首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gibberellin (GA) 3-oxidase, a class of 2-oxoglutarate-dependent dioxygenases, catalyzes the conversion of precursor GAs to their bioactive forms, thereby playing a direct role in determining the levels of bioactive GAs in plants. Gibberellin 3-oxidase in Arabidopsis is encoded by a multigene family consisting of at least four members, designated AtGA3ox1 to AtGA3ox4. It has yet to be investigated how each AtGA3ox gene contributes to optimizing bioactive GA levels during growth and development. Using quantitative real-time PCR analysis, we have shown that each AtGA3ox gene exhibits a unique organ-specific expression pattern, suggesting distinct developmental roles played by individual AtGA3ox members. To investigate the sites of synthesis of bioactive GA in plants, we generated transgenic Arabidopsis that carried AtGA3ox1-GUS and AtGA3ox2-GUS fusions. Comparisons of the GUS staining patterns of these plants with that of AtCPS-GUS from previous studies revealed the possible physical separation of the early and late stages of the GA pathway in roots. Phenotypic characterization and quantitative analysis of the endogenous GA content of ga3ox1 and ga3ox2 single and ga3ox1/ga3ox2 double mutants revealed distinct as well as overlapping roles of AtGA3ox1 and AtGA3ox2 in Arabidopsis development. Our results show that AtGA3ox1 and AtGA3ox2 are responsible for the synthesis of bioactive GAs during vegetative growth, but that they are dispensable for reproductive development. The stage-specific severe GA-deficient phenotypes of the ga3ox1/ga3ox2 mutant suggest that AtGA3ox3 and AtGA3ox4 are tightly regulated by developmental cues; AtGA3ox3 and AtGA3ox4 are not upregulated to compensate for GA deficiency during vegetative growth of the double mutant.  相似文献   

2.
Gibberellins (GAs) are biosynthesized through a complex pathway that involves several classes of enzymes. To predict sites of individual GA biosynthetic steps, we studied cell type-specific expression of genes encoding early and late GA biosynthetic enzymes in germinating Arabidopsis seeds. We showed that expression of two genes, AtGA3ox1 and AtGA3ox2, encoding GA 3-oxidase, which catalyzes the terminal biosynthetic step, was mainly localized in the cortex and endodermis of embryo axes in germinating seeds. Because another GA biosynthetic gene, AtKO1, coding for ent-kaurene oxidase, exhibited a similar cell-specific expression pattern, we predicted that the synthesis of bioactive GAs from ent-kaurene oxidation occurs in the same cell types during seed germination. We also showed that the cortical cells expand during germination, suggesting a spatial correlation between GA production and response. However, promoter activity of the AtCPS1 gene, responsible for the first committed step in GA biosynthesis, was detected exclusively in the embryo provasculature in germinating seeds. When the AtCPS1 cDNA was expressed only in the cortex and endodermis of non-germinating ga1-3 seeds (deficient in AtCPS1) using the AtGA3ox2 promoter, germination was not as resistant to a GA biosynthesis inhibitor as expression in the provasculature. These results suggest that the biosynthesis of GAs during seed germination takes place in two separate locations with the early step occurring in the provasculature and the later steps in the cortex and endodermis. This implies that intercellular transport of an intermediate of the GA biosynthetic pathway is required to produce bioactive GAs.  相似文献   

3.
Gibberellin (GA) 2-oxidase plays a key role in the GA catabolic pathway through 2β-hydroxylation.In the present study,we isolated a CaMV 35S-enhancer activation tagged mutant,H032.This mutant exhibited a dominant dwarf and GA-deficient phenotype,with a final stature that was less than half of its wild-type counterpart.The endogenous bioactive GAs are markedly decreased in the H032 mutant,and application of bioactive GAs (GA3 or GA4) can reverse the dwarf phenotype.The integrated T-DNA was detected 12.8 kb upstream of the OsGA2ox6 in the H032 genome by TAIL-PCR.An increased level of OsGA2ox6 mRNA was detected at a high level in the H032 mutant,which might be due to the enhancer role of the CaMV 35S promoter.RNAi and ectopic expression analysis of OsGA2ox6 indicated that the dwarf trait and the decreased levels of bioactive GAs in the H032 mutant were a result of the up-regulation of the OsGA2ox6 gene.BLASTP analysis revealed that OsGA2ox6 belongs to the class III of GA 2-oxidases,which is a novel type of GA2ox that uses C20-GAs (GA12 and/or GA53) as the substrates.Interestingly,we found that a GA biosynthesis inhibitor,paclobutrazol,positively regulated the OsGA2ox6 gene.Unlike the over-expression of OsGA2ox1,which led to a high rate of seed abortion,the H032 mutant retained normal flowering and seed production.These results indicate that OsGA2ox6 mainly affects plant stature,and the dominant dwarf trait of the H032 mutant can be used as an efficient dwarf resource in rice breeding.  相似文献   

4.
Gibberellin (GA), a plant hormone, is involved in many aspects of plant growth and development both in vegetative and reproductive phases. GA2-oxidase plays a key role in the GA catabolic pathway to reduce bioactive GAs. We produced transgenic Arabidopsis plants expressing GA2-oxidase 4 (AtGA2ox4) under the control of a senescenceassociated promoter (SEN1). As we hypothesized, transgenic plants (SEN1::AtGA2ox4) exhibited a dominant semi-dwarf phenotype with a decrease of bioactive GAs (e.g., GA4 and GA1) up to two-fold compared to control plants. Application of bioactive GA3 resulted in increased shoot length, indicating that the GA signaling pathway functions normally in the SEN1::AtGA2ox4 plants. Expressions of other members of GA2-oxidase family, such as AtGA2ox1, AtGA2ox3, AtGA2ox6, and AtGA2ox8, were decreased slightly in the flower and silique tissues while GA biosynthetic genes (e.g., AtGA20ox1, AtGA20ox2 and AtGA3ox1) were not significantly changed in the SEN::AtGA2ox4 plants. Using proteome profiling (2-D PAGE followed by MALDI-TOF/MS), we identified 29 protein spots that were increased in the SEN1::AtGA2ox4 plants, but were decreased to wild-type levels by GA3 treatment. The majority were found to be involved in photosynthesis and carbon/energy metabolism. Unlike the previous constitutive over-expression of GA2-oxidases, which frequently led to floral deformity and/or loss of fertility, the SEN1::AtGA2ox4 plants retained normal floral morphology and seed production. Accordingly, the expressions of FT and CO genes remained unchanged in the SEN1::AtGA2ox4 plants. Taken together, our results suggest that the dominant dwarf trait carried by SEN1::AtGA2ox4 plants can be used as an efficient dwarfing tool in plant biotechnological applications.  相似文献   

5.
Gibberellin (GA) 20-oxidase catalyses consecutive steps late in GA biosynthesis in plants. In Arabidopsis, the enzyme is encoded by a gene family of at least three members (AtGA20ox1, AtGA20ox2 and AtGA20ox3) with differential patterns of expression. The genes are regulated by feedback from bioactive GAs, suggesting that the enzymes may be involved in regulating GA biosynthesis. To investigate this, we produced transgenic Arabidopsis expressing sense or antisense copies of each of the GA 20-oxidase cDNAs. Over-expression of any of the cDNAs gave rise to seedlings with elongated hypocotyls; the plants flowered earlier than controls in both long and short days and were 25% taller at maturity. GA analysis of the vegetative rosettes showed a two- to threefold increase in the level of GA4, indicating that GA 20-oxidase normally limits bioactive GA levels. Plants expressing antisense copies of AtGA20ox1 had short hypocotyls and reduced rates of stem elongation. This was reflected in reduced levels of GA4 in both rosettes and shoot tips. In short days, flowering was delayed and the reduction in the rate of stem elongation was greater. Antisense expression of AtGA20ox2 had no apparent effects in long days, but stem growth in one transgenic line grown in short days was reduced by 20%. Expression of antisense copies of AtGA20ox3 had no visible effect, except for one transgenic line that had short hypocotyls. These results demonstrate that GA levels and, hence, plant growth and development can be modified by manipulation of GA 20-oxidase expression in transgenic plants.  相似文献   

6.
Embryonic regulators LEC2 (LEAFY COTYLEDON2) and FUS3 (FUSCA3) are involved in multiple aspects of Arabidopsis (Arabidopsis thaliana) seed development, including repression of leaf traits and premature germination and activation of seed storage protein genes. In this study, we show that gibberellin (GA) hormone biosynthesis is regulated by LEC2 and FUS3 pathways. The level of bioactive GAs is increased in immature seeds of lec2 and fus3 mutants relative to wild-type level. In addition, we show that the formation of ectopic trichome cells on lec2 and fus3 embryos is a GA-dependent process as in true leaves, suggesting that the GA pathway is misactivated in embryonic mutants. We next demonstrate that the GA-biosynthesis gene AtGA3ox2, which encodes the key enzyme AtGA3ox2 that catalyzes the conversion of inactive to bioactive GAs, is ectopically activated in embryos of the two mutants. Interestingly, both beta-glucuronidase reporter gene expression and in situ hybridization indicate that FUS3 represses AtGA3ox2 expression mainly in epidermal cells of embryo axis, which is distinct from AtGA3ox2 pattern at germination. Finally, we show that the FUS3 protein physically interacts with two RY elements (CATGCATG) present in the AtGA3ox2 promoter. This work suggests that GA biosynthesis is directly controlled by embryonic regulators during Arabidopsis embryonic development.  相似文献   

7.
8.
Long day (LD) exposure of rosette plants causes rapid stem/petiole elongation, a more vertical growth habit, and flowering; all changes are suggestive of a role for the gibberellin (GA) plant growth regulators. For Arabidopsis (Arabidopsis thaliana) L. (Heynh), we show that enhancement of petiole elongation by a far-red (FR)-rich LD is mimicked by a brief (10 min) end-of-day (EOD) FR exposure in short day (SD). The EOD response shows red (R)/FR photoreversibility and is not affected in a phytochrome (PHY) A mutant so it is mediated by PHYB and related PHYs. FR photoconversion of PHYB to an inactive form activates a signaling pathway, leading to increased GA biosynthesis. Of 10 GA biosynthetic genes, expression of the 20-oxidase, AtGA20ox2, responded most to FR (up to a 40-fold increase within 3 h). AtGA20ox1 also responded but to a lesser extent. Stimulation of petiole elongation by EOD FR is reduced in a transgenic AtGA20ox2 hairpin gene silencing line. By contrast, it was only in SD that a T-DNA insertional mutant of AtGA20ox1 (ga5-3) showed reduced response. Circadian entrainment to a daytime pattern provides an explanation for the SD expression of AtGA20ox1. Conversely, the strong EOD/LD FR responses of AtGA20ox2 may reflect its independence of circadian regulation. While FR acting via PHYB increases expression of AtGA20ox2, other GA biosynthetic genes are known to respond to R rather than FR light and/or to other PHYs. Thus, there must be different signal transduction pathways, one at least showing a positive response to active PHYB and another showing a negative response.  相似文献   

9.
10.
11.
To enhance our understanding of GA metabolism in rice (Oryza sativa), we intensively screened and identified 29 candidate genes encoding the following GA metabolic enzymes using all available rice DNA databases: ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox). In contrast to the Arabidopsis genome, multiple CPS-like, KS-like, and KO-like genes were identified in the rice genome, most of which are contiguously arranged. We also identified 18 GA-deficient rice mutants at six different loci from rice mutant collections. Based on the mutant and expression analyses, we demonstrated that the enzymes catalyzing the early steps in the GA biosynthetic pathway (i.e. CPS, KS, KO, and KAO) are mainly encoded by single genes, while those for later steps (i.e. GA20ox, GA3ox, and GA2ox) are encoded by gene families. The remaining CPS-like, KS-like, and KO-like genes were likely to be involved in the biosynthesis of diterpene phytoalexins rather than GAs because the expression of two CPS-like and three KS-like genes (OsCPS2, OsCPS4, OsKS4, OsKS7, and OsKS8) were increased by UV irradiation, and four of these genes (OsCPS2, OsCPS4, OsKS4, and OsKS7) were also induced by an elicitor treatment.  相似文献   

12.
Several dwarf plum genotypes (Prunus salicina L.), due to deficiency of unknown gibberellin (GA) signalling, were identified. A cDNA encoding GA 2-oxidase (PslGA2ox), the major gibberellin catabolic enzyme in plants, was cloned and used to screen the GA-deficient hybrids. This resulted in the identification of a dwarf plum hybrid, designated as DGO24, that exhibits a markedly elevated PslGA2ox signal. Grafting 'Early Golden' (EG), a commercial plum cultivar, on DGO24 (EG/D) enhanced PslGA2ox accumulation in the scion part and generated trees of compact stature. Assessment of active GAs in such trees revealed that DGO24 and EG/D accumulated relatively much lower quantities of main bioactive GAs (GA(1) and GA(4)) than control trees (EG/M). Moreover, the physiological function of PslGA2ox was studied by determining the molecular and developmental consequences due to ectopic expression in Arabidopsis. Among several lines, two groups of homozygous transgenics that exhibited contrasting phenotypes were identified. Group-1 displayed a dwarf growth pattern typical of mutants with a GA deficiency including smaller leaves, shorter stems, and delay in the development of reproductive events. In contrast, Group-2 exhibited a 'GA overdose' phenotype as all the plants showed elongated growth, a typical response to GA application, even under limited GA conditions, potentially due to co-suppression of closely related Arabidopsis homologous. The studies reveal the possibility of utilizing PslGA2ox as a marker for developing size-controlling rootstocks in Prunus.  相似文献   

13.
Bioactive gibberellins (GAs) affect many biological processes including germination, stem growth, transition to flowering, and fruit development. The location, timing, and level of bioactive GA are finely tuned to ensure that optimal growth and development occur. The balance between GA biosynthesis and deactivation is controlled by external factors such as light and by internal factors that include auxin. The role of auxin transport inhibitors (ATIs) and auxins on GA homeostasis in intact light-grown Arabidopsis thaliana (L.) Heynh. seedlings was investigated. Two ATIs, 1-N-naphthylthalamic acid (NPA) and 1-naphthoxyacetic acid (NOA) caused elevated expression of the GA biosynthetic enzyme AtGA20-oxidase1 (AtGA20ox1) in shoot but not in root tissues, and only at certain developmental stages. It was investigated whether enhanced AtGA20ox1 gene expression was a consequence of altered flow through the GA biosynthetic pathway, or was due to impaired GA signalling that can lead to enhanced AtGA20ox1 expression and accumulation of a DELLA protein, Repressor of ga1-3 (RGA). Both ATIs promoted accumulation of GFP-fused RGA in shoots and roots, and this increase was counteracted by the application of GA(4). These results suggest that in ATI-treated seedlings the impediment to DELLA protein degradation may be a deficiency of bioactive GA at sites of GA response. It is proposed that the four different levels of AtGA20ox1 regulation observed here are imposed in a strict hierarchy: spatial (organ-, tissue-, cell-specific) > developmental > metabolic > auxin regulation. Thus results show that, in intact auxin- and auxin transport inhibitor-treated light-grown Arabidopsis seedlings, three other levels of regulation supersede the effects of auxin on AtGA20ox1.  相似文献   

14.
15.
Gibberellins (GAs) are endogenous hormones that play an important role in regulating plant stature by increasing cell division and elongation in stem internodes. The GA2-oxidase gene from Arabidopsis thaliana (AtGA2ox8) was introduced into Brassica napus L. by Agrobacterium-mediated floral-dip transformation with the aim of decreasing the amount of bioactive GA and hence reducing plant stature. As anticipated, the transgenic plants exhibited dwarf phenotype. Compared with the wild type, the transgenic plants had increased primary branches (by 14.1?C15.3%) and siliques (by 10.8?C15.2%), which resulted in a significant increase in the seed yield (by 9.6?C12.4%). Moreover, the contents of anthocyanin in leaves of 60-day-old transgenic plants was about 9.4-fold higher in winter and about 6.8-fold higher in summer than the wild type. These excellent agronomic traits of the transgenic plants could not only improve the lodging resistance and seed yields, but also protect them against stress. Therefore, the over-expression of AtGA2ox8 might be used to produce dwarf varieties and increase seed yield in Brassica napus L.  相似文献   

16.
Gibberellin levels in imbibed Arabidopsis thaliana seeds are regulated by light via phytochrome, presumably through regulation of gibberellin biosynthesis genes, AtGA3ox1 and AtGA3ox2, and a deactivation gene, AtGA2ox2. Here, we show that a loss-of-function ga2ox2 mutation causes an increase in GA(4) levels and partly suppresses the germination inability during dark imbibition after inactivation of phytochrome. Experiments using 2,2-dimethylGA(4), a GA(4) analog resistant to gibberellin 2-oxidase, in combination with ga2ox2 mutant seeds suggest that the efficiency of deactivation of exogenous GA(4) by AtGA2ox2 is dependent on light conditions, which partly explains phytochrome-mediated changes in gibberellin effectiveness (sensitivity) found in previous studies.  相似文献   

17.
Negative feedback is a fundamental mechanism of organisms to maintain the internal environment within tolerable limits. Gibberellins (GAs) are essential regulators of many aspects of plant development, including seed germination, stem elongation, and flowering. GA biosynthesis is regulated by the feedback mechanism in plants. GA 3-oxidase (GA3ox) catalyzes the final step of the biosynthetic pathway to produce the physiologically active GAs. Here, we found that only the AtGA3ox1 among the AtGA3ox family of Arabidopsis (Arabidopsis thaliana) is under the regulation of GA-negative feedback. We have identified a cis-acting sequence responsible for the GA-negative feedback of AtGA3ox1 using transgenic plants. Furthermore, we have identified an AT-hook protein, AGF1 (for the AT-hook protein of GA feedback regulation), as a DNA-binding protein for the cis-acting sequence of GA-negative feedback. The mutation in the cis-acting sequence abolished both GA-negative feedback and AGF1 binding. In addition, constitutive expression of AGF1 affected GA-negative feedback in Arabidopsis. Our results suggest that AGF1 plays a role in the homeostasis of GAs through binding to the cis-acting sequence of the GA-negative feedback of AtGA3ox1.  相似文献   

18.
19.
20.
Zhou R  Yu M  Pharis RP 《Plant physiology》2004,135(2):1000-1007
Ring D-modified gibberellin (GA) A5 and A20 derivatives are structurally similar to GA20 and GA9 (the precursors to growth-active GA1 and GA4) and, when applied to higher plants, especially grasses, can reduce shoot growth with concomitant reductions in levels of growth-active GAs and increases in levels of their immediate 3-deoxy precursors. The recombinant Arabidopsis GA 3beta-hydroxylase (AtGA3ox1) protein was used in vitro to test a number of ring D-modified GA structures as possible inhibitors of AtGA3ox1. This fusion protein was able to 3beta-hydroxylate the 3-deoxy GAs, GA9 and GA20, to GA4 and GA1, respectively, and convert the 2,3-didehydro GA, GA5, to its 2,3-epoxide, GA6. Michaelis-Menten constant (Km) values of 1.25 and 10 microM, respectively, were obtained for the GA9 and GA20 conversions. We utilized the enzyme's ability to convert GA20 to GA1 in order to test the efficacy of GA5, 16,17-dihydro GA5 (dihydro GA5), and a number of other ring D-modified GAs as inhibitors of AtGA3ox activity. For the exo-isomer of dihydro GA5, inhibition increased with the dose of dihydro GA5, with Lineweaver-Burk plots showing that dihydro GA5 changed only the Km of the enzyme reaction, not the V(max), giving a dissociation constant of the enzyme-inhibitor complex (Ki) of 70 microM. Other ring D-modified GA derivatives showed similar inhibitory effects on GA1 production, with 16,17-dihydro GA20-13-acetate being the most effective inhibitor. This behavior is consistent with dihydro GA5, at least, functioning as a competitive substrate inhibitor of AtGA3ox1. Finally, the recombinant AtGA3ox1 fusion protein may be a useful screening tool for other effective 3beta-hydroxylase inhibitors, including naturally occurring ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号