首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies support the hypothesis that reperfusion following cerebral ischemia contributes substantially to ischemic injury and that mitochondrial dysfunction plays a central role. Defining the mechanisms by which mitochondrial dysfunction occurs may be important for the development of new therapies against delayed neuronal cell death. Ischemic preconditioning (IP) increases an organ's resistance to ischemic injury. There are two windows for IPC, one that requires several hours to develop and another one with a rapid setting (rapid window). However, the rapid window only provides neuroprotection for few days. We have recently determined that this lack of chronic protection by the rapid window was due to lack of protection against mitochondrial dysfunction.  相似文献   

2.
Transient global brain ischemia induces dysfunctions of mitochondria including disturbance in mitochondrial protein synthesis and inhibition of respiratory chain complexes. Due to capacity of mitochondria to release apoptogenic proteins, ischemia-induced mitochondrial dysfunction is considered to be a key event coupling cerebral blood flow arrest to neuronal cell death. Ischemic preconditioning (IPC) represents an important phenomenon of adaptation of central nervous system (CNS) to sub-lethal short-term ischemia, which results in increased tolerance of CNS to the lethal ischemia. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated inhibition of mitochondrial protein synthesis and activity of mitochondrial respiratory chain complexes I and IV in the hippocampus of rats. Global brain ischemia was induced by 4-vessel occlusion in duration of 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later, 15 min of lethal ischemia was induced. Our results showed that IPC affects ischemia-induced dysfunction of hippocampal mitochondria in two different ways. Repression of mitochondrial translation induced during reperfusion of the ischemic brain is significantly attenuated by IPC. Slight protective effect of IPC was documented for complex IV, but not for complex I. Despite this, protective effect of IPC on ischemia/reperfusion-associated changes in integrity of mitochondrial membrane and membrane proteins were observed. Since IPC exhibited also inhibitory effect on translocation of p53 to mitochondria, our results indicate that IPC affects downstream processes connecting mitochondrial dysfunction to neuronal cell death.  相似文献   

3.
A mild cerebral ischemic insult, also known as ischemic preconditioning (IPC), confers transient tolerance to a subsequent ischemic challenge in the brain. This study was conducted to investigate whether bone morphogenetic protein-7 (BMP-7) is involved in neuroprotection elicited by IPC in a rat model of ischemia. Ischemic tolerance was induced in rats by IPC (15 min middle cerebral artery occlusion, MCAO) at 48 h before lethal ischemia (2 h MCAO). The present data showed that IPC increased BMP-7 mRNA and protein expression after 24 h reperfusion following ischemia in the brain. In rats of ischemia, IPC-induced reduction of cerebral infarct volume and improvement of neuronal morphology were attenuated when BMP-7 was inhibited either by antagonist noggin or short interfering RNA (siRNA) pre-treatment. Besides, cerebral IPC-induced up-regulation of B-cell lymphoma 2 (Bcl-2) and down-regulation of cleaved caspase-3 at 24 h after ischemia/reperfusion (I/R) injury were reversed via inhibition of BMP-7. These findings indicate that BMP-7 mediates IPC-induced tolerance to cerebral I/R, probably through inhibition of apoptosis.  相似文献   

4.
On the role of Ca2+ in cerebral ischemic preconditioning   总被引:2,自引:0,他引:2  
Tauskela JS  Morley P 《Cell calcium》2004,36(3-4):313-322
  相似文献   

5.
Ischemic preconditioning (IPC) represents an important adaptation of CNS to sub-lethal ischemia, which results in increased tolerance of CNS to the lethal ischemia. Ischemia-induced mitochondrial apoptosis is considered to be an important event leading to neuronal cell death after cerebral blood flow arrest. In presented study, we have determined the effect of IPC on ischemia/reperfusion-induced mitochondrial apoptosis. Global brain ischemia was induced by permanent occlusion of vertebral arteries and temporal occlusion of carotid arteries for 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later 15 min of lethal ischemia was induced. With respect to mitochondrial apoptosis initiation, translocation of p53 to mitochondria was observed in hippocampus but not in cerebral cortex. However, level of both apoptotic bax and anti-apoptotic bcl-xl in both hippocampal and cortical mitochondria was unchanged after global brain ischemia. Detection of genomic DNA fragmentation as well as Fluoro-Jade C staining showed that ischemia induces apoptosis in vulnerable CA1 layer of rat hippocampus. IPC abolished completely ischemia-induced translocation of p53 to mitochondria and had significant protective effect on ischemia-induced DNA fragmentation. In addition, significant decrease of Fluoro-Jade C positive cells was observed as well. Our results indicate that IPC abolished almost completely both initiation and execution of mitochondrial apoptosis induced by global brain ischemia.  相似文献   

6.
Ischemic preconditioning (IPC) before sustained ischemia decreases myocardial infarct size mediated in part via protection of cardiac mitochondria. Reversible blockade of electron transport at complex I immediately before sustained ischemia also preserves mitochondrial respiration and decreases infarct size. We proposed that IPC would attenuate electron transport from complex I as a potential effector mechanism of cardioprotection. Isolated, Langendorff-perfused rat hearts underwent IPC (3 cycles of 5-min 37 degrees C global ischemia and 5-min reperfusion) or were perfused for 40 min without ischemia as controls. Subsarcolemmal (SSM) and interfibrillar (IFM) populations of mitochondria were isolated. IPC did not decrease ADP-stimulated respiration measured in intact mitochondria using substrates that donate reducing equivalents to complex I. Maximally expressed complex I activity measured as rotenone-sensitive NADH:ubiquinone oxidoreductase in detergent-solubilized mitochondria was also unaffected by IPC. Thus the protection of IPC does not occur as a consequence of a partial decrease in complex I activity leading to a decrease in integrated respiration through complex I. IPC and blockade of electron transport both converge on mitochondria as effectors of cardioprotection; however, each modulates mitochondrial metabolism during ischemia by different mechanisms to achieve cardioprotection.  相似文献   

7.
In ischemic tolerance experiment, when we applied 5-min ischemia 2 days before 30-min ischemia, we achieved a remarkable (95.8%) survival of CA1 neurons. However, when we applied 5-min ischemia itself, without following lethal ischemia, we found out 45.8% degeneration of neurons in the CA1. This means that salvage of 40% CA1 neurons from postischemic degeneration was initiated by the second pathophysiological stress. These findings encouraged us to hypothesize that the second pathophysiological stress used 48 h after lethal ischemia can be efficient in prevention of delayed neuronal death. Our results demonstrate that whereas 8 min of lethal ischemia destroys 49.9% of CAI neurons, 10 min of ischemia destroys 71.6% of CA1 neurons, three different techniques of the second pathophysiological stress are able to protect against both: CA1 damage as well as spatial learning/memory dysfunction. Bolus of norepinephrine (3.1 μmol/kg i.p.) used two days after 8 min ischemia saved 94.2%, 6 min ischemia applied 2 days after 10 min ischemia rescued 89.9%, and an injection of 3-nitropropionic acid (20 mg/kg i.p.) applied two days after 10 min ischemia protected 77.5% of CA1 neurons. Thus, the second pathophysiological stress, if applied at a suitable time after lethal ischemia, represents a significant therapeutic window to opportunity for salvaging neurons in the hippocampal CA1 region against delayed neuronal death.  相似文献   

8.
Mitochondria isolated from rat brains following 30 min of complete (decapitation) ischemia showed a 3-fold increase in free fatty acid content, but no significant decreases in the total fatty acid or phospholipid content.This free fatty acid increase was associated with an altered mitochondrial function: a 50% inhibition of state 3 (+ ADP) respiration and a decrease in the respiratory control ratio from 5.5 to 3 to 24°C. The P:O ratio remained unchanged at 3, and there was no increase in stage 4 respiration. When glutamate and malate supported respiration was determined as a function of temperature in control mitochondria, the resulting Arrhenius plot of the state 3 respiration was biphasic with a transition temperature around 30°C, while ischemic mitochondria exhibited a linear Arrhenius plot with energy of activation (approximately 10 kcal/mol) similar to that of control mitochondria below the transition temperature.The difference in temperature response between control and ischemic mitochondria reflects a change in mitochondrial lipid composition, and is therefore a functional manifestation of the altered cerebral lipid composition commonly observed during ischemia.  相似文献   

9.
Ischemic preconditioning (IPC) of the brain describes the neuroprotection induced by a short, conditioning ischemic episode (CIE) to a subsequent severe (test) ischemic episode (TIE). Most of the supporting evidence for IPC is based on histological assessment, several days after TIE. The aim of this study is to investigate if changes induced by IPC can be detected within 30 min of reperfusion following the ischemic episode. A rat model of "four-vessel occlusion" transient global cerebral ischemia and parametric analysis of electrocorticogram were used. A control group was subjected directly to a 10 min TIE, and in a preconditioned group TIE was induced 48 h after a 3 min CIE. Quantitative histology was performed 48 h after TIE. Our key finding is that, 30 min after reperfusion, there is a significant increase in the electrocortical slow activity in the control group but not in the preconditioned group. Moreover the increase inversely correlates with the degree of electrocortical suppression during seconds 10 to 15 after the onset of the ischemic episode.  相似文献   

10.
This study examined the effects of ischemic preconditioning (IPC), allopurinol (Allo) or a combination of both on the extent of mitochondrial injury caused by hepatic ischemia/reperfusion (I/R). I/R increased the serum aminotransferase activity and the level of mitochondrial lipid peroxidation, whereas it decreased the mitochondrial glutathione level. Either IPC or Allo alone attenuated these changes with Allo+IPC having a synergistic effect. Allo increased the serum nitrite and nitrate level after brief ischemia. The significant peroxide production observed after 10 min of reperfusion after sustained ischemia was markedly attenuated by Allo+IPC. The mitochondria isolated after I/R were swollen, which was reduced by Allo+IPC. At the end of ischemia, the hepatic ATP level was lower and there was significant xanthine accumulation, which was attenuated by Allo+IPC. These results suggest that IPC and Allo act synergistically to protect cells against mitochondrial injury and preserve the hepatic energy metabolism during hepatic I/R.  相似文献   

11.
We investigated the distribution and time course of expression of two subtypes of prostaglandin E2 (PGE2) receptors, EP2 and EP4, in a rat model of cerebral ischemia and ischemic tolerance. Adult male Sprague-Dawley rats were subjected to either lethal global ischemia (10 min) with or without sublethal ischemic preconditioning (3 min), or ischemia only (3 min). A short 3-min cerebral ischemia and a 3-min ischemia followed by a second lethal ischemia enhanced the expression of EP2 and EP4 receptors in CA1 pyramidal neurons of the hippocampus. In tolerance-acquired CA1 neurons, the immunoreactivities of EP2 and EP4 were upregulated after 4 h and 12 h, respectively. The immunoreactivities were most prominent at 3 days and were sustained for at least 14 days, consistent with results of immunoblotting experiments. However, immunoreactivities for these PGE2 receptors increased in reactive glial cells in the vulnerable CA1 and hilar regions of rats subjected to lethal ischemia without ischemic preconditioning. Most of the EP2 immunoreactivity occurred in microglial cells and some astrocytes, whereas increased immunoreactivity for EP4 was found only in astrocytes. These data suggest that ischemia and the induction of ischemia tolerance have different regulatory effects on the expression of EP2 and EP4 receptors. Moreover, PGE2 may exert its unique pathophysiological functions in relation to delayed neuronal death and ischemic tolerance induction in the rat hippocampus via specific PGE2 receptors.This research was supported by a grant (M103KV010019 04K2201 01930) from the Brain Research Center of the 21st Century Frontier Research Program funded by the Ministry of Science and Technology of the Republic of Korea.  相似文献   

12.
Zhang SZ  Gao Q  Cao CM  Bruce IC  Xia Q 《Life sciences》2006,78(7):738-745
The objective of the present study was to determine whether the mitochondrial calcium uniporter plays a role in the cardioprotection induced by ischemic preconditioning (IPC). Isolated rat hearts were subjected to 30 min of regional ischemia by ligation of the left anterior descending artery followed by 120 min of reperfusion. IPC was achieved by two 5-min periods of global ischemia separated by 5 min of reperfusion. IPC reduced the infarct size and lactate dehydrogenase release in coronary effluent, which was associated with improved recovery of left ventricular contractility. Treatment with ruthenium red (RR, 5 μM), an inhibitor of the uniporter, or with Ru360 (10 μM), a highly specific uniporter inhibitor, provided cardioprotective effects like those of IPC. The cardioprotection induced by IPC was abolished by spermine (20 μM), an activator of the uniporter. Cyclosporin A (CsA, 0.2 μM), an inhibitor of the mitochondrial permeability transition pore, reversed the effects caused by spermine. In mitochondria isolated from untreated hearts, both Ru360 (10 μM) and RR (1 μM) decreased pore opening, while spermine (20 μM) increased pore opening which was blocked by CsA (0.2 μM). In mitochondria from preconditioned hearts, the opening of the pore was inhibited, but this inhibition did not occur in the mitochondria from hearts treated with IPC plus spermine. These results indicate that the mitochondrial calcium uniporter is involved in the cardioprotection conferred by ischemic preconditioning.  相似文献   

13.
We hypothesize that early ischemic preconditioning (IPC) can afford protection against focal brief and prolonged cerebral ischemia with subsequent reperfusion as well as permanent brain ischemia in rats by amelioration of regional cerebral blood flow. Adult male Wistar rats (n=97) were subjected to transient (30 and 60 minutes) and permanent middle cerebral artery (MCA) occlusion. IPC protocol consisted of two episodes of 5-min common carotid artery occlusion + 5-min reperfusion prior to test ischemia either followed by 48 hours of reperfusion or not. Triphenyltetrazolium chloride and Evans blue were used for delineation of infarct size and anatomical area at risk (comprises ischemic penumbra and ischemic core), respectively. Blood flow in the MCA vascular bed was measured with use of Doppler ultrasound. The IPC resulted in significant infarct size limitation in both transient and permanent MCA occlusion. Importantly, IPC caused significant reduction of area at risk after 30 min of focal ischemia as compared to controls [med(min-max) 11.4% (3.59-2 0.35%) vs. 2.47% (0.8-9.31%), p = 0.018] but it failed to influence area at risk after 5 min of ischemia [med(min-max) 7.61% (6.32-10.87%) vs. 8.2% (4.87-9.65%), p > 0.05]. No differences in blood flow were found between IPC and control groups using Doppler ultrasound. This is suggestive of the fact that IPC does not really influence blood flow in the large cerebral arteries such as MCA but it might have some effect on smaller arteries. It seems that, along with well established cytoprotective effects of IPC, IPC-mediated reduction of area at risk by means of improvement in local cerebral blood flow may contribute to infarct size limitation after focal transient and permanent brain ischemia in rats.  相似文献   

14.
Pharmacological activation of the prosurvival kinases Akt and ERK-1/2 at reperfusion, after a period of lethal ischemia, protects the heart against ischemia-reperfusion injury. We hypothesized that ischemic preconditioning (IPC) protects the heart by phosphorylating the prosurvival kinases Akt and ERK-1/2 at reperfusion. In isolated perfused Sprague-Dawley rat hearts subjected to 35 min of lethal ischemia, the phosphorylation states of Akt, ERK-1/2, and p70 S6 kinase (p70S6K) were determined after 15 min of reperfusion, and infarct size was measured after 120 min of reperfusion. IPC induced a biphasic response in Akt and ERK-1/2 phosphorylation during the preconditioning and reperfusion phases after the period of lethal ischemia. IPC induced a fourfold increase in Akt, ERK-1/2, and p70S6K phosphorylation at reperfusion and reduced the infarct risk-to-volume ratio (56.9 +/- 5.7 and 20.9 +/- 3.6% for control and IPC, respectively, P < 0.01). Inhibiting the IPC-induced phosphorylation of Akt, ERK-1/2, and p70S6K at reperfusion with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 or the MEK-1/2 inhibitor PD-98059 abrogated IPC-induced protection (46.3 +/- 5.8, 49.2 +/- 4.0, and 20.9 +/- 3.6% for IPC + LY-294002, IPC + PD-98059, and IPC, respectively, P < 0.01), demonstrating that the phosphorylation of these kinases at reperfusion is required for IPC-induced protection. In conclusion, we demonstrate that the reperfusion phase following sustained ischemia plays an essential role in mediating IPC-induced protection. Specifically, we demonstrate that IPC protects the heart by phosphorylating the prosurvival kinases Akt and ERK-1/2 at reperfusion.  相似文献   

15.
Ischemic postconditioning (IPOC) could be ineffective or even detrimental if the index ischemic duration is either too short or too long. The present study is to demonstrate that oxygen supply and metabolism defines a salvageable ischemic time window of IPOC in mice. C57BL/6 mice underwent coronary artery occlusion followed by reperfusion (I/R), with or without IPOC by three cycles of 10 s/10 s R/I. In vivo myocardial tissue oxygenation was monitored with electron paramagnetic resonance oximetry. Regional blood flow (RBF) was measured with a laser Doppler monitor. At the end of 60 min reperfusion, tissue from the risk area was collected, and mitochondrial enzyme activities were assayed. Tissue oximetry demonstrated that I/R induced a reperfusion hyperoxygenation state in the 30- and 45-min but not 15- and 60-min ischemia groups. IPOC attenuated the hyperoxygenation with 45 but not 30 min ischemia. RBF, eNOS phosphorylation, and mitochondrial enzyme activities were suppressed after I/R with different ischemic time, and IPOC afforded protection with 30 and 45 but not 60 min ischemia. Infarct size measurement indicated that IPOC reduced infarction with 30 and 45 min but not 60 min ischemia. Clearly, IPOC protected mouse heart with a defined ischemic time window between 30 and 45 min. This salvageable time window was accompanied by the improvement of RBF due to increased phosphorylated eNOS and the preservation of mitochondrial oxygen consumption due to conserved mitochondrial enzyme activities. Interestingly, this salvageable ischemic time window was mirrored by tissue hyperoxygenation status in the postischemic heart.  相似文献   

16.
Ischemic tolerance, the phenomenon where a sublethal ischemic preconditioning protects the brain against a subsequent lethal ischemia, has been widely studied. Studies have been done on cerebral blood flow levels prior to the lethal ischemia, but the hemodynamic pattern after global ischemia with ischemic preconditioning has not been reported. Sequential changes in regional cerebral blood flow (rCBF) in gerbil hippocampus after 5 min global ischemia with or without 2 min ischemic preconditioning were studied to determine if ischemic preconditioning affects rCBF. Four different treatments were given: (1) sham-operated, (2) 2 min ischemia, (3) non-preconditioned, and (4) preconditioned. Groups (1) and (2) (both groups n = 5) were given a 24-h recovery period and the rCBF was measured for baseline values. 24 h after sham-operation (3) and 2 min ischemia (4), gerbils were subjected to 5 min ischemia followed by 1 h, 6 h, 1-day or 7-day reperfusion periods (all groups n = 5). Although no regional difference was observed in the recovery pattern of rCBF, the values of rCBF were significantly higher in the preconditioned group throughout whole brain regions including hippocampus. These results indicate that ischemic preconditioning facilitated the recovery of rCBF after 5 min global ischemia. It needs further study to determine whether the protecting effects of preconditioning relate to the early recovery of rCBF or not. However, our results could be interpreted that the early recovery of rCBF may lead to benefits for cell survival in the CA1 neuron, probably facilitating other protecting mechanisms.  相似文献   

17.
Sheng R  Liu XQ  Zhang LS  Gao B  Han R  Wu YQ  Zhang XY  Qin ZH 《Autophagy》2012,8(3):310-325
Recent studies have suggested that autophagy plays a prosurvival role in ischemic preconditioning (IPC). This study was taken to assess the linkage between autophagy and endoplasmic reticulum (ER) stress during the process of IPC. The effects of IPC on ER stress and neuronal injury were determined by exposure of primary cultured murine cortical neurons to 30 min of OGD 24 h prior to a subsequent lethal OGD. The effects of IPC on ER stress and ischemic brain damage were evaluated in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The results showed that both IPC and lethal OGD increased the LC3-II expression and decreased p62 protein levels, but the extent of autophagy activation was varied. IPC treatment ameliorated OGD-induced cell damage in cultured cortical neurons, whereas 3-MA (5-20 mM) and bafilomycin A 1 (75-150 nM) suppressed the neuroprotection induced by IPC. 3-MA, at the dose blocking autophagy, significantly inhibited IPC-induced HSP70, HSP60 and GRP78 upregulation; meanwhile, it also aggregated the ER stress and increased activated caspase-12, caspase-3 and CHOP protein levels both in vitro and in vivo models. The ER stress inhibitor Sal (75 pmol) recovered IPC-induced neuroprotection in the presence of 3-MA. Rapamycin 50-200 nM in vitro and 35 pmol in vivo 24 h before the onset of lethal ischemia reduced ER stress and ischemia-induced neuronal damage. These results demonstrated that pre-activation of autophagy by ischemic preconditioning can boost endogenous defense mechanisms to upregulate molecular chaperones, and hence reduce excessive ER stress during fatal ischemia.  相似文献   

18.
Ischemic preconditioning (IPC) represents the phenomenon of CNC adaptation, which results in increased tolerance of CNS to lethal ischemia. Brain ischemia/reperfusion (IRI) initiates a catastrophic cascade in which many subcellular organelles play an important role. The Golgi apparatus, which is a part of secretory pathways (SP), represents the Ca2+ store and regulates secretion of proteins for growth/reorganization of neuronal circuit by secretory Ca2+ATPases (SPCA1). The purpose of this study is to evaluate the effect of IRI and preconditioning on SPCA1 gene expression and oxidative damage after 4-vessel occlusion for 15 min and after being exposed to different reperfusion periods. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later, 15 min of lethal ischemia was induced. Our experiments conclusively showed IRI-induced depression of SPCA activity and lipo- and protein oxidation in rat hippocampal membranes. IRI also activates the induction of SPCA1 gene expression in later reperfusion periods. IPC partially suppresses lipo- and protein oxidation in hippocampal membranes and leads to partiall rovery of the ischemic-induced depression of SPCA activity. In addition, IPC initiates earlier cellular response to the injury by the significant elevation of mRNA expression to 142% comparing to 1 h of corresponding reperfusion and to 11% comparing to 24 h of corresponding reperfusion, respectively. Similar patterns were observed on the translational level by Western blot analysis. Our results indicate the specific SPCA1 expression pattern in ischemic hippocampus. It also shows that the SPCA expression and the post-translational changes induced by ischemia are modulated by the IPC. This might serve to understand the molecular mechanisms involved in the structural integrity and function of the SP after ischemic challenge. It also suggests that there is a correlation of SPCA function with the role of SP in the response to pre-ischemic challenge.  相似文献   

19.
Kim  Dong Won  Lee  Jae-Chul  Cho  Jeong-Hwi  Park  Joon Ha  Ahn  Ji Hyeon  Chen  Bai Hui  Shin  Bich-Na  Tae  Hyun-Jin  Seo  Jeong Yeol  Cho  Jun Hwi  Kang  Il Jun  Hong  Seongkweon  Kim  Young-Myeong  Won  Moo-Ho  Kim  In Hye 《Neurochemical research》2015,40(9):1984-1995
Neurochemical Research - Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral...  相似文献   

20.
Ischemic preconditioning (IPC), an important endogenous adaptive mechanism of the CNS, renders the brain more tolerant to lethal cerebral ischemia. The molecular mechanisms responsible for the induction and maintenance of ischemic tolerance in the brain are complex and still remain undefined. Considering the increased expression of the two sodium calcium exchanger (NCX) isoforms, NCX1 and NCX3, during cerebral ischemia and the relevance of nitric oxide (NO) in IPC modulation, we investigated whether the activation of the NO/PI3K/Akt pathway induced by IPC could regulate calcium homeostasis through changes in NCX1 and NCX3 expression and activity, thus contributing to ischemic tolerance. To this aim, we set up an in vitro model of IPC by exposing cortical neurons to a 30-min oxygen and glucose deprivation (OGD) followed by 3-h OGD plus reoxygenation. IPC was able to stimulate NCX activity, as revealed by Fura-2AM single-cell microfluorimetry. This effect was mediated by the NO/PI3K/Akt pathway since it was blocked by the following: (a) the NOS inhibitors L-NAME and 7-Nitroindazole, (b) the IP3K/Akt inhibitors LY294002, wortmannin and the Akt-negative dominant, (c) the NCX1 and NCX3 siRNA. Intriguingly, this IPC-mediated upregulation of NCX1 and NCX3 activity may control calcium level within endoplasimc reticulum (ER) and mitochondria, respectively. In fact, IPC-induced NCX1 upregulation produced an increase in ER calcium refilling since this increase was prevented by siNCX1. Moreover, by increasing NCX3 activity, IPC reduced mitochondrial calcium concentration. Accordingly, the inhibition of NCX by CGP37157 reverted this effect, thus suggesting that IPC-induced NCX3-increased activity may improve mitochondrial function during OGD/reoxygenation. Collectively, these results indicate that IPC-induced neuroprotection may occur through the modulation of calcium homeostasis in ER and mitochondria through NO/PI3K/Akt-mediated NCX1 and NCX3 upregulation.Ischemic preconditioning (IPC), an important endogenous adaptive mechanism of the brain, increases neuronal tolerance to lethal cerebral ischemia. The molecular mechanisms responsible for inducing and maintaining ischemic tolerance in the brain are complex and are not yet fully understood. Among the three isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3 represent two new possible molecular effectors involved in the neuroprotective mechanisms of IPC.1, 2, 3 Indeed, the increased expression of these two plasma membrane proteins, which have a fundamental role in regulating and maintaining cellular calcium and sodium homeostasis in the brain4, 5 during IPC, has been associated with a decrease in the infarct volume following a more severe ischemic insult.1 However, the molecular mechanisms by which NCX1 and NCX3 upregulation lead to IPC-induced brain tolerance still remain unexplored.In vitro experiments performed in cortical neurons exposed to oxygen and glucose deprivation (OGD) and subsequent reoxygenation have demonstrated that changes in NCX isoform expression during OGD are accompanied by increases in both NCX1 activity and endoplasimc reticulum (ER) Ca2+ refilling.6 Considering the increased expression of the two sodium calcium exchanger (NCX) isoforms, NCX1 and NCX3, during cerebral ischemia and the relevance of nitric oxide (NO) in IPC modulation,7, 8 we investigated whether the activation of the NO/PI3K/Akt pathway induced by IPC could regulate calcium homeostasis through changes in NCX1 and NCX3 expression and activity, thus contributing to ischemic tolerance.More recently, we have reported that among the three NCX isoforms, only NCX3 is expressed on the outer mitochondrial membrane, where it works mainly by extruding calcium from the matrix.9 In this regard, an even more compelling result is that NCX3 gene ablation induces not only the disappearance of the protein from the OMM but also the accumulation of mitochondrial calcium in cortical neurons. Interestingly, NCX3 expression decreases in cortical neurons during OGD, a finding that correlates with an increase in [Ca2+]m.9Furthermore, preserving mitochondrial function is relevant for preconditioning-induced neuroprotection. In fact, preconditioning positively affects the integrity of mitochondrial oxidative phosphorylation after cerebral ischemia,10 prevents mitochondrial swelling, protects mitochondrial energy metabolism during cerebral ischemia by avoiding ATP consumption11 and increases Mn-SOD expression and activity through the NO/Ras/ERK1-2 pathway.8Although mitochondria are considered to be important mediators of endogenous neuroprotection, the mechanisms by which they might integrate cytoprotective signaling of preconditioning still remain to be fully elucidated. Thus, we investigated the role played by NCX1 and NCX3 in regulating ER and mitochondrial calcium homeostasis as a novel mechanism responsible for IPC-induced neuroprotection.For this aim, cortical neurons were exposed to 30 min of OGD followed by 3-h OGD plus reoxygenation. The expression and activity of NCX1 and NCX3 were observed by means of western blot analysis, confocal microscopy and single cell microfluorimetry. The results showed that IPC-induced neuroprotection occurs through the modulation of calcium homeostasis in ER and mitochondria through NO/Akt-mediated NCX1 and NCX3 upregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号