首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yin G 《Biometrics》2005,61(2):552-558
Due to natural or artificial clustering, multivariate survival data often arise in biomedical studies, for example, a dental study involving multiple teeth from each subject. A certain proportion of subjects in the population who are not expected to experience the event of interest are considered to be "cured" or insusceptible. To model correlated or clustered failure time data incorporating a surviving fraction, we propose two forms of cure rate frailty models. One model naturally introduces frailty based on biological considerations while the other is motivated from the Cox proportional hazards frailty model. We formulate the likelihood functions based on piecewise constant hazards and derive the full conditional distributions for Gibbs sampling in the Bayesian paradigm. As opposed to the Cox frailty model, the proposed methods demonstrate great potential in modeling multivariate survival data with a cure fraction. We illustrate the cure rate frailty models with a root canal therapy data set.  相似文献   

2.
Mixed case interval‐censored data arise when the event of interest is known only to occur within an interval induced by a sequence of random examination times. Such data are commonly encountered in disease research with longitudinal follow‐up. Furthermore, the medical treatment has progressed over the last decade with an increasing proportion of patients being cured for many types of diseases. Thus, interest has grown in cure models for survival data which hypothesize a certain proportion of subjects in the population are not expected to experience the events of interest. In this article, we consider a two‐component mixture cure model for regression analysis of mixed case interval‐censored data. The first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric transformation model that describes the distribution of event time for the uncured subjects. We propose semiparametric maximum likelihood estimation for the considered model. We develop an EM type algorithm for obtaining the semiparametric maximum likelihood estimators (SPMLE) of regression parameters and establish their consistency, efficiency, and asymptotic normality. Extensive simulation studies indicate that the SPMLE performs satisfactorily in a wide variety of settings. The proposed method is illustrated by the analysis of the hypobaric decompression sickness data from National Aeronautics and Space Administration.  相似文献   

3.
Dahlberg SE  Wang M 《Biometrics》2007,63(4):1237-1244
We propose a semiparametric method for the analysis of masked-cause failure data that are also subject to a cure. We present estimators for the failure time distribution, the cure rate, and the covariate effect on each of these, assuming a proportional hazards cure model for the time to event of interest and we use the expectation-maximization algorithm to conduct the likelihood maximization. The method is applied to data from a breast cancer clinical trial.  相似文献   

4.
In the study of multiple failure time data with recurrent clinical endpoints, the classical independent censoring assumption in survival analysis can be violated when the evolution of the recurrent events is correlated with a censoring mechanism such as death. Moreover, in some situations, a cure fraction appears in the data because a tangible proportion of the study population benefits from treatment and becomes recurrence free and insusceptible to death related to the disease. A bivariate joint frailty mixture cure model is proposed to allow for dependent censoring and cure fraction in recurrent event data. The latency part of the model consists of two intensity functions for the hazard rates of recurrent events and death, wherein a bivariate frailty is introduced by means of the generalized linear mixed model methodology to adjust for dependent censoring. The model allows covariates and frailties in both the incidence and the latency parts, and it further accounts for the possibility of cure after each recurrence. It includes the joint frailty model and other related models as special cases. An expectation-maximization (EM)-type algorithm is developed to provide residual maximum likelihood estimation of model parameters. Through simulation studies, the performance of the model is investigated under different magnitudes of dependent censoring and cure rate. The model is applied to data sets from two colorectal cancer studies to illustrate its practical value.  相似文献   

5.
There is a growing interest in the analysis of survival data with a cured proportion particularly in tumor recurrences studies. Biologically, it is reasonable to assume that the recurrence time is mainly affected by the overall health condition of the patient that depends on some covariates such as age, sex, or treatment type received. We propose a semiparametric frailty‐Cox cure model to quantify the overall health condition of the patient by a covariate‐dependent frailty that has a discrete mass at zero to characterize the cured patients, and a positive continuous part to characterize the heterogeneous health conditions among the uncured patients. A multiple imputation estimation method is proposed for the right‐censored case, which is further extended to accommodate interval‐censored data. Simulation studies show that the performance of the proposed method is highly satisfactory. For illustration, the model is fitted to a set of right‐censored melanoma incidence data and a set of interval‐censored breast cosmesis data. Our analysis suggests that patients receiving treatment of radiotherapy with adjuvant chemotherapy have a significantly higher probability of breast retraction, but also a lower hazard rate of breast retraction among those patients who will eventually experience the event with similar health conditions. The interpretation is very different to those based on models without a cure component that the treatment of radiotherapy with adjuvant chemotherapy significantly increases the risk of breast retraction.  相似文献   

6.
There is a great deal of recent interests in modeling right‐censored clustered survival time data with a possible fraction of cured subjects who are nonsusceptible to the event of interest using marginal mixture cure models. In this paper, we consider a semiparametric marginal mixture cure model for such data and propose to extend an existing generalized estimating equation approach by a new unbiased estimating equation for the regression parameters in the latency part of the model. The large sample properties of the regression effect estimators in both incidence and the latency parts are established. The finite sample properties of the estimators are studied in simulation studies. The proposed method is illustrated with a bone marrow transplantation data and a tonsil cancer data.  相似文献   

7.
Summary We consider inference for data from a clinical trial of treatments for metastatic prostate cancer. Patients joined the trial with diverse prior treatment histories. The resulting heterogeneous patient population gives rise to challenging statistical inference problems when trying to predict time to progression on different treatment arms. Inference is further complicated by the need to include a longitudinal marker as a covariate. To address these challenges, we develop a semiparametric model for joint inference of longitudinal data and an event time. The proposed approach includes the possibility of cure for some patients. The event time distribution is based on a nonparametric Pólya tree prior. For the longitudinal data we assume a mixed effects model. Incorporating a regression on covariates in a nonparametric event time model in general, and for a Pólya tree model in particular, is a challenging problem. We exploit the fact that the covariate itself is a random variable. We achieve an implementation of the desired regression by factoring the joint model for the event time and the longitudinal outcome into a marginal model for the event time and a regression of the longitudinal outcomes on the event time, i.e., we implicitly model the desired regression by modeling the reverse conditional distribution.  相似文献   

8.
Chi YY  Ibrahim JG 《Biometrics》2006,62(2):432-445
Joint modeling of longitudinal and survival data is becoming increasingly essential in most cancer and AIDS clinical trials. We propose a likelihood approach to extend both longitudinal and survival components to be multidimensional. A multivariate mixed effects model is presented to explicitly capture two different sources of dependence among longitudinal measures over time as well as dependence between different variables. For the survival component of the joint model, we introduce a shared frailty, which is assumed to have a positive stable distribution, to induce correlation between failure times. The proposed marginal univariate survival model, which accommodates both zero and nonzero cure fractions for the time to event, is then applied to each marginal survival function. The proposed multivariate survival model has a proportional hazards structure for the population hazard, conditionally as well as marginally, when the baseline covariates are specified through a specific mechanism. In addition, the model is capable of dealing with survival functions with different cure rate structures. The methodology is specifically applied to the International Breast Cancer Study Group (IBCSG) trial to investigate the relationship between quality of life, disease-free survival, and overall survival.  相似文献   

9.
We extend the Dahlberg and Wang (Biometrics 2007, 63, 1237–1244) proportional hazards (PH) cure model for the analysis of time‐to‐event data that is subject to a cure rate with masked event to a setting where the PH assumption does not hold. Assuming an accelerated failure time (AFT) model with unspecified error distribution for the time to the event of interest, we propose rank‐based estimating equations for the model parameters and use a generalization of the EM algorithm for parameter estimation. Applying our proposed AFT model to the same motivating breast cancer dataset as Dahlberg and Wang (Biometrics 2007, 63, 1237–1244), our results are more intuitive for the treatment arm in which the PH assumption may be violated. We also conduct a simulation study to evaluate the performance of the proposed method.  相似文献   

10.
In a longitudinal study where the recurrence of an event and a terminal event such as death are observed, a certain portion of the subjects may experience no event during a long follow-up period; this often denoted as the cure group which is assumed to be the risk-free from both recurrent events and death. However, this assumption ignores the possibility of death, which subjects in the cure group may experience. In the present study, such misspecification is investigated with the addition of a death hazard model to the cure group. We propose a joint model using a frailty effect, which reflects the association between a recurrent event and death. For the estimation, an expectation-maximization (EM) algorithm was developed and PROC NLMIXED in SAS was incorporated under a piecewise constant baseline. Simulation studies were performed to check the performance of the suggested method. The proposed method was applied to leukemia patients experiencing both infection and death after bone marrow transplant.  相似文献   

11.
The use of control charts for monitoring schemes in medical context should consider adjustments to incorporate the specific risk for each individual. Some authors propose the use of a risk‐adjusted survival time cumulative sum (RAST CUSUM) control chart to monitor a time‐to‐event outcome, possibly right censored, using conventional survival models, which do not contemplate the possibility of cure of a patient. We propose to extend this approach considering a risk‐adjusted CUSUM chart, based on a cure rate model. We consider a regression model in which the covariates affect the cure fraction. The CUSUM scores are obtained for Weibull and log‐logistic promotion time model to monitor a scale parameter for nonimmune individuals. A simulation study was conducted to evaluate and compare the performance of the proposed chart (RACUF CUSUM) with RAST CUSUM, based on optimal control limits and average run length in different situations. As a result, we note that the RAST CUSUM chart is inappropriate when applied to data with a cure rate, while the proposed RACUF CUSUM chart seems to have similar performance if applied to data without a cure rate. The proposed chart is illustrated with simulated data and with a real data set of patients with heart failure treated at the Heart Institute (InCor), at the University of São Paulo, Brazil.  相似文献   

12.
During the last decades, several approaches have been proposed to estimate the time‐dependent area under the receiver operating characteristic curve (AUC) of risk tools derived from survival data. The validity of these estimators relies on some regularity assumptions among which a survival function being proper. In practice, this assumption is not always satisfied because a fraction of the population may not be susceptible to experience the event of interest even for long follow‐up. Studying the sensitivity of the proposed estimators to the violation of this assumption is of substantial interest. In this paper, we investigate the performance of a nonparametric simple estimator, developed for classical survival data, in the case when the population exhibits a cure fraction. Motivated from the current practice of deriving risk tools in oncology and cardiovascular disease prevention, we also assess the loss, in terms of predictive performance, when deriving risk tools from survival models that do not acknowledge the presence of cure. The simulation results show that the investigated method is valid even under the presence of cure. They also show that risk tools derived from survival models that ignore the presence of cure have smaller AUC compared to those derived from survival models that acknowledge the presence of cure. This was also attested with a real data analysis from a breast cancer study.  相似文献   

13.
In follow‐up studies, the disease event time can be subject to left truncation and right censoring. Furthermore, medical advancements have made it possible for patients to be cured of certain types of diseases. In this article, we consider a semiparametric mixture cure model for the regression analysis of left‐truncated and right‐censored data. The model combines a logistic regression for the probability of event occurrence with the class of transformation models for the time of occurrence. We investigate two techniques for estimating model parameters. The first approach is based on martingale estimating equations (EEs). The second approach is based on the conditional likelihood function given truncation variables. The asymptotic properties of both proposed estimators are established. Simulation studies indicate that the conditional maximum‐likelihood estimator (cMLE) performs well while the estimator based on EEs is very unstable even though it is shown to be consistent. This is a special and intriguing phenomenon for the EE approach under cure model. We provide insights into this issue and find that the EE approach can be improved significantly by assigning appropriate weights to the censored observations in the EEs. This finding is useful in overcoming the instability of the EE approach in some more complicated situations, where the likelihood approach is not feasible. We illustrate the proposed estimation procedures by analyzing the age at onset of the occiput‐wall distance event for patients with ankylosing spondylitis.  相似文献   

14.
Regression models in survival analysis are most commonly applied for right‐censored survival data. In some situations, the time to the event is not exactly observed, although it is known that the event occurred between two observed times. In practice, the moment of observation is frequently taken as the event occurrence time, and the interval‐censored mechanism is ignored. We present a cure rate defective model for interval‐censored event‐time data. The defective distribution is characterized by a density function whose integration assumes a value less than one when the parameter domain differs from the usual domain. We use the Gompertz and inverse Gaussian defective distributions to model data containing cured elements and estimate parameters using the maximum likelihood estimation procedure. We evaluate the performance of the proposed models using Monte Carlo simulation studies. Practical relevance of the models is illustrated by applying datasets on ovarian cancer recurrence and oral lesions in children after liver transplantation, both of which were derived from studies performed at A.C. Camargo Cancer Center in São Paulo, Brazil.  相似文献   

15.
Nonparametric estimation in a cure model with random cure times   总被引:4,自引:0,他引:4  
Acute respiratory distress syndrome (ARDS) is a life-threatening acute condition that sometimes follows pneumonia or surgery. Patients who recover and leave the hospital are considered to have been cured at the time they leave the hospital. These data differ from typical data in which cure is a possibility: death times are not observed for patients who are cured and cure times are observed and vary among patients. Here we apply a competing risks model to these data and show it to be equivalent to a mixture model, the more common approach for cure data. Further, we derive an estimator for the variance of the cumulative incidence function from the competing risks model, and thus for the cure rate, based on elementary calculations. We compare our variance estimator to Gray's (1988, Annals of Statistics 16, 1140-1154) estimator, which is based on counting process theory. We find our estimator to be slightly more accurate in small samples. We apply these results to data from an ARDS clinical trial.  相似文献   

16.
Brown ER  Ibrahim JG 《Biometrics》2003,59(3):686-693
Complex issues arise when investigating the association between longitudinal immunologic measures and time to an event, such as time to relapse, in cancer vaccine trials. Unlike many clinical trials, we may encounter patients who are cured and no longer susceptible to the time-to-event endpoint. If there are cured patients in the population, there is a plateau in the survival function, S(t), after sufficient follow-up. If we want to determine the association between the longitudinal measure and the time-to-event in the presence of cure, existing methods for jointly modeling longitudinal and survival data would be inappropriate, since they do not account for the plateau in the survival function. The nature of the longitudinal data in cancer vaccine trials is also unique, as many patients may not exhibit an immune response to vaccination at varying time points throughout the trial. We present a new joint model for longitudinal and survival data that accounts both for the possibility that a subject is cured and for the unique nature of the longitudinal data. An example is presented from a cancer vaccine clinical trial.  相似文献   

17.
The promotion time cure model is a survival model acknowledging that an unidentified proportion of subjects will never experience the event of interest whatever the duration of the follow‐up. We focus our interest on the challenges raised by the strong posterior correlation between some of the regression parameters when the same covariates influence long‐ and short‐term survival. Then, the regression parameters of shared covariates are strongly correlated with, in addition, identification issues when the maximum follow‐up duration is insufficiently long to identify the cured fraction. We investigate how, despite this, plausible values for these parameters can be obtained in a computationally efficient way. The theoretical properties of our strategy will be investigated by simulation and illustrated on clinical data. Practical recommendations will also be made for the analysis of survival data known to include an unidentified cured fraction.  相似文献   

18.
The main goal of this paper is to investigate a cure rate model that comprehends some well‐known proposals found in the literature. In our work the number of competing causes of the event of interest follows the negative binomial distribution. The model is conveniently reparametrized through the cured fraction, which is then linked to covariates by means of the logistic link. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis in the proposed model. The procedure is illustrated with a numerical example.  相似文献   

19.
Summary .  In this article, we consider the setting where the event of interest can occur repeatedly for the same subject (i.e., a recurrent event; e.g., hospitalization) and may be stopped permanently by a terminating event (e.g., death). Among the different ways to model recurrent/terminal event data, the marginal mean (i.e., averaging over the survival distribution) is of primary interest from a public health or health economics perspective. Often, the difference between treatment-specific recurrent event means will not be constant over time, particularly when treatment-specific differences in survival exist. In such cases, it makes more sense to quantify treatment effect based on the cumulative difference in the recurrent event means, as opposed to the instantaneous difference in the rates. We propose a method that compares treatments by separately estimating the survival probabilities and recurrent event rates given survival, then integrating to get the mean number of events. The proposed method combines an additive model for the conditional recurrent event rate and a proportional hazards model for the terminating event hazard. The treatment effects on survival and on recurrent event rate among survivors are estimated in constructing our measure and explain the mechanism generating the difference under study. The example that motivates this research is the repeated occurrence of hospitalization among kidney transplant recipients, where the effect of expanded criteria donor (ECD) compared to non-ECD kidney transplantation on the mean number of hospitalizations is of interest.  相似文献   

20.
We propose a semiparametric mean residual life mixture cure model for right-censored survival data with a cured fraction. The model employs the proportional mean residual life model to describe the effects of covariates on the mean residual time of uncured subjects and the logistic regression model to describe the effects of covariates on the cure rate. We develop estimating equations to estimate the proposed cure model for the right-censored data with and without length-biased sampling, the latter is often found in prevalent cohort studies. In particular, we propose two estimating equations to estimate the effects of covariates in the cure rate and a method to combine them to improve the estimation efficiency. The consistency and asymptotic normality of the proposed estimates are established. The finite sample performance of the estimates is confirmed with simulations. The proposed estimation methods are applied to a clinical trial study on melanoma and a prevalent cohort study on early-onset type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号