首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously peported that the replication orgin region located near the ura4 gene on chromosome III of the fission yeast, Schizosaccharomyces pombe, contains three closely spaced origins, each associated with an autonomously replicating sequence (ARS) element. Here we report the nucleotide sequences of two of these ARS elements, ars3002 and ars3003. The two ARS elements are located on either side of a transcribed 1.5 kb open reading frame. Like 11 other S. pombe ARS elements whose sequences have previously been determined in other laboratories, the 2 new ARS elements are unusually A+T-rich. All 13 ARS elements contain easily unwound stretches of DNA. Each of the ARS elements contains numerous copies, at a higher than expected frequency, of short stretches of A+T-rich DNA in which most of the Ts are on one strand and most of the As are on the complementary strand. We discuss the potential significance for ARS function of these multiple asymmetric A+T-rich sequences.  相似文献   

2.
Autonomously replicating sequence (ARS) elements are identified by their ability to promote high-frequency transformation and extrachromosomal replication of plasmids in the yeast Saccharomyces cerevisiae. Six of the 14 ARS elements present in a 200-kb region of Saccharomyces cerevisiae chromosome III are mitotic chromosomal replication origins. The unexpected observation that eight ARS elements do not function at detectable levels as chromosomal replication origins during mitotic growth suggested that these ARS elements may function as chromosomal origins during premeiotic S phase. Two-dimensional agarose gel electrophoresis was used to map premeiotic replication origins in a 100-kb segment of chromosome III between HML and CEN3. The pattern of origin usage in premeiotic S phase was identical to that in mitotic S phase, with the possible exception of ARS308, which is an inefficient mitotic origin associated with CEN3. CEN3 was found to replicate during premeiotic S phase, demonstrating that the failure of sister chromatids to disjoin during the meiosis I division is not due to unreplicated centromeres. No origins were found in the DNA fragments without ARS function. Thus, in both mitosis and meiosis, chromosomal replication origins are coincident with ARS elements but not all ARS elements have chromosomal origin function. The efficiency of origin use and the patterns of replication termination are similar in meiosis and in mitosis. DNA replication termination occurs over a broad distance between active origins.  相似文献   

3.
The ura4 replication origin region, which is located near the ura4 gene on chromosome III of the fission yeast, Schizosaccharomyces pombe, contains multiple initiation sites. We have used 2D gel electrophoretic replicon mapping methods to study the distribution of these initiation sites, and have found that they are concentrated near three ARS elements (stretches of DNA which permit autonomous plasmid replication). To determine the roles of these ARS elements in the function of the ura4 origin region, we deleted either one or two of them from the chromosome and then assessed the consequences of the deletions by 2D gel electrophoresis. The results suggest that each of the three ARS elements is responsible for the initiation events in its vicinity and that the ARS elements interfere with each other in a hierarchical fashion. It is possible that the large initiation zones of animal cells are similarly composed of multiple mutually interfering origins.  相似文献   

4.
We have identified five autonomously replicating sequences (ARSs) in a 100 kbp region of the Schizosaccharomyces pombe chromosome II. Analyses of replicative intermediates of the chromosome DNA by neutral/neutral two-dimensional gel electrophoresis demonstrated that at least three of these ARS loci operate as chromosomal replication origins. One of the loci,ori2004, was utilized in almost every cell cycle, while the others were used less frequently. The frequency of initiation from the respective chromosomal replication origin was found to be roughly proportional to the efficiency of autonomous replication of the corresponding ARS plasmid. Replication from ori2004 was initiated within a distinct region almost the same as that for replication of the ARS plasmid. These results showed that the ori2004 region of approximately 3 kbp contains all the cis elements essential for initiation of chromosome replication.  相似文献   

5.
ARS301 and ARS302 are inactive replication origins located at the left end of budding yeast (Saccharomyces cerevisiae) chromosome III, where they are associated with the HML-E and -I silencers of the HML mating type cassette. Although they function as replication origins in plasmids, they do not serve as origins in their normal chromosomal locations, because they are programmed to fire so late in S phase that they are passively replicated by the replication fork from neighboring early-firing ARS305 before they have a chance to fire on their own. We asked whether the nucleotide sequences required for plasmid origin function of these silencer-associated chromosomally inactive origins differ from the sequences needed for plasmid origin function by nonsilencer-associated chromosomally active origins. We could not detect consistent differences in sequence requirements for the two types of origins. Next, we asked whether sequences within or flanking these origins are responsible for their chromosomal inactivity. Our results demonstrate that both flanking and internal sequences contribute to chromosomal inactivity, presumably by programming these origins to fire late in S phase. In ARS301, the function of the internal sequences determining chromosomal inactivity is dependent on the checkpoint proteins Mec1p and Rad53p.  相似文献   

6.
A yeast autonomously replicating sequence, ARS305, shares essential components with a chromosome III replicator, ORI305. Known components include an ARS consensus sequence (ACS) element, presumed to bind the origin recognition complex (ORC), and a broad 3'-flanking sequence which contains a DNA unwinding element. Here linker substitution mutagenesis of ARS305 and analysis of plasmid mitotic stability identified three short sequence elements within the broad 3'-flanking sequence. The major functional element resides directly 3' of the ACS and the two remaining elements reside further downstream, all within non-conserved ARS sequences. To determine the contribution of the elements to replication origin function in the chromosome, selected linker mutations were transplaced into the ORI305 locus and two-dimensional gel electrophoresis was used to analyze replication bubble formation and fork directions. Mutation of the major functional element identified in the plasmid mitotic stability assay inactivated replication origin function in the chromosome. Mutation of each of the two remaining elements diminished both plasmid ARS and chromosomal origin activities to similar levels. Thus multiple DNA elements identified in the plasmid ARS are determinants of replication origin function in the natural context of the chromosome. Comparison with two other genetically defined chromosomal replicators reveals a conservation of functional elements known to bind ORC, but no two replicators are identical in the arrangement of elements downstream of ORC binding elements or in the extent of functional sequences adjacent to the ACS.  相似文献   

7.
8.
Autonomously replicating sequence (ARS) elements function as plasmid replication origins. Our studies of the H4 ARS and ARS307 have established the requirement for a DNA unwinding element (DUE), a broad easily-unwound sequence 3' to the essential consensus that likely facilitates opening of the origin. In this report, we examine the intrinsic ease of unwinding a variety of ARS elements using (1) a single-strand-specific nuclease to probe for DNA unwinding in a negatively-supercoiled plasmid, and (2) a computer program that calculates DNA helical stability from the nucleotide sequence. ARS elements that are associated with replication origins on chromosome III are nuclease hypersensitive, and the helical stability minima correctly predict the location and hierarchy of the hypersensitive sites. All well-studied ARS elements in which the essential consensus sequence has been identified by mutational analysis contain a 100-bp region of low helical stability immediately 3' to the consensus, as do ARS elements created by mutation within the prokaryotic M13 vector. The level of helical stability is, in all cases, below that of ARS307 derivatives inactivated by mutations in the DUE. Our findings indicate that the ease of DNA unwinding at the broad region directly 3' to the ARS consensus is a conserved property of yeast replication origins.  相似文献   

9.
S E Celniker  J L Campbell 《Cell》1982,31(1):201-213
An enzyme system prepared from Saccharomyces cerevisiae carries out the replication of exogenous yeast plasmid DNA. Replication in vitro mimics that in vivo in that DNA synthesis in extracts of strain cdc8, a temperature-sensitive DNA replication mutant, is thermolabile relative to the wild-type, and in that aphidicolin inhibits replication in vitro. Furthermore, only plasmids containing a functional yeast replicator, ARS, initiate replication at a specific site in vitro. Analysis of replicative intermediates shows that plasmid YRp7, which contains the chromosomal replicator ARS1, initiates bidirectional replication in a 100 bp region within the sequence required for autonomous replication in vivo. Plasmids containing ARS2, another chromosomal replicator, and the ARS region of the endogenous yeast plasmid 2 microns circle give similar results, suggesting that ARS sequences are specific origins of chromosomal replication. Used in conjunction with deletion mapping, the in vitro system allows definition of the minimal sequences required for the initiation of replication.  相似文献   

10.
We have determined that ARS121 is an efficient origin of replication on chromosome X of Saccharomyces cerevisiae. This origin is comprised of at least three distinct functional domains. One of these domains is the ARS121 core sequence (approximately 35 bp-long), which is essential for origin activity. This essential core contains an 11 bp sequence resembling (2 bp mismatch) the ARS consensus. Another important domain is an enhancer of DNA replication, which binds the OBF1 protein. The third domain, ATR (A/T-rich, approximately 72 bp), is auxiliary and works in either orientation, but only when located 3' to the essential core. When fused to the ARS121 core both the enhancer and the ATR domain act synergistically to enhance the activity of the origin. Furthermore, when fused to the essential core sequences of heterologous ARSs, ARS1 and ARS307, the auxiliary domains also appeared to stimulate synergistically origin function. These results suggest that (i) in order to elicit maximal origin activity all three domains have to interact and (ii) activation of the essential core sequences at different origins of replication may share a common mechanism.  相似文献   

11.
12.
Replication origins have been mapped to positions that coincide, within experimental error (several hundred base pairs), with ARS elements. To determine whether the DNA sequences required for ARS function on plasmids are required for chromosomal origin function, the chromosomal copy of ARS306 was deleted and the chromosomal copy of ARS307 was replaced with mutant derivatives of ARS307 containing single point mutations in domain A within the ARS core consensus sequence. The chromosomal origin function of these derivatives was assayed by two-dimensional agarose gel electrophoresis. Deletion of ARS306 deleted the associated replication origin. The effects on chromosomal origin function of mutations in domain A paralleled their effects on ARS function, as measured by plasmid stability. These results demonstrate that chromosomal origin function is a property of the ARS element itself.  相似文献   

13.
The in vivo replication origin of the yeast 2 microns plasmid   总被引:102,自引:0,他引:102  
We have used two-dimensional neutral/alkaline agarose gel electrophoresis to separate the nascent strands of replicating yeast 2 micron plasmid DNA molecules according to extent of replication, away from nonreplicating molecules and parental strands. Analysis of the lengths of nascent strands by sequential hybridization with short probes shows that replication proceeds bidirectionally from a single origin at map position 3700 +/- 100, coincident with the genetically mapped ARS element. The two recombinational isomers of 2 microns plasmid (forms A and B) replicate with equal efficiency. These results suggest that ARS elements may prove to be replication origins for chromosomal DNA.  相似文献   

14.
The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.  相似文献   

15.
Autonomously replicating sequence (ARS) elements are the genetic determinants of replication origin function in yeasts. They can be easily identified as the plasmids containing them transform yeast cells at a high frequency. As the first step towards identifying all potential replication origins in a 73-kb region of the long arm of fission yeast chromosome II, we have mapped five new ARS elements using systematic subcloning and transformation assay. 2D analysis of one of the ARS plasmids that showed highest transformation frequency localized the replication origin activity within the cloned genomic DNA. All the new ARS elements are localized in two clusters in centromere proximal 40 kb of the region. The presence of at least six ARS elements, including the previously reported ars727, is suggestive of a higher origin density in this region than that predicted earlier using a computer based search.  相似文献   

16.

Background  

Some origins in eukaryotic chromosomes fire more frequently than others. In the fission yeast, Schizosaccharomyces pombe, the relative firing frequencies of the three origins clustered 4-8 kbp upstream of the ura4 gene are controlled by a replication enhancer - an element that stimulates nearby origins in a relatively position-and orientation-independent fashion. The important sequence motifs within this enhancer were not previously localized.  相似文献   

17.
Chatre L  Ricchetti M 《PloS one》2011,6(3):e17235
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.  相似文献   

18.
The DNA replication origins of the yeast Saccharomyces cerevisiae require several short functional elements, most of which are not conserved in sequence. To better characterize ARS305, a replicator from a chromosomal origin, we swapped functional DNA elements of ARS305 with defined elements of ARS1. ARS305 contains elements that are functionally exchangeable with ARS1 A and B1 elements, which are known to bind the origin recognition complex; however, the ARS1 A element differs in that it does not require a 3' box adjacent to the essential autonomously replicating sequence consensus. At the position corresponding to ARS1 B3, ARS305 has a novel element, B4, that can functionally substitute for every type of short element (B1, B2, and B3) in the B domain. Unexpectedly, the replacement of element B4 by ARS1 B3, which binds ABF1p and is known as a replication enhancer, inhibited ARS305 function. ARS305 has no short functional element at or near positions corresponding to the B2 elements in ARS1 and ARS307 but contains an easily unwound region whose functional importance was supported by a broad G+C-rich substitution mutation. Surprisingly, the easily unwound region can functionally substitute for the ARS1 B2 element, even though ARS1 B2 was found to possess a distinct DNA sequence requirement. The functionally conserved B2 element in ARS307 contains a known sequence requirement, and helical stability analysis of linker and minilinker mutations suggested that B2 also contains a DNA unwinding element (DUE). Our findings suggest that yeast replication origins employ a B2 element or a DUE to mediate a common function, DNA unwinding during initiation, although not necessarily through a common mechanism.  相似文献   

19.
Two DNA fragments displaying ARS activity on plasmids in the yeast Yarrowia lipolytica have previously been cloned and shown to harbor centromeric sequences (P. Fournier, A. Abbas, M. Chasles, B. Kudla, D. M. Ogrydziak, D. Yaver, J.-W. Xuan, A. Peito, A.-M. Ribet, C. Feynerol, F. He, and C. Gaillardin, Proc. Natl. Acad. Sci. USA 90:4912-4916, 1993; and P. Fournier, L. Guyaneux, M. Chasles, and C. Gaillardin, Yeast 7:25-36, 1991). We have used the integration properties of centromeric sequences to show that all Y. lipolytica ARS elements so far isolated are composed of both a replication origin and a centromere. The sequence and the distance between the origin and centromere do not seem to play a critical role, and many origins can function in association with one given centromere. A centromeric plasmid can therefore be used to clone putative chromosomal origins coming from several genomic locations, which confer the replicative property on the plasmid. The DNA sequences responsible for initiation in plasmids are short (several hundred base pairs) stretches which map close to or at replication initiation sites in the chromosome. Their chromosomal deletion abolishes initiation, but changing their chromosomal environment does not.  相似文献   

20.
Ars3002 is an efficient single-copy replication origin in the fission yeast, Schizosaccharomyces pombe. In a previous study, we tested the effects of consecutive approximately 50-bp deletions throughout ars3002 on the replication efficiency of those origins in S. pombe. Here we report the results of our use of the same approximately 50-bp deletions to test the hypothesis that some of the cis-acting sequences important for replication origin activity in fission yeast might be conserved in the evolutionarily distant budding yeast, Saccharomyces cerevisiae. We found that in most cases there was no correlation between the effects of particular mutations in S. pombe and in S. cerevisiae. We conclude that it is unlikely that any of the cis-acting sequences recognised by homologous replication proteins is conserved between these two yeast species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号