA infusion significantly (P less than 0.02) reduced the PRL response to TRH with respect to the basal TRH test (delta PRL 45.0 +/- 7.0 vs. 77.9 +/- 15.4 ng/ml). On the contrary, the PRL response to TRH was significantly higher during 0.1 microgram/kg X min DA than in basal conditions in hyperprolactinemic patients, both in absolute (delta PRL 91.8 +/- 17.6 vs. 38.4 +/- 6.8, P less than 0.03) and per cent (198.5 +/- 67.6 vs. 32.1 +/- 7.5, P less than 0.02) values. A normal PRL response to TRH, arbitrarily defined as an increase greater than 100% of baseline, was restored in 11 out of 15 previously unresponsive hyperprolactinemic patients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The aim of this study was to evaluate plasma thyrotropin (TSH), prolactin (PRL) and growth hormone (GH) responses to the TSH-releasing hormone (TRH) test and to a combined arginine-TRH test (ATT-TRH) in 10 normal subjects and in 15 acromegalic patients. In controls, TSH responsiveness to TRH was enhanced by ATT (p less than 0.001). When considering the 15 acromegalic patients as a whole, no significant difference in TSH responses was detected during the two tests. However, patients without suppression of plasma GH levels after oral glucose load showed an increased TSH responsiveness to the ATT-TRH test if compared to TRH alone (p less than 0.025), while patients with partial suppression of plasma GH levels after glucose ingestion showed a decreased TSH responsiveness to ATT-TRH (p less than 0.05). No difference was recorded in PRL and GH responses, evaluated as area under the curve, during TRH or ATT-TRH tests in controls and in acromegalics. In conclusion, (1) normal subjects have an enhanced TSH response to the ATT-TRH test and (2) acromegalic patients without suppression of GH levels after oral glucose load show a TSH responsiveness to the ATT-TRH test similar to that of controls, while acromegalics with partial GH suppression after oral glucose load have a decreased TSH responsiveness to the ATT-TRH test. These data suggest that acromegaly is a heterogeneous disease as far as the somatostatinergic tone is concerned.  相似文献   

14.
Previous studies in Rhesus monkeys have demonstrated that a dopamine (DA) infusion rate of 0.1 microgram/kg X min induces peripheral DA levels similar to those measured in hypophysial stalk blood and normalizes serum prolactin (PRL) levels in stalk-transected animals. We therefore examined the effect of such DA infusion rate on basal and thyrotropin-releasing hormone (TRH)-stimulated PRL secretion in both normal cycling women and women with pathological hyperprolactinemia. 0.1 microgram/kg X min DA infusion fully normalized PRL serum levels in 8 normal cycling women whose endogenous catecholamine synthesis had been inhibited by alpha-methyl-p-tyrosine (AMPT) pretreatment. Furthermore, DA significantly reduced, but did not abolish, the rise in serum PRL concentrations induced by both acute 500 mg AMPT administration and 200 micrograms intravenous TRH injection in normal women. A significant reduction in serum PRL levels in response to 0.1 microgram/kg X min DA, similar to that observed in normal cycling women when expressed as a percentage of baseline PRL, was documented in 13 amenorrheic patients with TRH-unresponsive pathological hyperprolactinemia. However, a marked rise was observed in the serum PRL of the same patients when TRH was administered during the course of a 0.1-microgram/kg X min DA infusion. The PRL response to TRH was significantly higher during DA than in basal conditions in hyperprolactinemic patients, irrespective of whether this was expressed as an absolute increase (delta PRL 94.4 +/- 14.2 vs. 17.8 +/- 14.1 ng/ml, p less than 0.002) or a percent increase (delta% PRL 155.4 +/- 18.9 vs. 17.9 +/- 7.1, p less than 0.0005), and there was a significant linear correlation between the PRL decrements induced by DA and the subsequent PRL responses to TRH. These data would seem to show that the 0.1-microgram/kg X min DA infusion rate reduces basal PRL secretion and blunts, but does not abolish, the PRL response to both TRH and acute AMPT administration. The strong reduction in PRL secretion and the restoration of the PRL response to TRH by 0.1 microgram/kg X min DA infusion in high majority of hyperprolactinemic patients, seem to indicate that both PRL hypersecretion and abnormal PRL response to TRH in women with pathological hyperprolactinemia are due to a relative DA deficiency at the DA receptor site of the pituitary lactotrophs.  相似文献   

15.
Response of growth hormone (GH) release to metoclopramide (MCP), a dopamine antagonist, was evaluated in normal women, hyperprolactinemic-amenorrheic patients with pituitary microadenoma and normoprolactinemic-amenorrheic patients. Mean basal concentrations of serum GH and prolactin (PRL) in amenorrheic patients were not significantly different from those in normal women except PRL concentrations in hyperprolactinemic patients. Serum GH concentrations significantly increased after MCP administration in normal women and normoprolactinemic-amenorrheic patients, but not in hyperprolactinemic patients. Dopamine causes modest and transient GH secretion in some subjects. Therefore MCP is not likely to stimulate GH secretion through its effect as a dopamine antagonist, and the mechanism of action of MCP on GH secretion is not known. Although the cause of the absence of GH response to MCP in hyperprolactinemic patients is unclear, it may be related to the increased hypothalamic dopaminergic tone which is operative in such patients or it may reflect a direct action of PRL on hypothalamic-pituitary GH regulation.  相似文献   

16.
The basal and TRH (Thyrotropin-Releasing Hormone) stimulated TSH (Thyrotropin) and PRL (Prolactin) responses (incremental area; IA) to 200 micrograms TRH was studied in 13 pre- and 13 postmenopausal women of 60 years of age. Both groups consisted of healthy women, none had goiter and all were negative for thyroid autoantibodies. The serum levels of TSH, T3, T4 and SHBG (sex hormone-binding globuline) were in the normal range and did not differ significantly between the groups. There were no differences in basal TSH (1.3 +/- 0.5 vs 1.4 +/- 0.5 mIU/l) or PRL (6.4 +/- 2.7 vs 6.6 +/- 2.5 micrograms/l) or for PRL IA (498 +/- 126 vs 584 +/- 165) between pre- and postmenopausal women. However, for TSH IA there was a slight decrease (15%), but not significant, in the postmenopausal group compared to the premenopausal group (1630 +/- 598 vs 2067 +/- 893). In conclusion, a weak but not significant decrease in the TSH response to TRH in postmenopausal women may be explained by the lower endogenous estradiol level.  相似文献   

17.
To investigate the hypothesis of an altered hypothalamic dopaminergic activity in primary hypothyroidism, eight patients with hypothyroidism and seven normal subjects, all female, were studied. All of them were submitted to two tests: TRH stimulation and after the administration of dopamine receptor-blocking drug, Domperidone. The hypothyroid patients with basal TSH values less than or equal to 60 mU/L (4 cases--group 1) had lower PRL levels than the remaining 4 subjects with TSH greater than 60 mU/L (group 2) (p less than 0.001), despite all patients presenting the PRL levels within the normal range. A significant increase occurred for both TSH and PRL after the administration of TRH and Domperidone in normal as well as in the hypothyroid subjects, except for TSH in group 1 after the administration of Domperidone. The area under the curve for PRL response to THR was not different between the normal subjects and both hypothyroid groups, while that under the curve for TSH was greater in the hypothyroidism as a whole than in the normal subjects (p = 0.006) and between the hypothyroid groups, being greater in group 2 than in 1 (p less than 0.009). In relation to Domperidone, the area under the curve for TSH was significantly higher in group 2 when compared to the normal controls (p less than 0.001), while for PRL it was not different between hypothyroid groups in relation to normal controls and when groups I and II were compared. These results suggest that the hypothalamic dopamine activity is not altered in primary hypothyroidism and favor the small relevance of dopamine on the control of TSH secretion.  相似文献   

18.
The effects of 40 mg oral and 200 microgram intravenous TRH were studied in patients with active acromegaly. Administration of oral TRH to each of 14 acromegalics resulted in more pronounced TSH response in all patients and more pronounced response of triiodothyronine in most of them (delta max TSh after oral TRh 36.4 +/- 10.0 (SEM) mU/l vs. delta max TSH after i.v. TRH 7.7 +/- 1.5 mU/l, P less than 0.05; delta max T3 after oral TRH 0.88 +/- 0.24 nmol/vs. delta max T3 after i.v. TRH 0.23 +/- 0.06 nmol/l, P less than 0.05). Oral TRH elicited unimpaired TSH response even in those acromegalics where the TSH response to i.v. TRH was absent or blunted. In contrast to TSH stimulation, oral TRH did not elicit positive paradoxical growth hormone response in any of 8 patients with absent stimulation after i.v. TRH. In 7 growth hormone responders to TRH stimulation the oral TRH-induced growth hormone response was insignificantly lower than that after i.v. TRH (delta max GH after oral TRH 65.4 +/- 28.1 microgram/l vs. delta max GH after i.v. TRH 87.7 +/- 25.6 microgram/l, P greater than 0.05). In 7 acromegalics 200 microgram i.v. TRH represented a stronger stimulus for prolactin release than 40 mg oral TRH (delta max PRL after i.v. TRH 19.6 +/- 3.22 microgram/, delta max PRL after oral TRH 11.1 +/- 2.02 microgram/, P less than 0.05). Conclusion: In acromegalics 40 mg oral TRH stimulation is useful in the evaluation of the function of pituitary thyrotrophs because it shows more pronounced effect than 200 microgram TRH intravenously. No advantage of oral TRH stimulation was seen in the assessment of prolactin stimulation and paradoxical growth hormone responses.  相似文献   

19.
The effect of exogenous dehydroepiandrosterone-sulfate (DHAS) on luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL) and thyroid-stimulating hormone (TSH) pituitary secretion was studied in 8 normal women during the early follicular phase. The plasma levels of these hormones were evaluated after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing hormone (TRH) stimulation performed after placebo or after 30 mg DHAS i.v. administration. The half-life of DHAS was also calculated on two subjects; two main components of decay were detected with half-times of 0.73-1.08 and 23.1-28.8 h. The results show an adequate response of all hormones to GnRH or TRH tests which was not significantly modified, in the case of LH, FSH and PRL, when performed in the presence of high levels of DHAS. However, the TSH response to TRH was significantly less suppressed (p less than 0.05) (39%) after DHAS administration than during repeated TRH stimulation without DHAS (51%). The data support the hypothesis that DHAS does not affect LH, FSH and PRL secretion, while TSH seemed to be partially influenced.  相似文献   

20.
To clarify the effects of cyclosporine A (CsA) on the secretion of serum thyrotropin (TSH), prolactin (PRL), luteinizing hormone (LH) and follicular stimulating hormone (FSH), we performed TRH and LH-RH testing in 4 patients with the nephrotic syndrome before and after the administration of CsA, 6 mg/kg/day for 4 to 12 weeks. Prior to CsA all patients responded normally to TRH with respect to TSH and PRL secretion. Two patients showed normal response of LH and FSH to LH-RH stimulation while the response in 2 other patients, who were both menopausal, was exaggerated. By the third or fourth week of CsA administration the basal and peak TSH and PRL values declined significantly in all patients in response to TRH stimulation while those of LH and FSH showed only a modest decrease in response to LH-RH stimulation. Two to 4 weeks after the cessation of CsA the response of TSH, PRL and FSH returned to the pretreatment level. These observations suggest that: 1) CsA exerts an inhibitory effect on the secretion of at least TSH and PRL in humans, and 2) the effect of CsA on the pituitary may be partially reversible after the cessation of the therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号