首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red cell life span within the fetal circulation has not been reported, although erythrocyte life span has been studied in the adult and newborn. The present study quantified red cell life span in 12 chronically catheterized fetal sheep at 97-136 days gestation (term = 150 days) with the use of autologous red cells labeled with [(14)C]cyanate. Cyanate forms a permanent covalent bond with hemoglobin and acts as a permanent red cell label. In the fetuses, blood (14)C activity decreased in a curvilinear fashion with time and reached 50% of the initial activity at 16.4 +/- 1.6 (SE) days. In contrast, (14)C activity of autologous red cells in two adult ewes decreased linearly with time as expected, reached 50% of the initial (14)C activity in 59 days, and yielded life spans of 117 and 121 days. Computer modeling and parameter optimization taking into account growth and skewed life span distribution were used to analyze the (14)C disappearance curve in each fetus. The mean life span of all red cells in the fetal circulation was 63.6 +/- 5.8 days. Mean red cell life span increased linearly from 35 to 107 days as fetal age increased from 97 to 136 days (r = 0.83, P < 0.001). Life span of cells produced at the time of labeling was significantly greater than the mean life span. Fetal growth rate estimated from parameter optimization was 3.28 +/- 0.72%/day; this compared well with the rate of 3.40 +/- 0.14%/day calculated from fetal weights at autopsy. Mean corpuscular volume decreased as a function of gestational age, but the decrease was small compared with the large increase in red cell life span. We conclude the following: 1) red cell life span in the fetal circulation is short compared with the adult; 2) red cells in younger fetuses have shorter life spans than in near-term fetuses; 3) the curvilinear disappearance of labeled red cells in the fetus appears to be due primarily to an expanding blood volume with fetal growth; and 4) red blood cell life span in a growing organism will be significantly underestimated unless the expansion of blood volume with growth is taken into account.  相似文献   

2.
Eosinophil responses to Fasciola hepatica in rodents   总被引:2,自引:0,他引:2  
Qualitative and quantitative cellular changes in the peripheral blood and bone marrow of resistant (rat) and susceptible (mouse) hosts of Fasciola hepatica have been examined. Eosinophil numbers in the peripheral blood and bone marrow of both hosts increased almost immediately following infection. Rats responded more rapidly than mice. Bone marrow colony formation in both rats and mice was greatly enhanced following F. hepatica infection. Injection of excretory/secretory (E/S) antigens of the fluke into rats and mice caused peripheral eosinophilia. Eosinophil levels in mice dropped by day 7 post-injection, but those in rats remained high. Eosinophil precursors in the bone marrow of injected animals also rose. Bone marrow colony formation in antigen-injected mice peaked sharply at day 7 but then fell rapidly. Rats injected with E/S antigens had about twice the level of bone marrow colonies as controls, 12 days post-injection. For most parameters measured, the magnitude of the responses of rats was greater than mice, which may be significant in the context of the rat's ability to acquire resistance to reinfection.  相似文献   

3.
Autoradiography and scintillation counting have been used for evaluation of lymphocyte turnover and life span in the bone marrow, peripheral blood and thoracic duct lymph of BALB/C mice. It was shown that the bone marrow contained two populations of small lymphocytes. One population was labelled 100% after 3–4 days of intensive injections of 3H-thymidine and constituted about 75% of the lymphocytes. The remaining 25% of the lymphocytes turned over at a much slower rate comparable to the rate of increase in labelled small lymphocytes of the thoracic duct. More than 10% of the small lymphocytes of the bone marrow were found to be unlabelled after 10 days of intensive injections of 3H-thymidine. Nine weeks after giving 3H-thymidine for 30 consecutive days, 8·6% of the small lymphocytes in the bone marrow remained labelled. The mean grain counts of cells in this population were comparable to those of thoracic duct lymphocytes at corresponding times. About 90% of the peripheral blood lymphocytes were found to have a slow turnover and a long life span.  相似文献   

4.
The formation of B lymphocytes is abnormal in autoimmune NZB and (NZB x NZW)F1 mice. With age, the proportion of sIg- Ly-5(220)+ pre-B cells and less mature B cell progenitors in the bone marrow progressively declines, reaching only approximately one-third of normal levels in 20-wk-old NZ mice. To determine the mechanisms responsible for the deficiency of NZ B lineage precursors, the mitotic activity of sIg- Ly-5(220)+ bone marrow cells in vivo was determined in NZ and conventional inbred mice as a function of age. The proportion of sIg- Ly-5(220)+ B cell precursors in (S + G2/M) stages of the cell cycle steadily decreased with age in NZ autoimmune mice. Furthermore, upon metaphase arrest, the rate of entry of sIg- Ly-5(220)+ bone marrow cells into G2/M also decreased with age in NZ mice. Therefore, the mitotic activity of sIg- Ly-5(220)+ B cell precursors is substantially decreased in NZ mice greater than or equal to 20 wk of age. The capacity of the bone marrow stromal microenvironment of NZ mice to support B lineage precursor growth was tested in two ways: 1) the capacity of preformed NZ bone marrow stroma to support B lineage cell growth in long term bone marrow cell culture under lymphopoietic conditions was assessed and 2) the capacity of NZ bone marrow B lineage precursors to expand in vivo after sublethal (200 rad) whole body irradiation was determined. Stroma derived from adult NZ mice supported the growth and development of B lineage lymphocytes in long term bone marrow cell culture to a greater extent than did age-matched conventional murine stroma. Furthermore, sublethal irradiation of older adult NZ mice resulted in some expansion of bone marrow sIg- Ly-5(220)+ B cell precursors in vivo. Therefore, the deficiency of B cell progenitors in the bone marrow of older NZ autoimmune mice is associated with diminished mitotic activity. However, this does not result from defects in the capacity of NZ bone marrow stroma to permit B lineage cell expansion as determined by both in vitro and in vivo experiments. In the absence of a detectable stromal cell defect, it is possible that an active inhibitory process within the bone marrow influences the mitotic activity of B cell precursors in NZ mice.  相似文献   

5.
Micronucleated erythrocytes are selectively removed from the peripheral circulation of normal rats. Splenectomy prevents this selective removal. In normal rats treated daily for 20 days with 0.2 mg/kg triethylenemelamine (TEM), micronucleated normochromatic (mature) erythrocytes did not accumulate in peripheral blood. In these same animals, the frequencies of micronucleated cells among polychromatic (newly formed) erythrocytes increased from 0.21 to 5.25 per thousand in peripheral blood and from 1.75 to 31.5 per thousand in bone marrow. Since both control and induced frequencies in peripheral blood were approximately 15% of those in bone marrow, the removal appears to be equally efficient for cells containing either spontaneously occurring or clastogen-induced micronuclei. In splenectomized rats treated daily for 11 days with 0.2 mg/kg TEM, the frequency of micronucleated normochromatic erythrocytes (NCEs) in the peripheral blood rose rapidly to 9 times the control value and remained elevated for 50-55 days, indicating a life span approximately equivalent to that of normal erythrocytes. Among splenectomized rats exposed to either 0.15 mg/kg triethylenemelamine, 6.5 mg/kg cyclophosphamide, or 300 mg/kg urethane for periods exceeding the erythrocyte life span, the incidences of micronucleated NCEs in the peripheral blood rose steadily from a control value of 1.0 per thousand to maximum values of 15.0, 12.7 and 8.9 per thousand, respectively. During these extended exposures, the mean frequencies of micronucleated polychromatic erythrocytes (PCEs) in peripheral blood increased from a spontaneous value of 0.9 per thousand to 23.0, 13.0 and 6.6 per thousand, respectively, reflecting the frequencies among PCEs in the bone marrow and approximating the maximum values among NCEs in the peripheral blood. Thus, the frequency of micronucleated erythrocytes in the peripheral blood of splenectomized rats can be used as an index of both acute and cumulative chromosomal damage, while in normal rats the use of peripheral blood for cytogenetic monitoring is restricted by the selective removal of these micronucleated cells.  相似文献   

6.
目的研究Exo-1对端粒酶缺失小鼠造血微环境衰老的影响。方法以端粒酶基因敲除小鼠(Terc-/-)和Exo-1基因敲除小鼠(Exo-1-/-)杂交,并进一步互交产生第三代端粒酶基因敲除小鼠(G3Terc-/-)以及第三代Terc和Exo-1双基因敲除小鼠(G3Terc-/-Exo-1-/-)。以CD45.1野生型小鼠的骨髓细胞为供体,以2月龄G3Terc-/-或G3Terc-/-Exo-1-/-小鼠为受体,进行骨髓移植。在受体小鼠9月龄时,取骨髓、脾脏、胸腺、外周血等组织器官的细胞进行流式分析,研究G3Terc-/-和G3Terc-/-Exo-1-/-受体小鼠中的野生型供体来源的造血干细胞的发育分化。结果同G3Terc-/-小鼠相比,G3Terc-/-Exo-1-/-双基因敲除受体小鼠骨髓中野生型供体来源的B220+细胞比例升高,前体B细胞的比例也明显升高;脾脏B220+细胞的比例明显升高;胸腺发育正常;外周血中B220+细胞比例升高。结论 Exo-1缺失延缓了端粒酶基因敲除小鼠造血系统微环境的衰老,从而逆转了端粒功能障碍引起的骨髓造血干细胞发育分化异常。  相似文献   

7.
It was investigated the functional status of stem cell pool (CFUs) of bone marrow, spleen and peripheral blood in mice (CBA) in early (1-30 days) and late (180-360 days) period after acute intake of 90Sr (29.6 kBq/g). Cumulative dose in red bone marrow due to incorporated 90Sr was 0.98-87.7 Gy. The kinetics, proliferative and differentiative potential of stem hemopoietic cells (CFUs) and productivity of hemopoietic tissues were significantly influenced by dose rate, absorbed dose and degree of suppresssion of bone marrow functions.The obtained results indicated that the sarcomogenous doses of 90Sr (29.6 kBq/g) resulted in realization of compensatory reactions in hemopoietic stem cell pool to support the life ability of irradiated animals: higher proliferative potential of CFUs and its repopulation, redistribution of cell subpopulations during differentiation and activation of spleens hemopoiesis.  相似文献   

8.
The focus of the study was on the reaction of by the haemopoietic system of mice subjected to impulse magnetic field. The source of the impulse magnetic field was the Shakhparonov's generator. The animals used in the experiments were mice of two strains--CBA, C57B1/6 and white non-inbred mice. These animals were exposed to impulse magnetic field during 1, 3 and 7 days. Animals were examined twice: immediately after the termination of exposure and 24 h later. The following effects were observed in the course of the experiments: an increase in the number of bone marrow cells right after the exposure termination; an increase in the number of proliferation pool cells with the increase in their mitotic activity; 1 day after the exposure termination the number of bone marrow cells was restored to the initial values, or even it decreased; the above listed bone marrow changes led to the increase in the number of peripheral blood leucocytes in 1 day after the termination of exposure. The increase of leukocyte counts was not accompanied with changes in peripheral blood cell composition. It was suggested that exposure to impulse magnetic field increases the rates of cell cycle, the cell differentiation and the maturation.  相似文献   

9.
The protective effects of carnosine as a natural dipeptide were investigated in mouse bone marrow cells against genotoxicity induced by cyclophosphamide. Mice were injected with solutions of carnosine at three different doses (10, 50 and 100?mg kg(-1) bw) for five consecutive days. On the fifth day of treatment, mice were injected cyclophosphamide and killed after 24?h. The frequency of micronuclei in polychromatic erythrocytes and the ratio of polychromatic erythrocyte/polychromatic erythrocyte?+?normochromatic erythrocyte [PCE/(PCE?+?NCE)] were evaluated by May-Grunwald/Giemsa staining. Histopathology of bone marrow was examined in mice treated with cyclophosphamide and carnosine. Carnosine significantly reduced micronucleated polychromatic erythrocytes (MnPCEs) induced by cyclophosphamide at all three doses. Carnosine at dose of 100?mg kg(-1) bw reduced MnPCEs 3.76-fold and completely normalized the PCE/(PCE?+?NCE) ratio. Administration of carnosine inhibited bone marrow toxicity induced by cyclophosphamide. It appeared that carnosine with protective activity reduced the oxidative stress and genotoxicity induced by cyclophosphamide in bone marrow cells of mice. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In these studies, we examined the effect of a maximum-tolerated, split-dose chemotherapy protocol of cyclophosphamide, cisplatin, and 1,3-bis(2-chloroethyl)-1-nitrosourea carmustine on neutrophil and lymphocyte subpopulations in the peripheral blood (PBL), thymus, bone marrow and spleen. It was found that this protocol of polychemotherapy, modeled after the induction protocol used with autologous bone marrow transplantation for breast cancer, suppressed both B and T cell populations and T cell function at times when the absolute neutrophil count had returned to normal or supernormal numbers. In the peripheral blood, 7 days following initiation of chemotherapy, there was a twofold increase in the percentage of granulocytes as compared to the level in control animals on the basis of a differential count. The polymorphonuclear neutrophil (PMN) frequency in the bone marrow was increased on day 14 and statistically identical to that in control mice on all other days analyzed. In contrast to the bone marrow cells and PBL on day 7, the frequency of PMN in the spleen and thymus was depressed. B cells (B220+) were depressed in the PBL, spleen and bone marrow and took 18–32 days to return to their normal frequency, while the frequency of B cells in the thymus was increased owing to a loss of immature T cells. The percentage of CD3+ cells in the thymus, spleen and bone marrow was significantly increased and required 10–18 days to return to normal levels, while the absolute number of CD3+ cells in the blood varied around the normal value. The ratio of CD4+ to CD8+ cells in all the organs studied varied only slightly owing to a similar reconstitution of CD4+ and CD8+ cells. In contrast to the phenotypic recovery of the CD3+, CD4+ and CD8+ cells, the ability of the splenic lymphocytes to respond to concanavalin-A was depressed and remained depressed, despite the phenotypic reconstitution of the T cell subsets, on the basis of both percentage and absolute cell number. These results show a selective T and B cell depression following multi-drug, split-dose chemotherapy in tissue and blood leukocyte populations and a chronic depression in T cell function.  相似文献   

11.
Splenectomy was performed in strain H mice. Erythrocyte macrocytosis and an increase in the reticulocyte, leucocyte and thrombocyte count were found in the peripheral blood of splenectomized animals; only the erythrocyte count fell in the first 3 weeks after splenectomy. Changes in the myelogram during the first weeks after splenectomy were characterized by an increase in the proportion of cells of the erythrocytic and lymphocytic series. The stem cell count in the bone marrow (determined after Till and McCulloch) was slightly elevated on the 8th day after splenectomy, but in subsequent weeks was rather lower than the control group values. Whatever the post-splenectomy interval at which bone marrow was taken from splenectomized mice, there was no significant difference in the transplantation effect of bone marrow cells on white and thrombocyte haematopoiesis. Bone marrow transplantation was found have a stimulant effect only on the reticulocyte count and the sooner bone marrow was collected after splenectomy, the more pronounced the effect. Changes in the myelogram and splenogram of irradiated mice to which the bone marrow cells of splenectomized mice had been transplanted were relatively small.  相似文献   

12.
Germinal center B cells and antibody production in the bone marrow   总被引:14,自引:0,他引:14  
In secondary antibody (Ab) responses, Ag processing and presentation occur in secondary lymphoid organs but most serum Ab is produced by cells in the bone marrow. Plasma cells in the bone marrow are derived from B cells activated by Ag in secondary lymphoid organs. We hypothesized that germinal center (GC) B cells, which acquire Ag from follicular dendritic cells in draining lymph nodes during the first few days of the secondary response, migrate to the bone marrow to terminally differentiate and produce specific Ab. To test this we looked for GC B cells in the thoracic duct lymph and in peripheral blood after secondary challenge using the peanut agglutininhi phenotype and blast cell morphology as markers for GC B cells. In addition, GC B cells were injected i.v. into naive recipients to determine if they would home to the bone marrow. Finally, to determine if the bone marrow environment supports maturation and Ab production by GC B cells, we cocultured GC B cells with bone marrow cells or bone marrow supernatants. The results indicate that blast cells bearing the GC B cell phenotype were present in both the thoracic duct and the peripheral blood 3 days after antigenic challenge. Day 3 peripheral blood cells secreted specific Ab, whereas cells isolated on day 0, 8, or 11 did not. Furthermore, in adoptive transfer experiments, only the day 3 GC B cells produced specific Ab and migrated to the bone marrow of naive mice. Finally, either bone marrow cells or factor(s) produced by bone marrow cells markedly enhanced Ab production by day 3 GC B cells. These data support the hypothesis that during the first few days after secondary challenge GC B cells seed the bone marrow and differentiate into plasma cells which produce the large quantities of Ab typical of secondary responses.  相似文献   

13.
We report that IL-4 causes a redistribution of B cells and modestly increases B cell life span. Intravenous injection of a long-acting formulation of IL-4 induces increases in both spleen cell number and the percentage of splenic B cells. These effects are observed within 1 day of IL-4 administration and plateau after approximately 3 days if IL-4 treatment is continued. The increase in splenic B cell number is IL-4 dose dependent, CD4+ T cell independent, FcgammaRII/FcgammaRIII independent, and Stat6 independent. Decreases in the number of B cells in the blood and the percentage of mature B cells in the bone marrow, concomitant with the increase in splenic B cell number, suggest that redistribution of circulating B cells to the spleen is partially responsible for IL-4 induction of splenic B cell hyperplasia. Considerable reduction in the effect of 5 days of IL-4 treatment on splenic B cell number when B lymphopoiesis is blocked with anti-IL-7 mAb suggests that generation of new B cells is also involved in IL-4-induced splenic B cell hyperplasia. 5-Bromo-2'-deoxyuridine labeling experiments demonstrate that IL-4 modestly prolongs the life span of newly generated splenic B cells, and experiments that measure B cell HSA (CD24) expression as an indicator of B cell age suggest that IL-4 may also prolong the life span of mature splenic B cells. Thus, IL-4 increases splenic B cell number through two Stat6-independent effects: increased net migration of circulating B cells to the spleen and increased B cell life span. Both effects may promote Ab responses to a systemic Ag challenge.  相似文献   

14.
Hemopoietic changes in male C57BL/6Cum BR mice engrafted with Lewis lung carcinoma (3LL) were evaluated between day 7, when palpable tumors were present, to day 30 postengraftment. All experimental animals demonstrated decreasing hematocrits (down 40% by day 30) with concurrent leukocytosis which by day 30 postengraftment had reached levels 13.4 times normal. The myelocytic/erythrocytic ratio for normal animals was 1:3 (bone marrow: spleen). The ratio for engrafted animals ranged between 10:1 and 40:1. This apparent shift in production priorities is even more significant in light of the fact that femoral bone marrow cellularity had decreased by 33% on day 17. Splenomegaly, evident by day 7, was seven times control by day 17. Clonogenic analysis of erythroprogenitor cell concentrations revealed an inverse relationship between bone marrow and spleen. 27 days after engraftment, splenic populations demonstrated significant increases in colony forming unit-erythroid (115-fold), burst forming unit-erythroid (7.4-fold), whereas bone marrow concentrations had decreased (6-fold). This report suggests that initiation of 3LL tumor in mice results in a change in the degree of hematopoietic priorities and participation of erythroid organs.  相似文献   

15.
Smad3基因剔除对小鼠造血功能的影响   总被引:1,自引:0,他引:1  
研究Smad3基因剔除对小鼠造血功能的影响。实验小鼠分为 5组 ,每组有Smad3基因剔除小鼠(Smad3 - - )和其同窝孪生的野生型小鼠 (Smad3 + + )各 1只。小鼠的造血功能用 14天形成的脾结节 (CFU S1 4 )、多系祖细胞 (CFU GEMM)、粒 单系祖细胞 (CFU GM)、红系祖细胞 (BFU E)测定及外周血象、骨髓象等实验血液学指标来确定。每组小鼠取尾血作白细胞、红细胞和血小板计数 ,涂片作白细胞分类计数。将一侧股骨的骨髓冲出 ,制成单细胞悬液 ,计数其中有核细胞数 ,测定CFU GM、BFU E、CFU GEMM值。将每只小鼠的 4× 10 4个骨髓有核细胞 ,经尾静脉注入 3只 8~ 10周经致死量射线照射的同系雌性小鼠体内 ,测定 14天的CFU S。取一部分胸骨、肝脏、脾脏固定做病理切片 ,其余胸骨冲出骨髓 ,涂片作分类计数。结果Smad3 - - 小鼠外周血白细胞和血小板计数明显高于Smad3 + + 小鼠 ,红细胞数无显著差异。外周血白细胞分类结果也表明粒细胞显著增高。骨髓有核细胞数无显著差异 ,CFU GM显著增高 ,BFU E无显著差异 ,CFU GEMM明显减少 ,CFU S显著减少。病理形态学观察发现骨髓增生极度活跃 ,以粒系为主 ,肝脾无显著差别。骨髓涂片分类表明粒系增多 ,粒系 :红系比例增高。因此得出结论Smad3基因剔除使小鼠造血干祖细胞数目  相似文献   

16.
Products of mouse peritoneal macrophage destruction (PMD) obtained by aseptic freezing-thawing of the cells, repeated thrice, were found to elicit in syngeneic mice injected with PMD intraperitoneally an increase of CFUs count in the hemopoietic bone marrow tissue and the spleen, as demonstrated by the Till and McCullooch technique. This proved to be a true increase since the transplatned stem cell fraction sorbed by the recipient's spleen was relatively lower in donor mice given PMD than in the control. Although PMD caused an increase of both erythropoietic (E) and granulocytopoietic-monocytic (G) colonies number, the E/G ratio was decreased; one of the mechanisms of the described effect could be the influence of PMD on the hemopoiesis-inducing microenvironment, as the same effects were obtained in mice injected repeatedly with PMD prior to the transplantation of bone marrow tissue of normal donors. Other possible mechanisms of these effects were analyzed, with consideration to the fact that in experiments with preincubation of bone marrow tissue with PMD prior to injection to the lethally irradiated mice no direct stimulating influence of PMD on the stem cell could be revealed.  相似文献   

17.
Various peripheral blood and bone marrow parameters were determined during food and water deprivation and during food deprivation alone in order to obtain base lines that may be used to make comparisons with similar data from irradiated mice. The peripheral blood parameters following food and water deprivation were similar to those following food deprivation alone. The mean survival time was about 5 days and the weight loss 40% of the control weight. There was an absolute decrease in the total circulating lymphocyte and platelet counts, while the total granulocyte count remained unchanged or increased. The blood volume decreased, while the hematocrit and specific gravity of the blood increased. The bone marrow parameters following food and water deprivation showed that erythropoiesis was more markedly depressed than myelopoiesis. The tritiated thymidine labeling index for granulopoietic cells and megakaryocytes decreased progressively during starvation. The variations in the white blood count and the bone marrow parameters are not comparable with those found in irradiated mice having the G.I. syndrome; the changes in mean survival time, weight loss, hematocrit, and blood volume are similar.  相似文献   

18.
目的建立较稳定的异基因骨髓移植急性移植物抗宿主病动物模型,为异基因骨髓移植后的急性移植物抗宿主病(aGVHD)的相关研究提供实验参照。方法以雄性SD大鼠为供鼠,雌性Wistar大鼠为受鼠,受体大鼠随机分成A、B、C、D、E 5组,移植当天所有受鼠均接受8.5 GY的全身照射(TBI),于照射后4~6 h内,A组回输等量培养液,B组经尾静脉输注供鼠骨髓细胞(2×10^8个/kg),C、D、E组分别回输供鼠骨髓细胞(2×10^8个/kg)+不同比例的脾细胞。观察各组大鼠生存期、外周白细胞计数、及有无aGVHD的临床及病理表现。结果A组大鼠于15d内全部死亡,外周血白细胞计数明显减低,骨髓病理示造血组织减少,提示死于造血衰竭。B、C、D、E组大鼠外周血白细胞计数均有明显恢复,B组大鼠8只存活超过50 d,C、D、E组大鼠均于50 d观察期内死亡,并有aGVHD的临床表现及病理表现,但C组大鼠aGVHD的程度较轻且时间不集中,其中D、E组大鼠可于相对集中的时间内观察到典型aGVHD临床及病理。结论TBI预处理的方式是可行的,单纯输入异基因骨髓细胞不能引起明显的aGVHD,骨髓细胞与脾细胞1∶1及1∶1.5混合组均可作为异基因骨髓移植后理想的aGVHD动物模型。  相似文献   

19.
In aged mice the population of mature peripheral B cells is maintained despite a severalfold decrease in the population of bone marrow B cell progenitors. The analysis of the rate of accumulation of 5'-bromo-2-deoxyuridine (BrdU)-labeled splenic B cells in mice fed BrdU for 8 days to 8 wk demonstrated a severalfold increase in the half-life of mature B cells in aged mice. Consistent with a role for decreased B cell turnover in maintaining the mature B cell population of aged mice, several findings indicate that fewer newly generated B cells enter the spleen from the bone marrow in aged vs young adult mice. These include 1) a fourfold decrease in the population of relatively immature splenic B cells, defined as cells that express high levels of heat-stable Ag and accumulate BrdU within 8 wk of labeling; and 2) an equivalent decrease in the population of bone marrow cells representative of later stages of B cell maturation (sIgD-sIgM(int-high)). Surprisingly, despite a four- to sixfold decrease in pre-B cells, the population of least mature bone marrow B cells (IgD-sIgM(very low)) remains intact. Because this population accumulates BrdU-labeled cells more slowly in aged mice than in younger mice, and bone marrow B cells at more mature developmental stages are diminished, it appears that in aged mice B cell development beyond the sIgM(very low) stage may be retarded and that cells, therefore, accumulate within this population.  相似文献   

20.
The influence of myelopeptides on differentiation of bone marrow haemopoietic precursors cells in thymectomized and normal mice has been studied in vivo. The introduction of myelopeptides decreased the number of erythroid (E) colonies and increased that of granulocytic ones (G). This results in the decrease of initially raised E/G ratio in thymectomized mice (from 4.3) down to 1.3). Myelopeptides exerted no influence on haemopoietic precursors in normal mice (E/G-2.0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号