首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two isoforms of ferredoxin-NADP(+) reductase (FNR) exist in higher plants, the leaf (or photosynthetic) and the root (or non-photosynthetic) isoform, which have 48% amino acid sequence identity and display specific structural and functional features. With the aim to gain further insight into the structure-function relationship of this enzyme, we designed two novel chimeric flavoenzymes by swapping the structural domains between the leaf and the root isoforms. Characterization of the chimeras would allow dissection of the contribution of the individual domains to catalysis. The chimera obtained by grafting together the FAD-binding domain of the root-isoform and the NADP-binding domain of the leaf-isoform was inactive when expressed in Escherichia coli. On the other hand, the chimera assembled in the opposite way (leaf FAD-binding domain and root NADP-binding domain) was functional and was produced in the bacterial host to a level threefold higher than that of the parent enzymes. The protein was purified and found to be as stable as the natural isoforms. Limited proteolysis excluded the presence in the chimera of misfolded regions. The affinity of the chimera for ferredoxin I (Fd I) was similar to that of the leaf isoform, although interprotein electron-transfer was partially impaired. As occurs with the root isoform, the chimera bound NADP(+) with high affinity, while spectroscopic evidence suggested that the conformation adopted by the nicotinamide moiety bound to the chimera was similar to that observed in the leaf enzyme. Interestingly, the chimera, by combining favorable features from both parent isoforms, acquired a catalytic efficiency (k(cat)/K(m)), as an NADPH-dependent diaphorase, higher than those of both the root ( approximately 2-fold) and the leaf enzyme ( approximately 5-fold). Thus, molecular breeding between isozymes has improved the catalytic properties of FNR.  相似文献   

2.
Ferredoxin-NADP+ oxidoreductase (FNR) catalyzing the terminal step of the linear photosynthetic electron transport was purified from the cyanobacterium Spirulina platensis and the red alga Cyanidium caldarium. FNR of Spirulina consisted of three domains (CpcD-like domain, FAD-binding domain, and NADP+-binding domain) with a molecular mass of 46 kDa and was localized in either phycobilisomes or thylakoid membranes. The membrane-bound FNR with 46 kDa was solublized by NaCl and the solublized FNR had an apparent molecular mass of 90 kDa. FNR of Cyanidium consisted of two domains (FAD-binding domain and NADP+-binding domain) with a molecular mass of 33 kDa. In Cyanidium, FNR was found on thylakoid membranes, but there was no FNR on phycobilisomes. The membrane-bound FNR of Cyanidium was not solublized by NaCl, suggesting the enzyme is tightly bound in the membrane. Although both cyanobacteria and red algae are photoautotrophic organisms bearing phycobilisomes as light harvesting complexes, FNR localization and membrane-binding characteristics were different. These results suggest that FNR binding to phycobilisomes is not characteristic for all phycobilisome retaining oxygenic photosynthetic organisms, and that the rhodoplast of red algae had possibly originated from a cyanobacterium ancestor, whose FNR lacked the CpcD-like domain.  相似文献   

3.
4.
Utilization of electrons from the photosynthetic water splitting reaction for the generation of biofuels, commodities as well as application in biotransformations requires a partial rerouting of the photosynthetic electron transport chain. Due to its rather negative redox potential and its bifurcational function, ferredoxin at the acceptor side of Photosystem 1 is one of the focal points for such an engineering. With hydrogen production as model system, we show here the impact and potential of redox partner design involving ferredoxin (Fd), ferredoxin-oxido-reductase (FNR) and [FeFe]?hydrogenase HydA1 on electron transport in a future cyanobacterial design cell of Synechocystis PCC 6803. X-ray-structure-based rational design and the allocation of specific interaction residues by NMR-analysis led to the construction of Fd- and FNR-mutants, which in appropriate combination enabled an about 18-fold enhanced electron flow from Fd to HydA1 (in competition with equimolar amounts of FNR) in in vitro assays. The negative impact of these mutations on the Fd-FNR electron transport which indirectly facilitates H2 production (with a contribution of ≤42% by FNR variants and ≤23% by Fd-variants) and the direct positive impact on the Fd-HydA1 electron transport (≤23% by Fd-mutants) provide an excellent basis for the construction of a hydrogen-producing design cell and the study of photosynthetic efficiency-optimization with cyanobacteria.  相似文献   

5.
Ferredoxin-NAD(P)+ oxidoreductase (FNR) catalyzes the reduction of NAD(P)+ to NAD(P)H with the reduced ferredoxin (Fd) during the final step of the photosynthetic electron transport chain. FNR from the green sulfur bacterium Chlorobaculum tepidum is functionally analogous to plant-type FNR but shares a structural homology to NADPH-dependent thioredoxin reductase (TrxR). Here, we report the crystal structure of C. tepidum FNR to 2.4 Å resolution, which reveals a unique structure-function relationship. C. tepidum FNR consists of two functional domains for binding FAD and NAD(P)H that form a homodimer in which the domains are arranged asymmetrically. One NAD(P)H domain is present as the open form, the other with the equivalent NAD(P)H domain as the relatively closed form. We used site-directed mutagenesis on the hinge region connecting the two domains in order to investigate the importance of the flexible hinge. The asymmetry of the NAD(P)H domain and the comparison with TrxR suggested that the hinge motion might be involved in pyridine nucleotide binding and binding of Fd. Surprisingly, the crystal structure revealed an additional C-terminal sub-domain that tethers one protomer and interacts with the other protomer by π-π stacking of Phe337 and the isoalloxazine ring of FAD. The position of this stacking Phe337 is almost identical with both of the conserved C-terminal Tyr residues of plant-type FNR and the active site dithiol of TrxR, implying a unique structural basis for enzymatic reaction of C. tepidum FNR.  相似文献   

6.
Working in tandem, two photosystems in the chloroplast thylakoid membranes produce a linear electron flow from H2O to NADP+. Final electron transfer from ferredoxin to NADP+ is accomplished by a flavoenzyme ferredoxin:NADP+ oxidoreductase (FNR). Here we describe TROL (t hylakoid r ho danese‐l ike protein), a nuclear‐encoded component of thylakoid membranes that is required for tethering of FNR and sustaining efficient linear electron flow (LEF) in vascular plants. TROL consists of two distinct modules; a centrally positioned rhodanese‐like domain and a C‐terminal hydrophobic FNR binding region. Analysis of Arabidopsis mutant lines indicates that, in the absence of TROL, relative electron transport rates at high‐light intensities are severely lowered accompanied with significant increase in non‐photochemical quenching (NPQ). Thus, TROL might represent a missing thylakoid membrane docking site for a complex between FNR, ferredoxin and NADP+. Such association might be necessary for maintaining photosynthetic redox poise and enhancement of the NPQ.  相似文献   

7.
Arabidopsis thaliana contains two photosynthetically competent chloroplast‐targeted ferredoxin‐NADP+ oxidoreductase (FNR) isoforms that are largely redundant in their function. Nevertheless, the FNR isoforms also display distinct molecular phenotypes, as only the FNR1 is able to directly bind to the thylakoid membrane. We report the consequences of depletion of FNR in the F1 (fnr1 × fnr2) and F2 (fnr1 fnr2) generation plants of the fnr1 and fnr2 single mutant crossings. The fnr1 × fnr2 plants, with a decreased total content of FNR, showed a small and pale green phenotype, accompanied with a marked downregulation of photosynthetic pigment‐protein complexes. Specifically, when compared with the wild type (WT), the quantum yield of photosystem II (PSII) electron transport was lower, non‐photochemical quenching (NPQ) was higher and the rate of P700+ re‐reduction was faster in the mutant plants. The slight over‐reduction of the plastoquinone pool detected in the mutants resulted in the adjustment of the reactive oxygen species (ROS) scavenging systems, as both the content and de‐epoxidation state of xanthophylls, as well as the content of α‐tocopherol, were higher in the leaves of the mutant plants when compared with the WT. The fnr1 fnr2 double mutant plants, which had no detectable FNR and possessed an extremely downregulated photosynthetic machinery, survived only when grown heterotrophically in the presence of sucrose. Intriguingly, the fnr1 fnr2 plants were still capable of sustaining the biogenesis of a few malformed chloroplasts.  相似文献   

8.
During the evolution of higher-plant root and leaf-type-specific Fd : FNR complexes from an original cyanobacterial type progenitor, rearrangement of molecular interaction has altered the relative orientation of prosthetic groups and there have been changes in complex induced conformational change. Selection has presumably worked on mutation of residues responsible for interaction between the two proteins, favoring optimized electron flow in a specific direction, and efficient dissociation following specific oxidation of leaf Fd and reduction of root Fd. Major changes appear to be: loss in both leaf and root complexes of a cyanobacterial mechanism that ensures Fd dissociation from the complex following change in Fd redox state, development of a structural rearrangement of Fd on binding to leaf FNR that results in a negative shift in Fd redox potential favorable to photosynthetic electron flow, creation of a vacant space in the root Fd:FNR complex that may allow access to the redox centers of other enzymes to ensure efficient channeling of heterotrophic reductant into bioassimilation. Further structural analysis is essential to establish how root type FNR distinguishes between Fd isoforms, and discover how residues not directly involved in intermolecular interactions may affect complex formation.  相似文献   

9.
10.
Discrimination of tRNAGln is an integral function of several bacterial glutamyl-tRNA synthetases (GluRS). The origin of the discrimination is thought to arise from unfavorable interactions between tRNAGln and the anticodon-binding domain of GluRS. From experiments on an anticodon-binding domain truncated Escherichia coli (E. coli) GluRS (catalytic domain) and a chimeric protein, constructed from the catalytic domain of E. coli GluRS and the anticodon-binding domain of E. coli glutaminyl-tRNA synthetase (GlnRS), we show that both proteins discriminate against E. coli tRNAGln. Our results demonstrate that in addition to the anticodon-binding domain, tRNAGln discriminatory elements may be present in the catalytic domain in E. coli GluRS as well.  相似文献   

11.
12.
《Biophysical journal》2022,121(2):300-308
Ferredoxin-NADP+ reductase (FNR) was previously inferred to bind to the cytochrome b6f complex in the electron transport chain of oxygenic photosynthesis. In the present study, this inference has been examined through analysis of the thermodynamics of the interaction between FNR and the b6f complex. Isothermal titration calorimetry (ITC) was used to characterize the physical interaction of FNR with b6f complex derived from two plant sources (Spinacia oleracea and Zea maize). ITC did not detect a significant interaction of FNR with the b6f complex in detergent solution nor with the complex reconstituted in liposomes. A previous inference of a small amplitude but defined FNR-b6f interaction is explained by FNR interaction with micelles of the undecyl β-D maltoside (UDM) detergent micelles used to purify b6f. Circular dichroism, employed to analyze the effect of detergent on the FNR structure, did not reveal significant changes in secondary or tertiary structures of FNR domains in the presence of UDM detergent. However, thermodynamic analysis implied a significant decrease in an interaction between the N-terminal FAD-binding and C-terminal NADP+-binding domains of FNR caused by detergent. The enthalpy, ΔHo, and the entropy, ΔSo, associated with FNR unfolding decreased four-fold in the presence of 1 mM UDM at pH 6.5. In addition to the conclusion regarding the absence of a binding interaction of significant amplitude between FNR and the b6f complex, these studies provide a precedent for consideration of significant background protein-detergent interactions in ITC analyses involving integral membrane proteins.  相似文献   

13.
14.
Two ferredoxin-dependent proteins, nitrite reductase and glutamate synthase, play a role in nitrate assimilation during the anaerobic germination of rice (Oryza sativa L.). This paper reports the expression of the root form of ferredoxin-NADP+ oxidoreductase (FNR), the protein responsible for providing reduced ferredoxin in rice coleoptiles. Using an antibody against FNR, a protein with the expected molecular mass for root FNR (35 kDa) was recognized by Western blot analysis in extracts from aerobic and anaerobic coleoptiles. The enzyme is synthesized de novo, as shown by immunoprecipitation of the radiolabeled 35-kDa protein from anaerobic seedlings grown in the presence of [35S]methionine. Northern blot analysis with specific probes for root and leaf FNR showed the presence of mRNA for the root form but not for the leaf form, in both aerobic and anaerobic rice coleoptiles. The inductive effect of exogenous nitrate on the expression of FNR is further evidence for the presence of the root type of FNR in rice coleoptiles. The importance of the expression of root FNR during the anaerobic development of rice seedlings is discussed. Received: 7 October 1996 / Accepted: 22 January 1997  相似文献   

15.
16.
FNR, the gene regulator of anaerobic respiratory genes of Escherichia coli is converted in vivo by O2 and by chelating agents to an inactive state. The interconversion process was studied in vivo in a strain with temperature controlled synthesis of FNR by measuring the expression of the frd (fumarate reductase) operon and the reactivity of FNR with the alkylating agent iodoacetic acid. FNR from aerobic bacteria is, after arresting FNR synthesis and shifting to anaerobic conditions, able to activate frd expression and behaves in the alkylation assay like anaerobic FNR. After shift from anaerobic to aerobic conditions, FNR no longer activates the expression of frd and reacts similar to aerobic FNR in the alkylation assay. The conversion of aerobic (inactive) to anaerobic (active) FNR occurs in the presence of chloramphenicol, an inhibitor of protein synthesis. Anaerobic FNR can also be converted post-translationally to inactive, metal-depleted FNR by growing the bacteria in the presence of chelating agents. The reverse is also possible by incubating metal-depleted bacteria with Fe2+. From the experiments it is concluded that the aerobic and the metal-depleted form of FNR can be transferred post-translationally and reversibly to the anaerobic (active) form. The response of FNR to changes in O2 supply therefore occurs at the FNR protein level in a reversible mode.Abbreviation BVred = reduced benzyl viologen  相似文献   

17.
The effect of a short-term increase in growth irradiance (I) by 1.5–5 times on the rate of the photosynthetic electron transport and the activity of ferredoxin-NADP+oxidoreductase (FNR) in the leaves of broadbean (Vicia fabaL.) plants grown under an irradiance of 8 W/m2was studied. NADPH-diaphorase and cytochrome creductase activities of FNR were determined in isolated chloroplasts and leaf homogenates. The duration of the plant exposure to a higher I varied from 1–30 min to 2 or 24 h. The rate of noncyclic electron transport from water to NADP+and the NADPH-diaphorase activity of FNR increased significantly 15 min after a twofold increase in the I. FNR activation was also found after a short-term (1 min) increase in growth I by 1.5 times. The degree of light-induced activation of FNR was dependent on the light intensity, the duration of plant exposure, and the leaf age. The activation of FNR induced by a short-term increase in the I was reversible. However, inactivation of FNR proceeded more slowly than its light-induced activation. Thus, a relatively small change in the I was sufficient to induce the adaptive response of the photosynthetic apparatus at the level of the electron-transport chain. The results obtained confirm a conclusion made previously that a rapid activation of FNR induced by an increase in the I occurs in the absence of de novoprotein synthesis.  相似文献   

18.
Pini Marco  Tamar Elman  Iftach Yacoby 《BBA》2019,1860(9):689-698
The binding of FNR to PSI has been postulated long ago, however, a clear evidence is still missing. In this work, using isothermal titration calorimetry (ITC), we found that FNR binds to photosystem I with its light harvesting complex I (PSI-LHCI) from C. reinhardtii with a 1:1 stoichiometry, a Kd of ~0.8 μM and ?H of ?20.7 kcal/mol. Titrations at different temperatures were used to determine the heat capacity change, ?CP, of the binding, through which the size of the interface area between the proteins was assessed as ~3000 Å2. In a different set of ITC experiments, introduction of various sucrose concentrations was used to estimate that ~95 water molecules are released to the solvent. These observations support the notion of a binding site shared by few of the photosystem I - light harvesting complex I (PSI-LHCI) subunits in addition to PsaE. Based on these results, a hypothetical model was built for the binding site of FNR at PSI, using known crystallographic structures of: cyanobacterial PSI in complex with ferredoxin (Fd), plant PSI-LHCI and Fd:FNR complex from cyanobacteria. FNR binding site location is proposed to be at the foot of the stromal ridge and above the inner LHCI belt. It is expected to form contacts with PsaE, PsaB, PsaF and at least one of the LHCI. In addition, a ~4.5-fold increased affinity between FNR and PSI-LHCI under crowded 1 M sucrose environment led us to conclude that in C. reinhardtii FNR also functions as a subunit of PSI-LHCI.  相似文献   

19.
20.
Elevated levels of p130Cas (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1 gene) are associated with aggressiveness of breast tumors. Following phosphorylation of its substrate domain, p130Cas promotes the integration of protein complexes involved in multiple signaling pathways and mediates cell proliferation, adhesion, and migration. In addition to the known BCAR1-1A (wild-type) and 1C variants, we identified four novel BCAR1 mRNA variants, generated by alternative first exon usage (1B, 1B1, 1D, and 1E). Exons 1A and 1C encode for four amino acids (aa), whereas 1D and 1E encode for 22 aa and 1B1 encodes for 50 aa. Exon 1B is non-coding, resulting in a truncated p130Cas protein (Cas1B). BCAR1-1A, 1B1, and variant 1C mRNAs were ubiquitously expressed in cell lines and a survey of human tissues, whereas 1B, 1D, and 1E expression was more restricted. Reconstitution of all isoforms except for 1B in p130Cas-deficient murine fibroblasts induced lamellipodia formation and membrane ruffling, which was unrelated to the substrate domain phosphorylation status. The longer isoforms exhibited increased binding to focal adhesion kinase (FAK), a molecule important for migration and adhesion. The shorter 1B isoform exhibited diminished FAK binding activity and significantly reduced migration and invasion. In contrast, the longest variant 1B1 established the most efficient FAK binding and greatly enhanced migration. Our results indicate that the p130Cas exon 1 variants display altered functional properties. The truncated variant 1B and the longer isoform 1B1 may contribute to the diverse effects of p130Cas on cell biology and therefore will be the target of future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号