首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ubiquitination of alpha-synuclein   总被引:2,自引:0,他引:2  
Filamentous alpha-synuclein depositions are the defining hallmarks of a subset of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. We previously reported that alpha-synuclein in those brains are extensively phosphorylated at Ser129 [Fujiwara et al. (2002) Nat. Cell Biol. 4, 160-164] and also partially ubiquitinated [Hasegawa et al. (2002) J. Biol. Chem. 277, 49071-49076]. Here, we investigate ubiquitination of alpha-synuclein in vitro and in vivo and report the ubiquitination sites and the effects of familial PD-linked mutations, phosphorylation, and fibril formation on ubiquitination. Protein-sequence analysis revealed that Lys21, Lys23, Lys32, and Lys34 within the repeats in the amino-terminal half are liable to ubiquitination in vitro. A site-directed mutagensis study confirmed that these are the major ubiquitination sites. A53T and A30P mutations had no significant effect on ubiquitination. Similarly, phosphorylation of alpha-synuclein at Ser129 did not affect ubiquitination. Notably, we show that assembled, filamentous alpha-synuclein is less ubiquitinated than the soluble form and that the major ubiquitination sites are localized to Lys6, Lys10, and Lys12 at the amino-terminal region of filamentous alpha-synuclein. Furthermore, we successfully detected ubiquitination of alpha-synuclein in 293T cells by cotransfection with alpha-synuclein and ubiquitin. The in vivo ubiquitination sites were found to be identical to those in filamentous alpha-synuclein. PD-linked mutations and phosphorylation at Ser129 had no effects on ubiquitination of alpha-synuclein in vivo. These data may have implications for the mechanisms of the formation of alpha-synuclein deposits in alpha-synucleinopathy brains.  相似文献   

3.
4.
Autoantibodies to alpha-synuclein in inherited Parkinson's disease   总被引:2,自引:0,他引:2  
Neurodegeneration in Parkinson's disease (PD) is accompanied by a local immune reaction in the affected brain regions. It is well established that alpha-synuclein is directly implicated in the pathogenesis of PD. Development of the disease is often associated with changes of expression and cellular compartmentalisation of this protein; moreover, its oligomers or protofibrils are often released to the CSF and plasma of patients. Aggregated alpha-synuclein can trigger the activation of microglia; however, its capacity to induce production of specific autoantibodies (AAb) has not been assessed. In this study, we examined the presence of AAb against synuclein family members in the peripheral blood serum of PD patients and control individuals. Presence of AAb against beta-synuclein or gamma-synuclein showed no association with PD. Multi-epitopic AAb against alpha-synuclein were detected in 65% of all patients tested and their presence strongly correlated with an inherited mode of the disease but not with other disease-related factors. The frequency of the presence of AAb in the studied group of patients with sporadic form of PD was not significantly different from the frequency in the control group but very high proportion (90%) of patients with familial form of the disease were positive for AAb against alpha-synuclein. We hypothesise that these AAb could be involved in pathogenesis of the inherited form of PD.  相似文献   

5.
The aggregation of normally soluble alpha-synuclein in the dopaminergic neurons of the substantia nigra is a crucial step in the pathogenesis of Parkinson's disease. Oxidative stress is believed to be a contributing factor in this disorder. Because it lacks Trp and Cys residues, mild oxidation of alpha-synuclein in vitro with hydrogen peroxide selectively converts all four methionine residues to the corresponding sulfoxides. Both oxidized and non-oxidized alpha-synucleins have similar unfolded conformations; however, the fibrillation of alpha-synuclein at physiological pH is completely inhibited by methionine oxidation. The inhibition results from stabilization of soluble oligomers of Met-oxidized alpha-synuclein. Furthermore, the Met-oxidized protein also inhibits fibrillation of unmodified alpha-synuclein. The degree of inhibition of fibrillation by Met-oxidized alpha-synuclein is proportional to the number of oxidized methionines. However, the presence of metals can completely overcome the inhibition of fibrillation of the Met-oxidized alpha-synuclein. Since oligomers of aggregated alpha-synuclein may be cytotoxic, these findings indicate that both oxidative stress and environmental metal pollution could play an important role in the aggregation of alpha-synuclein, and hence possibly Parkinson's disease. In addition, if the level of Met-oxidized alpha-synuclein was under the control of methionine sulfoxide reductase (Msr), then this could also be factor in the disease.  相似文献   

6.
alpha-synuclein gene mutations are major underlying genetic defects known in familial juvenile onset Parkinson's disease (PD), and alpha-synuclein is a major constituent of Lewy Bodies, the pathological hallmark of PD. The normal cellular function of alpha-synuclein has been elusive, and its exact etiological mechanism in causing dopaminergic neuronal death in PD is also not clearly understood. Very recent reports now indicate that mutant or simply over-expressed alpha- synuclein could cause damage by interfering with particular steps of neuronal membrane traffic. alpha-synuclein selectively blocks endoplamic reticulum-to-Golgi transport, thus causing ER stress. A screen in a yeast revealed that alpha- synuclein toxicity could be suppressed by over-expression of the small GTPase Ypt1/Rab1, and that over-expression of the latter rescues neuron loss in invertebrate and mammalian models of alpha-synuclein-induced neurodegeneration. alpha-synuclein may also serve a chaperone function for the proper folding of synaptic SNAREs that are important for neurotransmitter release. We discuss these recent results and the emerging pathophysiological interaction of alpha-synuclein with components of neuronal membrane traffic.  相似文献   

7.
Parkinson's disease (PD) is an age-related neurodegenerative disease with unknown etiology. Growing evidence from genetic, pathologic, animal modeling, and biochemical studies strongly support the theory that abnormal aggregation of alpha-synuclein plays a critical role in the pathogenesis of PD. Protein aggregation is an alternative folding process that competes with the native folding pathway. Whether or not a protein is subject to the aggregation process is determined by the concentration of the protein as well as thermodynamic properties inherent to each polypeptide. An increase in cellular concentration of alpha-synuclein has been associated with the disease in both familial and sporadic forms of PD. Thus, maintenance of the intraneuronal steady state levels of alpha-synuclein below the critical concentration is a key challenge neuronal cells are facing. Expression of the alpha-synuclein gene is under the control of environmental factors and aging, the two best-established risk factors for PD. Studies also suggest that the degradation of this protein is mediated by proteasomal and autophagic pathways, which are two mechanisms that are related to the pathogenesis of PD. Recently, vesicle-mediated exocytosis has been suggested as a novel mechanism for disposal of neuronal alpha-synuclein. Relocalization of the protein to specific compartments may be another method for increasing its local concentration. Regulation of the neuronal steady state levels of alpha-synuclein has significant implications in the development of PD, and understanding the mechanism may disclose potential therapeutic targets for PD and other related diseases.  相似文献   

8.
alpha-Synuclein has been implicated in the pathogenesis of Parkinson's disease, since rare autosomal dominant mutations are associated with early onset of the disease and alpha-synuclein was found to be a major constituent of Lewy bodies. We have analyzed alpha-synuclein expression in transfected cell lines. In pulse-chase experiments alpha-synuclein appeared to be stable over long periods (t((1)/(2)) 54 h) and no endoproteolytic processing was observed. alpha-Synuclein was constitutively phosphorylated in human kidney 293 cells as well as in rat pheochromocytoma PC12 cells. In both cell lines phosphorylation was highly sensitive to phosphatases, since okadaic acid markedly stabilized phosphate incorporation. Phosphoamino acid analysis revealed that phosphorylation occurred predominantly on serine. Using site-directed mutagenesis we have identified a major phosphorylation site at serine 129 within the C-terminal domain of alpha-synuclein. An additional site, which was phosphorylated less efficiently, was mapped to serine 87. The major phosphorylation site was located within a consensus recognition sequence of casein kinase 1 (CK-1). In vitro experiments and two-dimensional phosphopeptide mapping provided further evidence that serine 129 was phosphorylated by CK-1 and CK-2. Moreover, phosphorylation of serine 129 was reduced in vivo upon inhibition of CK-1 or CK-2. These data demonstrate that alpha-synuclein is constitutively phosphorylated within its C terminus and may indicate that the function of alpha-synuclein is regulated by phosphorylation/dephosphorylation.  相似文献   

9.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major component of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD, but their pathogenic mechanism is not understood. Here we show that both wild type and mutant alpha-synuclein form insoluble fibrillar aggregates with antiparallel beta-sheet structure upon incubation at physiological temperature in vitro. Importantly, aggregate formation is accelerated by both PD-linked mutations. Under the experimental conditions, the lag time for the formation of precipitable aggregates is about 280 h for the wild type protein, 180 h for the A30P mutant, and only 100 h for the A53T mutant protein. These data suggest that the formation of alpha-synuclein aggregates could be a critical step in PD pathogenesis, which is accelerated by the PD-linked mutations.  相似文献   

10.
Parkinson's disease is a neurodegenerative disorder characterized by the progressive degeneration of the dopaminergic nigrostriatal pathway, and the presence of Lewy bodies. Over the past few years, several genes involved in inherited forms of the disease have been uncovered. In a small number of families with autosomal dominant inheritance, mutations have been identified in the genes encoding a-synuclein and ubiquitin carboxy-terminal hydrolase L1. Mutations in the parkin gene are a common cause of autosomal recessive parkinsonism with early onset, and also account for more than 15% of isolated cases with onset before age 45. The function of Parkin, a ubiquitin ligase involved in the degradation of protein substrates by the ubiquitin-proteasome pathway, highlights that ubiquitin-mediated proteolysis may play an important role in the pathophysiology of idiopathic Parkinson's disease.  相似文献   

11.
12.
Abnormal folding of alpha-synuclein (alpha-syn) is thought to lead to neurodegeneration and the characteristic symptoms of Lewy body disease (LBD). Since previous studies suggest that immunization might be a potential therapy for Alzheimer's disease, we hypothesized that immunization with human (h)alpha-syn might have therapeutic effects in LBD. For this purpose, halpha-syn transgenic (tg) mice were vaccinated with halpha-syn. In mice that produced high relative affinity antibodies, there was decreased accumulation of aggregated halpha-syn in neuronal cell bodies and synapses that was associated with reduced neurodegeneration. Furthermore, antibodies produced by immunized mice recognized abnormal halpha-syn associated with the neuronal membrane and promoted the degradation of halpha-syn aggregates, probably via lysosomal pathways. Similar effects were observed with an exogenously applied FITC-tagged halpha-syn antibody. These results suggest that vaccination is effective in reducing neuronal accumulation of halpha-syn aggregates and that further development of this approach might have a potential role in the treatment of LBD.  相似文献   

13.
The pigmentation of substantia nigra pars compacta dopaminergic neurons is due to the presence of neuromelanin, an irregular macromolecular pigment belonging to the family of melanins. Depletion of neuromelanin in Parkinson's disease is typically indicated by loss of brown color in this area. Unlike that from controls, the pigment extracted from substantia nigra of parkinsonian patients seems to be mainly composed by highly cross-linked, protease-resistant proteic material and the neuromelanin macromolecule appears to be a minor presence. In the present paper we describe the isolation by SDS-PAGE of this proteic component after cleavage of the melanin backbone under solubilizing conditions. A single band is observed, which has been identified as alpha-synuclein by western blotting. As expected, the same process performed on a control specimen did not show occurrence of any major proteic component. Nevertheless, extraction from a 91 years old control with Lewy bodies displayed minor alpha-synuclein immunoreactive aggregates, whereas inclusion of free alpha-synuclein was not observed at all. Results reported here support the view that alpha-synuclein accumulates within substantia nigra neurons and is entrapped in pigment granules during neuromelanin biosynthesis, i.e. before the melanin depletion characteristic of Parkinson's disease starts.  相似文献   

14.
Aggregation of α-synuclein (α-syn) is believed to play a critical role in the pathogenesis of disorders such as dementia with Lewy bodies and Parkinson's disease. The function of α-syn remains unclear, although several lines of evidence suggest that α-syn is involved in synaptic vesicle trafficking probably via lipid binding. Moreover, interactions with cholesterol and lipids have been shown to be involved in α-syn aggregation. In this context, the main objective of this study was to determine if statins – cholesterol synthesis inhibitors – might interfere with α-syn accumulation in cellular models. For this purpose, we studied the effects of lovastatin, simvastatin, and pravastatin on the accumulation of α-syn in a stably transfected neuronal cell line and in primary human neurons. Statins reduced the levels of α-syn accumulation in the detergent insoluble fraction of the transfected cells. This was accompanied by a redistribution of α-syn in caveolar fractions, a reduction in oxidized α-syn, and enhanced neurite outgrowth. In contrast, supplementation of the media with cholesterol increased α-syn aggregation in detergent insoluble fractions of transfected cells and was accompanied by reduced neurite outgrowth. Taken together, these results suggest that regulation of cholesterol levels with cholesterol inhibitors might be a novel approach for the treatment of Parkinson's disease.  相似文献   

15.
There is ample biochemical, pathological, and genetic evidence that the metabolism of alpha-synuclein (alpha-syn) plays a crucial role in the pathogenesis of Parkinson disease (PD). To examine whether quantification of alpha-syn in cerebrospinal fluid (CSF) is potentially informative in the diagnosis of PD, we developed a specific ELISA system and measured the concentration of alpha-syn in CSF from 33 patients with PD (diagnosed according to UK PD Society Brain Bank criteria) and 38 control subjects including 9 neurologically healthy individuals. We found that PD patients had significantly lower alpha-syn levels in their CSF than the control groups (p<0.0001) even after adjusting for gender and age. Age was independently associated with lower alpha-syn levels. Logistic regression analysis showed that reduction in CSF alpha-syn served as a significant predictor of PD beyond age and gender alone (area under ROC curve, c=0.882). Furthermore, we observed a close inverse correlation between alpha-syn levels in CSF and assigned Hoehn and Yahr score in this cohort of 71 living subjects (p<0.0001), even after adjusting for age. These findings identify in the quantification of alpha-syn from CSF a potential laboratory marker to aid the clinical diagnosis of PD.  相似文献   

16.

Background

Alpha-synuclein (SNCA) gene expression is an important factor in the pathogenesis of Parkinson''s disease (PD). Gene multiplication can cause inherited PD, and promoter polymorphisms that increase SNCA expression are associated with sporadic PD. CpG methylation in the promoter region may also influence SNCA expression.

Methodology/Principal Findings

By using cultured cells, we identified a region of the SNCA CpG island in which the methylation status altered along with increased SNCA expression. Postmortem brain analysis revealed regional non-specific methylation differences in this CpG region in the anterior cingulate and putamen among controls and PD; however, in the substantia nigra of PD, methylation was significantly decreased.

Conclusions/Significance

This CpG region may function as an intronic regulatory element for SNCA gene. Our findings suggest that a novel epigenetic regulatory mechanism controlling SNCA expression influences PD pathogenesis.  相似文献   

17.
18.
Caught in the act: alpha-synuclein is the culprit in Parkinson's disease   总被引:6,自引:0,他引:6  
Previous reports on Parkinson's disease indicate that genetic mutations in alpha-synuclein result in the aberrant accumulation of this protein, causing toxic gain of function leading to the development of Parkinson's. A recent report on the Iowan kindred, an extended pedigree with an autosomal dominant form of this disease, provides new mechanistic insight into Parkinson's disease by showing that an elevation in wild-type alpha-synuclein protein is sufficient to develop the early-onset form of the disorder. This review discusses how insights gained from these studies of alpha-synuclein may direct future research into Parkinson's disease.  相似文献   

19.
Wan OW  Chung KK 《PloS one》2012,7(6):e38545
α-Synuclein (α-syn) is a synaptic protein in which four mutations (A53T, A30P, E46K and gene triplication) have been found to cause an autosomal dominant form of Parkinson's disease (PD). It is also the major component of intraneuronal protein aggregates, designated as Lewy bodies (LBs), a prominent pathological hallmark of PD. How α-syn contributes to LB formation and PD is still not well-understood. It has been proposed that aggregation of α-syn contributes to the formation of LBs, which then leads to neurodegeneration in PD. However, studies have also suggested that aggregates formation is a protective mechanism against more toxic α-syn oligomers. In this study, we have generated α-syn mutants that have increased propensity to form aggregates by attaching a CL1 peptide to the C-terminal of α-syn. Data from our cellular study suggest an inverse correlation between cell viability and the amount of α-syn aggregates formed in the cells. In addition, our animal model of PD indicates that attachment of CL1 to α-syn enhanced its toxicity to dopaminergic neurons in an age-dependent manner and induced the formation of Lewy body-like α-syn aggregates in the substantia nigra. These results provide new insights into how α-syn-induced toxicity is related to its aggregation.  相似文献   

20.
alpha-Synuclein is a major component of the fibrillary lesion known as Lewy bodies and Lewy neurites that are the pathologic hallmarks of Parkinson's disease (PD). In addition, point mutations in the alpha-synuclein gene imply alpha-synuclein dysfunction in the pathology of inherited forms of PD. alpha-Synuclein is a member of a family of proteins found primarily in the brain and is concentrated within presynaptic terminals. Here, we address the localization and membrane binding characteristics of wild type and PD mutants of alpha-synuclein in cultured cells. In cells treated with high concentrations of fatty acids, wild type alpha-synuclein accumulated on phospholipid monolayers surrounding triglyceride-rich lipid droplets and was able to protect stored triglycerides from hydrolysis. PD mutant synucleins showed variable distributions on lipid droplets and were less effective in regulating triglyceride turnover. Chemical cross-linking demonstrated that synuclein formed small oligomers within cells, primarily dimers and trimers, that preferentially associated with lipid droplets and cell membranes. Our results suggest that the initial phases of synuclein aggregation may occur on the surfaces of membranes and that pathological conditions that induce cross-linking of synuclein may enhance the propensity for subsequent synuclein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号