首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Classical swine fever virus (CSFV) is a member of the pestivirus family, which shares many features in common with hepatitis C virus (HCV). It is shown here that CSFV has an exceptionally efficient cis-acting internal ribosome entry segment (IRES), which, like that of HCV, is strongly influenced by the sequences immediately downstream of the initiation codon, and is optimal with viral coding sequences in this position. Constructs that retained 17 or more codons of viral coding sequence exhibited full IRES activity, but with only 12 codons, activity was approximately 66% of maximum in vitro (though close to maximum in transfected BHK cells), whereas with just 3 codons or fewer, the activity was only approximately 15% of maximum. The minimal coding region elements required for high activity were exchanged between HCV and CSFV. Although maximum activity was observed in each case with the homologous combination of coding region and 5' UTR, the heterologous combinations were sufficiently active to rule out a highly specific functional interplay between the 5' UTR and coding sequences. On the other hand, inversion of the coding sequences resulted in low IRES activity, particularly with the HCV coding sequences. RNA structure probing showed that the efficiency of internal initiation of these chimeric constructs correlated most closely with the degree of single-strandedness of the region around and immediately downstream of the initiation codon. The low activity IRESs could not be rescued by addition of supplementary eIF4A (the initiation factor with ATP-dependent RNA helicase activity). The extreme sensitivity to secondary structure around the initiation codon is likely to be due to the fact that the eIF4F complex (which has eIF4A as one of its subunits) is not required for and does not participate in initiation on these IRESs.  相似文献   

2.
Hepatitis C viral (HCV) RNA includes an internal ribosome entry segment (IRES) that extends some 30 nt into the coding region and promotes internal initiation of translation at the authentic initiation codon at nt 342. The 5'-boundary of this IRES was mapped by in vitro translation and transfection assays and was found to lie between nt 42 and 71. Within these IRES boundaries there are, in most HCV strains, three AUG triplets upstream of the authentic initiation site. Although the first, 5'-proximal, of these is absolutely conserved, a mutational analysis showed that it is not a functional initiation codon. In particular, the G residue could be substituted provided compensatory mutations were made to maintain base pairing. The other two upstream AUGs are not absolutely conserved, and mutation of the third (5'-distal) had little effect on IRES activity. When an additional AUG codon was introduced by single-site mutation just upstream of the authentic initiation codon, it was found to be used when most of the IRES had been deleted to generate an RNA translated by the scanning ribosome mechanism, but was not used in the background of the full-length IRES when internal initiation is operative. These results argue that the IRES promotes direct ribosome entry immediately at, or indeed very close to, the authentic initiation codon, and that the upstream AUGs do not serve as ribosome entry sites.  相似文献   

3.
Some studies suggest that the hepatitis C virus (HCV) internal ribosome entry site (IRES) requires downstream 5' viral polyprotein-coding sequence for efficient initiation of translation, but the role of this RNA sequence in internal ribosome entry remains unresolved. We confirmed that the inclusion of viral sequence downstream of the AUG initiator codon increased IRES-dependent translation of a reporter RNA encoding secretory alkaline phosphatase, but found that efficient translation of chloramphenicol acetyl transferase (CAT) required no viral sequence downstream of the initiator codon. However, deletion of an adenosine-rich domain near the 5' end of the CAT sequence, or the insertion of a small stable hairpin structure (deltaG = -18 kcal/mol) between the HCV IRES and CAT sequences (hpCAT) substantially reduced IRES-mediated translation. Although translation could be restored to both mutants by the inclusion of 14 nt of the polyprotein-coding sequence downstream of the AUG codon, a mutational analysis of the inserted protein-coding sequence demonstrated no requirement for either a specific nucleotide or amino acid-coding sequence to restore efficient IRES-mediated translation to hpCAT. Similar results were obtained with the structurally and phylogenetically related IRES elements of classical swine fever virus and GB virus B. We conclude that there is no absolute requirement for viral protein-coding sequence with this class of IRES elements, but that there is a requirement for an absence of stable RNA structure immediately downstream of the AUG initiator codon. Stable RNA structure immediately downstream of the initiator codon inhibits internal initiation of translation but, in the case of hpCAT, did not reduce the capacity of the RNA to bind to purified 40S ribosome subunits. Thus, stable RNA structure within the 5' proximal protein-coding sequence does not alter the capacity of the IRES to form initial contacts with the 40S subunit, but appears instead to prevent the formation of subsequent interactions between the 40S subunit and viral RNA in the vicinity of the initiator codon that are essential for efficient internal ribosome entry.  相似文献   

4.
B Berkhout  R A Kastelein  J van Duin 《Gene》1985,37(1-3):171-179
In overlapping reading frames of prokaryotic mRNA, the ribosome-binding site (RBS) of the downstream cistron is part of the coding sequence of the upstream message. We have examined whether the rate of translation in Escherichia coli can be sufficiently high to preclude the use of an RBS in initiation of protein synthesis when it is part of an actively decoded reading frame. The two sets of gene overlap present in the RNA phage MS2 are used as a model system. We find that translation of an upstream cistron can fully block initiation of protein synthesis at the overlapping RBS of the downstream cistron. Nonsense mutations in the upstream gene restore the translation of the downstream gene.  相似文献   

5.
Eukaryotic translation initiation begins with assembly of a 48S ribosomal complex at the 5' cap structure or at an internal ribosomal entry segment (IRES). In both cases, ribosomal positioning at the AUG codon requires a 5' untranslated region upstream from the initiation site. Here, we report that translation of the genomic RNA of human immunodeficiency virus type 2 takes place by attachment of the 48S ribosomal preinitiation complex to the coding region, with no need for an upstream 5' untranslated RNA sequence. This unusual mechanism is mediated by an RNA sequence that has features of an IRES with the unique ability to recruit ribosomes upstream from its core domain. A combination of translation assays and structural studies reveal that sequences located 50 nucleotides downstream of the AUG codon are crucial for IRES activity.  相似文献   

6.
7.
Genetic and biochemical studies have provided convincing evidence that the 5' noncoding region (5' NCR) of hepatitis C virus (HCV) is highly conserved among viral isolates worldwide and that translation of HCV is directed by an internal ribosome entry site (IRES) located within the 5' NCR. We have investigated inhibition of HCV gene expression using antisense oligonucleotides complementary to the 5' NCR, translation initiation codon, and core protein coding sequences. Oligonucleotides were evaluated for activity after treatment of a human hepatocyte cell line expressing the HCV 5' NCR, core protein coding sequences, and the majority of the envelope gene (E1). More than 50 oligonucleotides were evaluated for inhibition of HCV RNA and protein expression. Two oligonucleotides, ISIS 6095, targeted to a stem-loop structure within the 5' NCR known to be important for IRES function, and ISIS 6547, targeted to sequences spanning the AUG used for initiation of HCV polyprotein translation, were found to be the most effective at inhibiting HCV gene expression. ISIS 6095 and 6547 caused concentration-dependent reductions in HCV RNA and protein levels, with 50% inhibitory concentrations of 0.1 to 0.2 microM. Reduction of RNA levels, and subsequently protein levels, by these phosphorothioate oligonucleotides was consistent with RNase H cleavage of RNA at the site of oligonucleotide hybridization. Chemically modified HCV antisense phosphodiester oligonucleotides were designed and evaluated for inhibition of core protein expression to identify oligonucleotides and HCV target sequences that do not require RNase H activity to inhibit expression. A uniformly modified 2'-methoxyethoxy phosphodiester antisense oligonucleotide complementary to the initiator AUG reduced HCV core protein levels as effectively as phosphorothioate oligonucleotide ISIS 6095 but without reducing HCV RNA levels. Results of our studies show that HCV gene expression is reduced by antisense oligonucleotides and demonstrate that it is feasible to design antisense oligonucleotide inhibitors of translation that do not require RNase H activation. The data demonstrate that chemically modified antisense oligonucleotides can be used as tools to identify important regulatory sequences and/or structures important for efficient translation of HCV.  相似文献   

8.
Translation initiation of hepatitis C virus (HCV) RNA occurs by internal entry of a ribosome into the 5′ nontranslated region in a cap-independent manner. The HCV RNA sequence from about nucleotide 40 up to the N terminus of the coding sequence of the core protein is required for efficient internal initiation of translation, though the precise border of the HCV internal ribosomal entry site (IRES) has yet to be determined. Several cellular proteins have been proposed to direct HCV IRES-dependent translation by binding to the HCV IRES. Here we report on a novel cellular protein that specifically interacts with the 3′ border of the HCV IRES in the core-coding sequence. This protein with an apparent molecular mass of 68 kDa turned out to be heterogeneous nuclear ribonucleoprotein L (hnRNP L). The binding of hnRNP L to the HCV IRES correlates with the translational efficiencies of corresponding mRNAs. This finding suggests that hnRNP L may play an important role in the translation of HCV mRNA through the IRES element.  相似文献   

9.
10.
C Berlioz  C Torrent    J L Darlix 《Journal of virology》1995,69(10):6400-6407
The genetic organization of the 5' genomic RNA domain of the highly oncogenic Harvey murine sarcoma virus appears to be unusual in that a multifunctional untranslated leader precedes the v-ras oncogene. This 5' leader is 1,076 nucleotides in length and is formed of independent regions involved in key steps of the viral life cycle: (i) the Moloney murine leukemia virus 5' repeat, untranslated 5' region, and primer binding site sequences necessary for the first steps of proviral DNA synthesis, (ii) the virus-like 30S (VL30)-derived sequence containing a functional dimerization-packaging signal (E/DLS) directing viral RNA dimerization and packaging into MLV virions, and (iii) an Alu-like sequence preceding the 5' untranslated sequence of v-rasH which contains the initiation codon of the p21ras oncoprotein. These functional features, the unusual length of this leader (1,076 nucleotides), and the presence of stable secondary structures between the cap and the v-ras initiation codon might well cause a premature stop of the scanning ribosomes and thus inhibit v-ras translation. In order to understand how Harvey murine sarcoma virus achieves a high level of expression of the ras oncogene, we asked whether the rat VL30 sequence, 5' to v-ras, could contribute to an efficient synthesis of the ras oncoprotein. The implications of the VL30 sequence in the translation initiation of Ha-ras were investigated in the rabbit reticulocyte lysate system and in murine cells. Results show that the rat VL30 sequence allows a cap-independent translation of a downstream reporter gene both in vitro and in murine cells. Additional experiments performed with dicistronic neo.VL30.lacZ mRNAs indicate that the 5' VL30 sequence (positions 380 to 794) contains an internal ribosomal entry signal. This finding led us to construct a new dicistronic retroviral vector with which the rat VL30 sequence was able to direct the efficient expression of a 3' cistron and packaging of recombinant dicistronic RNA into murine leukemia virus virions.  相似文献   

11.
We investigated whether the two cistrons of a dicistronic mRNA can be translated in plants to yield both gene products. The coding sequences of various reporter genes were combined in dicistronic units, and their expression was analyzed in stably transformed tobacco plants at the RNA and protein levels. The presence of an upstream cistron resulted in all cases in a drastically reduced expression of the downstream cistron. The translational efficiency of the gene located downstream in the dicistronic units was 500- to 1,500-fold lower than that in a monocistronic control; a 500-fold lower value was obtained with a dicistronic unit in which both cistrons were separated by 30 nucleotides, whereas a 1,500-fold lower value was obtained with a dicistronic unit in which the stop codon of the upstream cistron and the start codon of the downstream cistron overlapped. As a strategy to select indirectly for transformants with enhanced levels of expression of a gene which is by itself nonselectable, the gene of interest can be cloned upstream from a selectable marker in a dicistronic configuration. This strategy can be used provided that the amount of dicistronic mRNA is high. If, on the other hand, the expression of the dicistronic unit is too low, selection of the downstream cistron will primarily give clones with rearranged dicistronic units.  相似文献   

12.
Nagase T  Nishio S  Itoh T 《Plasmid》2008,59(1):36-44
Translation initiation of mRNA encoding the plasmid-specified initiator protein (Rep) required for initiation of the ColE2 plasmid DNA replication is fairly efficient in Escherichia coli despite the absence of a canonical Shine-Dalgarno sequence. Although a GA cluster sequence exists upstream the initiation codon, its activity as the SD sequence has been shown to be very inefficient. Deletion analyses have shown that there are sequences important for the Rep translation in the regions upstream the GA cluster sequence and downstream the initiation codon. To further define regions important for translation of the Rep mRNA, a set of the ColE2 rep genes bearing single-base substitution mutations in the coding region near the initiation codon was generated and their translation activities examined. We showed that translation of the Rep mRNA was reduced by some of these mutations in a region ranging at least 70 nucleotides from the initiation codon in the coding region, indicating the presence of translation enhancer(s) outside the translation initiation region which is covered by the ribosome bound to the initiation codon. Some of them seem to be essential and specific for translation of the ColE2 Rep mRNA due to the absence of a canonical SD sequence.  相似文献   

13.
Kong LK  Sarnow P 《Journal of virology》2002,76(24):12457-12462
Translation initiation in many eukaryotic mRNAs is modulated by an interaction between the cap binding protein complex, bound to the 5' end of the mRNA, and the polyadenosine binding protein, bound to the 3'-terminal polyadenosine sequences. A few cellular and viral mRNAs, such as the hepatitis C virus (HCV) mRNA genome, lack 3'-terminal polyadenosine sequences. For such mRNAs, the question of whether their 3'-end sequences also regulate the initiation phase of protein synthesis via an interaction with their 5' ends has received intense scrutiny. For HCV mRNA, various experimental designs have led to conflicting interpretations, that the 3' end of the RNA can modulate translation initiation either in a positive or in a negative fashion. To examine the possibility of end-to-end communication in HCV in detail, mRNAs containing the HCV internal ribosome entry site linked to a luciferase coding region, followed by different 3' noncoding regions, were expressed in the cytoplasm of cultured cells by T7 RNA polymerase. The intracellular translation efficiencies, steady-state levels, stabilities, and 3'-end sequences of these chimeric RNAs were examined. It was found that the HCV 3' noncoding region modulates neither the translation nor the stability of the mRNAs. Thus, there is no detectable end-to-end communication in cytoplasmically expressed chimeric mRNAs containing the HCV noncoding regions. However, it remains an open question whether end-to-end communication occurs in full-length HCV mRNAs in the infected liver.  相似文献   

14.
We have examined the translational regulation of the equine infectious anemia virus (EIAV) bicistronic tat-rev mRNA. Site-directed mutagenesis of the tat leader region followed by expression of the tat-rev cDNA both in vitro and in transiently transfected cells established that tat translation is initiated exclusively at a CTG codon. Increasing the efficiency of tat translation by altering the CTG initiator to ATG resulted in a dramatic decrease in translation of the downstream (rev) cistron, indicating that leaky scanning of the tat CTG initiation codon permitted translation of the downstream rev cistron. Since the tat leader sequences precede the major EIAV splice donor and are therefore present at the 5' termini of both spliced and unspliced viral mRNAs, the expression of all EIAV structural and regulatory proteins is dependent on leaky scanning of the tat initiator.  相似文献   

15.
The initiation of translation on the positive-sense RNA genome of hepatitis C virus (HCV) is directed by an internal ribosomal entry site (IRES) that occupies most of the 341-nt 5' nontranslated RNA (5'NTR). Previous studies indicate that this IRES differs from picornaviral IRESs in that its activity is dependent upon RNA sequence downstream of the initiator AUG. Here, we demonstrate that the initiator AUG of HCV is located within a stem-loop (stem-loop IV) involving nt -12 to +12 (with reference to the AUG). This structure is conserved among HCV strains, and is present in the 5'NTR of the phylogenetically distant GB virus B. Mutant, nearly genome-length RNAs containing nucleotide substitutions predicted to enhance the stability of stem-loop IV were generally deficient in cap-independent translation both in vitro and in vivo. Additional mutations that destabilize the stem-loop restored translation to normal. Thus, the stability of the stem-loop is strongly but inversely correlated with the efficiency of internal initiation of translation. In contrast, mutations that stabilize this stem-loop had comparatively little effect on translation of 5' truncated RNAs by scanning ribosomes, suggesting that internal initiation of translation follows binding of the 40S ribosome directly at the site of stem-loop IV. Because stem-loop IV is not required for internal entry of ribosomes but is able to regulate this process, we speculate that it may be stabilized by interactions with a viral protein, providing a mechanism for feedback regulation of translation, which may be important for viral persistence.  相似文献   

16.
17.
AUG-unrelated translation initiation was found in an insect picorna-like virus, Plautia stali intestine virus (PSIV). The positive-strand RNA genome of the virus contains two nonoverlapping open reading frames (ORFs). The capsid protein gene is located in the 3′-proximal ORF and lacks an AUG initiation codon. We examined the translation mechanism and the initiation codon of the capsid protein gene by using various dicistronic and monocistronic RNAs in vitro. The capsid protein gene was translated cap independently in the presence of the upstream cistron, indicating that the gene is translated by internal ribosome entry. Deletion analysis showed that the internal ribosome entry site (IRES) consisted of approximately 250 bases and that its 3′ boundary extended slightly into the capsid-coding region. The initiation codon for the IRES-mediated translation was identified as the CUU codon, which is located just upstream of the 5′ terminus of the capsid-coding region by site-directed mutagenesis. In vitro translation assays of monocistronic RNAs lacking the 5′ part of the IRES showed that this CUU codon was not recognized by scanning ribosomes. This suggests that the PSIV IRES can effectively direct translation initiation without stable codon-anticodon pairing between the initiation codon and the initiator methionyl-tRNA.  相似文献   

18.
Programmed ribosomal frameshifting allows one mRNA to encode regulate expression of, multiple open reading frames (ORFs). The polymerase encoded by ORF 2 of Barley yellow dwarf virus (BYDV) is expressed via minus one (-1) frameshifting from the overlapping ORF 1. Previously, this appeared to be mediated by a 116 nt RNA sequence that contains canonical -1 frameshift signals including a shifty heptanucleotide followed by a highly structured region. However, unlike known -1 frameshift signals, the reporter system required the zero frame stop codon and did not require a consensus shifty site for expression of the -1 ORF. In contrast, full-length viral RNA required a functional shifty site for frameshifting in wheat germ extract, while the stop codon was not required. Increasing translation initiation efficiency by addition of a 5' cap on the naturally uncapped viral RNA, decreased the frameshift rate. Unlike any other known RNA, a region four kilobases downstream of the frameshift site was required for frameshifting. This included an essential 55 base tract followed by a 179 base tract that contributed to full frameshifting. The effects of most mutations on frameshifting correlated with the ability of viral RNA to replicate in oat protoplasts, indicating that the wheat germ extract accurately reflected control of BYDV RNA translation in the infected cell. However, the overall frameshift rate appeared to be higher in infected cells, based on immunodetection of viral proteins. These findings show that use of short recoding sequences out of context in reporter constructs may overlook distant signals. Most importantly, the remarkably long-distance interaction reported here suggests the presence of a novel structure that can facilitate ribosomal frameshifting.  相似文献   

19.
Regulation of gene expression at the level of translation accounts for up to three orders of magnitude in its efficiency. We systematically compared the impact of several mRNA features on translation initiation at the first gene in an operon with those for the second gene. Experiments were done in a system with internal control based on dual cerulean and red (CER/RFP) fluorescent proteins. We demonstrated significant differences in the efficiency of Shine Dalgarno sequences acting at the leading gene and at the following genes in an operon. The majority of frequent intercistronic arrangements possess medium SD dependence, medium dependence on the preceding cistron translation and efficient stimulation by A/U-rich sequences. The second cistron starting immediately after preceding cistron stop codon displays unusually high dependence on the SD sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号