首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of HeLa cells to sodium butyrate caused an increase in choleragen (cholera toxin) receptors as measured by increased binding of 125I-choleragen to the intact cells. The process was dependent on time and butyrate concentration; maximal increases (over 40-fold) were observed at 48 h and 5 mM sodium butyrate. Other short chain fatty acids were less effective in elevating choleragen receptors in the order: butyrate greater than pentanoate greater than hexanoate greater than propionate. Acetate and isobutyrate had no effect. The increase in toxin receptors caused by butyrate was reversible and occurred in serum-free medium. The affinity of choleragen for control and butyrate-treated HeLa cells appeared to be similar. Butyrate also induced an elevation in choleragen receptors in rat C6 glial and Friend erythroleukemic cells but not in a butyrate-resistant HeLa mutant. The increase observed in Friend cells paralleled the increase in ganglioside GM1 (galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide), the reported choleragen receptor. Although no GM1 could be detected in untreated Hela cells, small amounts were found in cells exposed to butyrate.  相似文献   

2.
We conducted the following experiments to determine whether curcumin, an antioxidant compound extracted from the spice tumeric, inhibits cell death induced by Shiga toxin (Stx) 1 and 2 in HK-2 cells, a human proximal tubule cell line. Cells were incubated for 24-48 h with Stx1 or Stx2, 0-100 ng/ml. Test media contained either no further additives or 10-50 microM curcumin. Exposure to Stx1 and Stx2, 100 ng/ml, reduced cell viability to approximately 25% of control values after 24 h and 20 microM curcumin restored viability to nearly 75% of control. Cell staining confirmed that Stx1 and Stx2-induced damage in HK-2 cells involved a combination of apoptosis and necrosis. Thus, Stx1 caused apoptosis and necrosis in 12.2 +/- 2.2 and 12.7 +/- 0.9% of HK-2 cells, respectively. Similarly, Stx2 caused apoptosis and necrosis in 13.4 +/- 2.1 and 9.0 +/- 0.5% of HK-2 cells, respectively. Addition of 20 microM curcumin decreased the extent of apoptosis and necrosis to 2.9 +/- 2.0 and 3.8 +/- 0.2%, respectively in the presence of Stx1 and to 3.0 +/- 2.1 and 3.9 +/- 0.3%, respectively, for Stx2 (P < 0.01). Stx-induced apoptosis and its inhibition by curcumin were confirmed by DNA gel electrophoresis and by an assay for fragmentation. The protective effect of curcumin against Stx1 and Stx2-induced injury to HK-2 was not related to its antioxidant properties. Instead, curcumin enhanced expression of heat shock protein 70 (HSP70) in HK-2 cells under control conditions and after exposure to Stx1 or Stx2. No injury was detectable after incubation of LLC-PK(1) or OK cells, non-human proximal tubule cell lines, with Stx1 or Stx2. Thus, curcumin inhibits Stx-induced apoptosis and necrosis in HK-2 cells in vitro. The cytoprotective effect of curcumin against Stx-induced injury in cultured human proximal tubule epithelial cells may be a consequence of increased expression of HSP70.  相似文献   

3.
In DMN4B cells, a line of chemically mutagenized BHK hamster cells which exhibit transformed behavior at 38.5°C but not at 32°C, [14C]-palmitate incorporation into mono-, di-, and trihexosylceramides was unimpaired at 32°C when compared with incorporation rates in untransformed BHK cells. At 38.5°C, labeling of these glycolipids increased greatly in the BHK cells, but failed to increase comparably in the DMN4B cells. Assay of cell-free preparations of the galactosyltransferase which catalyzes trihexosylceramide synthesis revealed a stimulatory effect of increased temperature on activity of the BHK enzyme, but not the DMN4B enzyme. The results suggest that transformation can result from a mutation affecting glycolipid synthesis.  相似文献   

4.
The colonic epithelial cells near the top of the crypt and in the lumen have been shown to undergo apoptosis. Since butyric acid is the major short-chain fatty acid produced by fermentation of dietary fiber in the large bowel, it has been proposed that it could act as an important regulator of apoptosis in colorectal cancer. Here we report that in cells treated with butyric acid, the cleavage of DNA-PKcs was paralleled or preceded by the induction of activation of caspase-3, and these events were inhibited by Bcl-2 overexpression. We also demonstrated the redistribution of activated caspase-3 to the nuclear compartment where it locally cleaves DNA-PKcs and poly(ADP-ribose) polymerase, and cleaved fragments were released in the cytosolic compartment. The observed activation of caspase-3 and nuclear cleavage of its substrates and their subsequent release into the cytosol were inhibited by a specific caspase-3 inhibitor, the tetrapeptide DEVD-CHO. These findings suggest that relocalization of activated caspase-3 to the nucleus may constitute an important apoptotic signal during butyric acid-induction of apoptosis human colorectal cancer cells.  相似文献   

5.
Little is known about the relative intracellular localizations of the calcium-dependent proteases, calpains, and their naturally occurring inhibitor, calpastatin. In the present study, the intracellular localization of mu-calpain, m-calpain, and calpastatin was studied at the light microscopic level in proliferating A431 cells. Highly specific antibodies against the three antigens revealed distinct staining patterns in interphase and mitotic cells. Most notably, calpastatin in interphase cells was localized near the nucleus in tube-like, or large granular structures, while the calpains were more uniformly distributed through the cytoplasm in either a fibrillar form (mu-calpain) or a diffuse or fine granular form (m-calpain). The distribution patterns of the two calpain isozymes were distinctly different during mitosis. m-Calpain was concentrated at the mitotic spindle poles and midbody, while mu-calpain appeared to accumulate at the cell membrane and the spindles. Four other human cell lines as well as normal human monocytes were examined to determine if the calpains-calpastatin segregation patterns are common to other cells or are unique to the A431 line. With the exception of abundant nuclear mu-calpain in the C-33A cervical carcinoma, the segregation of the proteins was similar to that of A431. These studies indicate that calpains may be localized at regions which are relatively poor in calpastatin content. Proteins at these sites may be susceptible to calpain-catalyzed cleavage.  相似文献   

6.
The intracellular distribution of hsp70 and hdj1 was studied using immunofluorescent method. In nonstimulated cells hsp70 and hdj1 were observed in the cytoplasm of A431 cells. When 100 ng/ml EGF was added for 15 min, both hsp70 and hdj1 were accumulated in the nuclei. Later on (up to 1 h) hsp70 was exported from the nuclei to be observed mainly in the cytoplasm, whereas hdj1 remained in the nuclei. In cells exposed to tyrphostin AG1478, this inhibitor of tyrosine kinase activity of EGF receptor prevented EGF-dependent accumulation of hsp70 and hdj1 in the nuclei. U73122, an inhibitor of phospholipase C activity, induced tyrosine phosphorylation of EGF receptor without EGF stimulation. In cells treated with U73122, both hsp70 and hdj1 were detected in the nuclei of non-stimulated cells. It is concluded that the intracellular distribution of heat shock proteins in A431 cells depends on tyrosine kinase activity of EGF receptor. Here we report for the first time the influence of EGF on the intracellular redistribution of heat shock proteins.  相似文献   

7.
Covalently cross-linked multimers of lipocortin I are shown to be present in human epidermoid carcinoma A431 cells treated with epidermal growth factor or the calcium ionophore A23187. This intracellular cross-linking of lipocortin I is suggested to be mediated by the action of tissue transglutaminase, a Ca2(+)-dependent protein cross-linking enzyme. Cross-linking of lipocortin I competes with proteolytic digestion of the protein, and pretreatment of the cells with inhibitors for calpain (Ca2(+)-dependent intracellular protease) markedly enhanced the cross-linking of lipocortin I. Cross-linked lipocortin I is shown to be present in the soluble fraction of A431 cells as well as in the particulate fraction; a 34-kDa fragment of lipocortin I was solubilized successfully by plasmin digestion of the latter fraction. Immunofluorescence microscopy using specific antilipocortin-I antibody showed that cross-linked lipocortin I forms an envelope-like structure, which is not extracted with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) or Triton X-100. In vitro incubation of purified lipocortin I with tissue transglutaminase resulted in the formation of covalently cross-linked lipocortin I dimer, tetramer, and so on. Amine incorporation and cross-linking studies using lipocortin I and its N-terminal truncated derivatives indicated that the cross-linking site is localized within the plasmin-susceptible N-terminal 29 amino acids of lipocortin I. The cross-linking of lipocortin I is shown to be accelerated more than 10 times by the addition of phosphatidylserine vesicles, on which lipocortin I molecules are most likely aligned in a conformation suitable for cross-linking. Collectively, these findings suggest that an increase of intracellular calcium concentration results in the attachment of lipocortin I onto the plasma membrane phospholipids through the C-terminal domain of the molecule where the membrane-bound lipocortin I is cross-linked by the action of tissue transglutaminase through the N-terminal domain.  相似文献   

8.
9.
Epidermal growth factor (EGF) receptor-overexpressing p53-deficient A431 cells response to toxic dose of EGF by G1 arrest and apoptosis was studied. We previously reported an increased expression of growth arrest and DNA-damage-inducible gene, Gadd45, in EGF-overexposed A431 cells. The mechanism for this induction was increased half-lives of mRNA and protein. In this study, using phorbol ester (a PKC activator) and specific inhibitors of PKC isoforms, we showed that protein kinase C-delta (PKCdelta) was involved in the increase of Gadd45 protein stability. We further demonstrated that Gadd45 is ubiquitinated and is regulated by proteolysis. While EGF induced ubiquitination of total cellular proteins, there was a decrease in Gadd45 ubiquitination, which could be inhibited by Rottlerin, a PKCdelta-specific inhibitor. These results suggest that an increase in Gadd45 stability may involve PKCdelta-dependent ubiquitin-proteasome pathway.  相似文献   

10.
Reversible glutathionylation regulates actin polymerization in A431 cells.   总被引:5,自引:0,他引:5  
In response to growth factor stimulation, many mammalian cells transiently generate reactive oxygen species (ROS) that lead to the elevation of tyrosine-phosphorylated and glutathionylated proteins. While investigating EGF-induced glutathionylation in A431 cells, paradoxically we found deglutathionylation of a major 42-kDa protein identified as actin. Mass spectrometric analysis revealed that the glutathionylation site is Cys-374. Deglutathionylation of the G-actin leads to about a 6-fold increase in the rate of polymerization. In vivo studies revealed a 12% increase in F-actin content 15 min after EGF treatment, and F-actin was found in the cell periphery suggesting that in response to growth factor, actin polymerization in vivo is regulated by a reversible glutathionylation mechanism. Deglutathionylation is most likely catalyzed by glutaredoxin (thioltranferase), because Cd(II), an inhibitor of glutaredoxin, inhibits intracellular actin deglutathionylation at 2 microM comparable with its IC(50) in vitro. Moreover, mass spectral analysis showed efficient transfer of GSH from immobilized S-glutathionylated actin to glutaredoxin. Overall, this study revealed a novel physiological relevance of actin polymerization regulated by reversible glutathionylation of the penultimate cysteine mediated by growth factor stimulation.  相似文献   

11.
Butyric acid is one of the major extracellular metabolites of periodontopathic Gram-negative bacteria. We previously demonstrated that butyric acid induced apoptosis in human T cells. In the present study, we examined the interaction between butyric acid and TNF-alpha in Jurkat T-cell apoptosis. Simultaneous treatment with TNF-alpha enhanced butyric acid-induced apoptosis by promoting caspase activity more than was achieved by either reagent alone. We examined which genes were associated with the increased susceptibility to TNF-alpha caused by butyric acid, and revealed that expression of cFLIP decreased with increased concentrations of butyric acid. Furthermore, exogenous expression of cFLIP protein suppressed the enhancing effect by TNF-alpha in the apoptosis. These results suggest that butyric acid downregulates cFLIP expression and increases the susceptibility to TNF-alpha by activating caspases via the death receptor signal.  相似文献   

12.
Photodynamic therapy (PDT), a photochemotherapeutic regimen used to treat several diseases, including cancer, exerts its effects mainly through induction of cell death. Using human epidermoid carcinoma A431 cells as a model, we previously showed that distinct cell death types could be triggered by protocols that selectively delivered Photofrin (a clinically approved photosensitizer) to different subcellular sites (Hsieh et al. [2003] J Cell Physiol 194: 363–375]. Here, the responses elicited by PDT in A431 cells containing intracellular organelle‐localized Photofrin were further characterized. Two prominent cell phenotypes were observed under these conditions: one characterized by perinuclear vacuole (PV) formation 2–8 h after PDT followed by cell recovery or shrinkage within 48 h, and a second characterized by typical apoptotic features appearing within 4 h after PDT. DCFDA‐sensitive reactive oxygen species formed proximal to PVs during the response to PDT, covering areas in which both endoplasmic reticulum (ER) and the Golgi complex were located. Biochemical analyses showed that Photofrin‐PDT also induced JNK activation and altered the protein secretion profile. A more detailed examination of PV formation revealed that PVs were derived from the ER. The alteration of ER structure induced by PDT was similar to that triggered by thapsigargin, an ER Ca2+‐ATPase inhibitor that perturbs Ca2+ homeostasis, suggesting a role for Ca2+ in the formation of PVs. Microtubule dynamics did not significantly affect PV formation. This study demonstrates that cells in which intracellular organelles are selectively loaded with Photofrin mount a novel response to ER stress induced by PDT. J. Cell. Biochem. 111: 821–833, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Xu YJ  Saini HK  Cheema SK  Dhalla NS 《Cell calcium》2005,38(6):569-579
Although lysophosphatidic acid (LPA) is known to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in vascular smooth muscle cells (VSMCs), the mechanisms of [Ca2+]i mobilization by LPA are not fully understood. In the present study, the effect of LPA on [Ca2+]i mobilization in cultured A10 VSMCs was examined by Fura-2 fluorescence technique. The expression of LPA receptors was studied by immunostaining. LPA was observed to increase [Ca2+]i in a concentration-dependent manner; this increase was dependent on the concentration of extracellular Ca2+. Both sarcolemmal (SL) Na(+)-Ca2+ exchange inhibitors (amiloride, Ni2+ and KB-R7943) and Na(+)-H+ exchange inhibitor (MIA) as well as SL store-operated Ca2+ channel (SOC) antagonists (SK&F 96365, tyrphostin A9 and gadolinium), unlike SL Ca2+ channel antagonists (verapamil and diltiazem), inhibited the LPA-induced increase in [Ca2+]i. In addition, sarcoplasmic reticulum (SR) Ca2+ channel blocker (ryanodine), SR Ca2+ channel opener (caffeine), SR Ca2+ pump ATPase inhibitor (thapsigargin) and inositol 1,4,5-trisphosphate (InsP3) receptor antagonists (xestospongin and 2-aminoethoxydiphenyl borate) were found to inhibit the LPA-induced Ca2+ mobilization. Furthermore, phospholipase C (PLC) inhibitor (U 73122) and protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) attenuated the LPA-induced increase in [Ca2+]i. These results indicate that Ca2+ mobilization by LPA involves extracellular Ca2+ entry through SL Na(+)-Ca2+ exchanger, Na(+)-H+ exchanger and SL SOCs. In addition, ryanodine-sensitive and InsP(3)-sensitive intracellular Ca2+ pools may be associated with the LPA-induced increase in [Ca2+]i. Furthermore, the LPA-induced [Ca2+]i mobilization in VSMCs seems to be due to the activation of both PLC and PKC.  相似文献   

14.
Verotoxin (VT) or shiga toxin (Stx) produced by enterohemorrhagic Escherichia coli (EHEC) and Shigella dysenteriae is AB5 holotoxin with potent protein synthesis inhibitor. VT can induce both apoptosis and necrosis depending on the cell type, it has been shown that VT-induced apoptosis and cytotoxicity are distinct processes, and the A subunit can be necessary for apoptosis. In other words, the precise role of each subunit in apoptosis signaling has yet to be established. In this study, induction of apoptosis has been examined by using both recombinant A and B subunits, and recombinant Stx (rStx) with different doses in HeLa and Vero cells. For this purpose, the polymyxin B extract of constructs expressing A, B and AB5 recombinant proteins was used. Therefore, amounts greater than normally reported were used to induce desire effects on cell lines. The apoptotic effect of A and B subunits appear at higher doses than that of rStx. The highest apoptotic effect was observed for rStx at low concentration, compared to A and B subunits. A or B subunits separately cannot induce the signaling pathway stimulated by holotoxin though A subunit, does induce laddering pattern similar to holotoxin. We concluded that both subunits are important in complete death signaling pathway. Since different concentration of A and B subunits and rStx was required in different assay, therefore, it could be emphasized that cell death or even apoptosis caused by either of the subunits or holotoxin depends on sensitivity or specificity of the assay and cell types used.  相似文献   

15.
A high-Mr neutral endopeptidase-24.5 (NE) that cleaved bradykinin at the Phe5-Ser6 bond was purified to apparent homogeneity from human lung by (NH4)2SO4 fractionation, ion-exchange chromatography and gel filtration. The final enzyme preparation produced a single enzymically active protein band after electrophoresis on a 5% polyacrylamide gel. Human lung NE had an Mr of 650,000 under non-denaturing conditions, but after denaturation and electrophoresis on an SDS/polyacrylamide gel NE dissociated into several lower-Mr components (Mr 21,000-32,000) and into two minor components (Mr approx. 66,000). The enzyme activity was routinely assayed with the artificial substrate Z-Gly-Gly-Leu-Nan (where Z- and -Nan represent benzyloxycarbonyl- and p-nitroanilide respectively). NE activity was enhanced slightly by reducing agents, greatly diminished by thiol-group inhibitors and unchanged by serine-proteinase inhibitors. Human lung NE was inhibited by the univalent cations Na+ and K+. No metal ions were essential for activity, but the heavy-metal ions Cu2+, Hg2+ and Zn2+ were potent inhibitors. With the substrate Z-Gly-Gly-Leu-Nan a broad pH optimum from pH 7.0 to pH 7.6 was observed, and a Michaelis constant value of 1.0 mM was obtained. When Z-Gly-Gly-Leu-Nap (where -Nap represents 2-naphthylamide) was substituted for the above substrate, no NE-catalysed hydrolysis occurred, but Z-Leu-Leu-Glu-Nap was readily hydrolysed by NE. In addition, NE hydrolysed Z-Gly-Gly-Arg-Nap rapidly, but at pH 9.8 rather than in the neutral range. Although human lung NE was stimulated by SDS, the extent of stimulation was not appreciable as compared with the extent of SDS stimulation of NE from other sources.  相似文献   

16.
Ricin and viscumin are heterodimeric protein toxins. Their A-chain is enzymatically active and removes an adenine residue from the 28S rRNA, the B-chain has lectin activity and binds to terminal galactose residues of cell surface receptors. The toxins reveal a high degree of identity in their amino acid sequences. Nevertheless, uptake into 3T3 cells occurs via different receptors and endocytotic pathways. This has been revealed by enzyme linked based analysis of ricin competition with viscumin, and by fluorochrome-labeled toxins (viscumin-FITC, ricin-Alexa 568), which were added simultaneously or separately to living cells. Then the uptake was followed by confocal laser scanning microscopy. Ricin immediately is delivered to the tubular and vesicular structures of endosomes in the perinuclear area while viscumin becomes endocytosed into small vesicles preferentially in the cell periphery. After about 60 min both these toxins may be found in tubo-vesicular structures of endosomes where the sorting process can directly be observed. The fact that this sorting takes place is a strong argument for the assumption that the toxins are bound to membrane proteins, either to their original receptors or to other proteins inside the endosomal compartment exhibiting terminal galactose residues. The toxins are biologically fully active as has been proven by binding and by toxicity experiments, thus the differences in targeting do not arise from labeling.  相似文献   

17.
Synthesis and degradation of glycerophospholipids in HL-60 cells and retinoic acid (RA)-treated HL-60 cells were examined. The synthesis of each subclass of ethanolamine-containing glycerophospholipids was extremely suppressed in RA-treated HL-60 cells, while that of other glycerophospholipids was not seriously affected. A pulse-chase experiment revealed that about 88% of 1,2-diacyl and 28% of 1-alkenyl-2-acyl glycerophosphoethanolamine were degraded during 4 days in RA-treated HL-60 cells. These characteristics of metabolism observed in RA-treated HL-60 cells might be responsible for the change of subclass composition of ethanolamine-containing glycerophospholipids in HL-60 cells during differentiation to granulocytes.  相似文献   

18.
Coated pits in interphase and mitotic A431 cells   总被引:8,自引:0,他引:8  
Endocytosis is inhibited during mitosis in A431 cells (Warren et al., 1984) but the site of inhibition is unknown. A quantitative method measuring the extent of budding was used to compare coated pits in interphase and mitotic cells. Every stage of budding found in interphase cells was also found in cells at every stage of mitosis. Flatter coated pits appeared more frequent in mitotic cells but this can be partly, if not entirely, explained by their greater size. We conclude that, if budding is inhibited, inhibition must occur at all stages of the budding process.  相似文献   

19.
Biosynthesis of the epidermal growth factor receptor in A431 cells.   总被引:16,自引:6,他引:16       下载免费PDF全文
A monoclonal antibody R1 against the human epidermal growth factor receptor has been used to study biosynthesis in the carcinoma cell line A431. Two glycoproteins of apparent mol. wts. 95 000 and 160 000 were immunoprecipitated from cells labelled for short times with [35S]methionine or [3H]mannose. Pulse-chase studies show the 160 000 mol. wt. glycoprotein to be a precursor of the 175 000 mol. wt. receptor, but do not establish a precursor role for the 95 000 mol. wt. glycoprotein. Limited proteolysis, peptide mapping, endoglycosidase digestion and the use of monensin and tunicamycin show that the 95 000 mol. wt. glycoprotein is structurally related to the 160 000 mol. wt. glycoprotein and that both glycoproteins have approximately 22 000 - 28 000 mol. wt. of oligosaccharide side chains. Monensin blocks conversion of the 160 000 to the 175 000 mol. wt. mature receptor, a process which involves complexing several of its N-linked oligosaccharide chains. Pulse-chase studies showed that an immunoprecipitable polypeptide of 115 000 mol. wt., or 95 000 mol. wt., in the presence of monensin, was secreted into the medium at late chase times. The possible mechanisms for the origins of all the receptor-related polypeptides are discussed.  相似文献   

20.
Glycolipids were depleted from medaka embryos using 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glucosylceramide synthetase. Embryos cultured in the presence of 20 microM PDMP exhibited a dramatic decline in glycolipid synthesis and cell surface expression. Metabolic labeling of glucosylceramide declined by 87% on Days 3-6 of development and 72% on Days 7-10 (hatching occurred on Day 10). In parallel, PDMP-treated embryos exhibited a striking loss of several tissue-specific glycolipid antigens, including 9-O-acetyl GD3 from brain and retina, GT3/GQ1C from brain, neural tube, and retina, and sulfated glycolipid from skin and gut. Despite these changes in glycolipid expression, PDMP-treated embryos were fully viable with no evidence of developmental abnormality. PDMP appears to provide a useful tool for identifying glycolipid antigens in embryos and investigating their role in development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号