首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene cluster containing lexA, recA and recX genes was previously identified and characterized in Xanthomonas campestris pathovar citri (X. c. pv. citri). We have now cloned and sequenced the corresponding regions in the Xanthomonas campestris pv. campestris (X. c. pv. campestris) and Xanthomonas oryzae pathovar oryzae (X. o. pv. oryzae) chromosome. Sequence analysis of these gene clusters showed significant homology to the previously reported lexA, recA and recX genes. The genetic linkage and the deduced amino acid sequences of these genes displayed very high identity in different pathovars of X. campestris as well as in X. oryzae. Immunoblot analysis revealed that the over-expressed LexA protein of X. c. pv. citri functioned as a repressor of recA expression in X. c. pv. campestris, indicating that the recombinant X. c. pv. citri LexA protein was functional in a different X. campestris pathovar. The abundance of RecA protein was markedly increased upon exposure of X. c. pv. campestris to mitomycin C, and an upstream region of this gene was shown to confer sensitivity to positive regulation by mitomycin C on a luciferase reporter gene construct. A symmetrical sequence of TTAGTAGTAATACTACTAA present within all three Xanthomonas lexA promoters and a highly conserved sequence of TTAGCCCCATACCGAA present in the three regulatory regions of recA indicate that the SOS box of Xanthomonas strains might differ from that of Escherichia coli.  相似文献   

2.
3.
Footprinting and mutagenesis experiments demonstrated that Leptospira interrogans LexA binds the palindrome TTTGN(5)CAAA found in the recA promoter but not in the lexA promoter. In silico analysis revealed that none of the other canonical SOS genes is under direct control of LexA, making the leptospiral lexA gene the first described which is not autoregulated.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The protein encoded by the lexA gene from Mycobacterium leprae was overproduced in Escherichia coli . The recombinant protein bound to the promoter regions of the M. leprae lexA , M. leprae recA and M. smegmatis recA genes at sites with the sequences 5'-GAACACATGTTT and 5'-GAACAGGTGTTC, which belong to the 'Cheo box' family of binding sites recognized by the SOS repressor from Bacillus subtilis . Gel mobility shift assays were used to confirm that proteins with the same site specificity of DNA binding are also present in Mycobacterium tuberculosis and M. smegmatis . Complex formation was impaired by mutagenic disruption of the dyad symmetry of the M. smegmatis recA Cheo box. LexA binding was also inhibited by preincubation of the M. smegmatis and M. tuberculosis extracts with anti- M. leprae LexA antibodies, suggesting that the mycobacterial LexA proteins are functionally conserved at the level of DNA binding. Finally, exposure of M. smegmatis to DNA-damaging agents resulted in induction of the M. smegmatis recA promoter with concomitant loss of DNA binding of LexA to its Cheo box, confirming that this organism possesses the key regulatory elements of a functional SOS induction system.  相似文献   

11.
The promoter of the Rhizobium etli recA gene has been identified by primer extension and by making deletions affecting several regions located upstream of its coding region. A gel mobility shift assay carried out with crude extracts of cells of R. etli has been used to show that a DNA-protein complex is formed in the R. etli recA promoter region in vitro. Analysis of the minimal region of the recA promoter giving rise to this DNA-protein complex revealed the presence of an imperfect palindrome corresponding to the sequence TTGN11CAA. Site-directed mutation of both halves of this palindrome indicated that both motifs, TTG and CAA, are necessary for both normal DNA-protein complex formation in vitro and full DNA damage-mediated inducibility of the recA gene in vivo. However, the TTG motif seems to be more dispensable than the CAA one. The presence of this same palindrome upstream of the recA genes of Rhizobium meliloti and Agrobacterium tumefaciens, whose expression is also regulated in R. etli cells, suggests that this TTGN11CAA sequence may be the SOS box of at least these three members of the Rhizobiaceae.  相似文献   

12.
13.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

14.
The products of the lexA and recA genes play central roles in the regulation of the Escherichia coli SOS response. We have measured the rate of mRNA synthesis from each gene at intervals following various inducing treatments in order to obtain a more precise timing of the induction process. Further, we provide quantitative evidence for kinetics of decay from fully induced levels of mRNA synthesis to basal levels as the cells shut down the SOS response which are in agreement with previously published data on the expression of specific SOS functions. The induction kinetics of lexA and recA gene expression are parallel except for nalidixic acid (NAL) treatment, with the actual levels of lexA mRNA synthesis being about 10-fold lower than that of recA. Reestablishment of repression from RecA commenced over 30 min earlier than from lexA. These results are fully consistent with the model that the functions result from the increased gene expression.  相似文献   

15.
16.
17.
18.
The here-reported identification of the LexA-binding sequence of Bdellovibrio bacteriovorus, a bacterial predator belonging to the delta-Proteobacteria, has made possible a detailed study of its LexA regulatory network. Surprisingly, only the lexA gene and a multiple gene cassette including dinP and dnaE homologues are regulated by the LexA protein in this bacterium. In vivo expression analyses have confirmed that this gene cassette indeed forms a polycistronic unit that, like the lexA gene, is DNA damage inducible in B. bacteriovorus. Conversely, genes such as recA, uvrA, ruvCAB, and ssb, which constitute the canonical core of the Proteobacteria SOS system, are not repressed by the LexA protein in this organism, hinting at a persistent selective pressure to maintain both the lexA gene and its regulation on the reported multiple gene cassette. In turn, in vitro experiments show that the B. bacteriovorus LexA-binding sequence is not recognized by other delta-Proteobacteria LexA proteins but binds to the cyanobacterial LexA repressor. This places B. bacteriovorus LexA at the base of the delta-Proteobacteria LexA family, revealing a high degree of conservation in the LexA regulatory sequence prior to the diversification and specialization seen in deeper groups of the Proteobacteria phylum.  相似文献   

19.
M Shirakawa  T Tsurimoto  K Matsubara 《Gene》1984,28(1):127-132
A novel expression vector using the 236-bp promoter-operator fragment of the recA gene (recApo) of Escherichia coli has been constructed. This DNA fragment contains complete signals for the initiation of RNA synthesis, as well as for regulation by the lexA product, but lacks the coding sequence for the RecA protein. The strength of the recA promoter was examined by assaying beta-galactosidase activity expressed from a cro-lacZ fused gene placed downstream of the promoter. Under noninducing conditions, the promoter was regulated by the LexA protein, and the fused gene was expressed only weakly. Upon induction by nalidixic acid in a recA+ strain, high expression was observed for an extended period. After 5 h under inducing conditions, as much as 11% of the total cellular protein was cro-lacZ product. The expression level was higher than that from promoters of lac, trp, and lambda early genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号