首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Process Biochemistry》2010,45(7):1172-1175
Dried papaya peels exhibited superior proteolytic activity to the fresh peels. An extraction with phosphate buffer pH 7.0 greatly maintained proteolytic activity when compared to water. SDS-PAGE verified that the extracted dried papaya peels held a wide range of proteins. To optimize the three-phase partitioning (TPP) for isolating the papaya peel proteases required a ratio of crude extract to t-butanol, the (NH4)2SO4 concentration and the TPP cycles. The ratio of the crude extract to t-butanol of 1.0:0.5 with the presence of 20% (NH4)2SO4 resulted in the highest proteolytic recovery at 253.5%, and 15.8-fold of purification in the bottom phase. The TPP was then optimized by adding up to 55% (NH4)2SO4 to the bottom phase of the first step. A purification of 10.1-fold with about 89.4% recovery was obtained. This study showed the TPP can be effectively employed for the extraction of proteases from papaya peels.  相似文献   

2.
Three phase partitioning (TPP) is most renowned technique used for extraction and purification of natural products. In previous studies of TPP, t-butanol is mainly used as an organic phase. This is the first report that explores ability of dimethyl carbonate (DMC) in the field of TPP as an alternate solvent for t-butanol. In the present study TPP process with t-butanol and DMC as organic phase along with different salts was applied to waste bitter gourd powder to obtained peroxidase enzyme. DMC was found to be compatible with most of salts such as ammonium sulphate and sodium citrate and explored as more efficient solvent than t-butanol. This TPP system provides 4.84 fold purity of peroxidase enzyme at optimum source concentration of 0.15 g/mL, with a system comprising DMC as organic phase, sodium citrate (20%) as salt, agitation speed 120 rpm, pH 7, temperature 30 °C and extraction time of 3 h. Present study has aimed for extraction and separation of peroxidase from bitter gourd waste with TPP technique and ensures the scope of carbonated solvents in extraction and purification of proteins.  相似文献   

3.
Three-phase partitioning (TPP) is carried out by mixing ammonium sulfate and t-butanol to obtain organic phase, interfacial precipitate and aqueous phase. It is shown that TPP of an 8 M urea/100 mM dithiothreitol-denatured xylanase preparation resulted in simultaneous renaturation and purification. This integrated novel approach gave recovery of 93% enzyme activity with 21-fold purification. The implications of this in the context of recovering activity from inclusion bodies are discussed.  相似文献   

4.
Simple, attractive and versatile technique, three-phase partitioning (TPP) was used to purify α-galactosidase from fermented media of Aspergillus oryzae. The various conditions required for attaining efficient purification of the α-galactosidase fractions were optimized. The addition of n-butanol, t-butanol, and isopropanol in the presence of ammonium sulfate pushes the protein out of the solution to form an interfacial precipitate layer between the lower aqueous and upper organic layers. The single step of three-phase partitioning, by saturating final concentration of ammonium sulfate (60%) with 1:1 t-butanol, gave activity recovery of 92% with 12-fold purification at second phase of TPP. The final purified enzyme after TPP showed considerable purification on SDS-PAGE with a molecular weight of 64 kDa. The enzyme after TPP showed improved activity in organic solvents. Results are compared with conventional established processes for the purification of α-galactosidase produced by Aspergillus oryzae and overall the proposed TPP technique resulted in 70% reduction of purification cost compared to conventional chromatographic protocols.  相似文献   

5.
6.
Three-phase partitioning (TPP), a technique used in protein purification, was used to purify invertase from tomato (Lycopersicon esculentum). The method consists of simultaneous addition of ammonium sulfate and t-butanol to the crude enzyme extract in order to obtain the three phases. Different parameters (ammonium sulfate saturation, crude extract to t-butanol ratio and pH) essential for the extraction and purification of invertase were optimized to get highest purity fold and yield. It was seen that, 50% (w/v) ammonium sulfate saturation with 1:1 (v/v) ratio of crude extract to t-butanol at pH 4.5 gave 8.6-fold purification with 190% activity recovery of invertase in a single step. Finally, the purified enzyme was also characterized and the general biochemical properties were determined. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of enzyme showed considerable purification and its molecular weight was nearly found to be as 20 kDa. This work shows that, TPP is a simple, quick and economical technique for purification of invertases.  相似文献   

7.
Alkaline phosphatase from chicken intestine was purified from the crude preparation employing three-phase partitioning and by the use of phenyl Sepharose-6B in the batch mode. TPP uses a combination of ammonium sulphate and t-butanol to precipitate proteins from crude aqueous extracts. The precipitated protein forms interface between lower aqueous phase and upper organic solvent phase. The fold purification of the finally purified enzyme was 80 and the activity recovery was 61%. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of enzyme showed considerable purification and its molecular weight was found to be around 67 kDa.  相似文献   

8.
Turkey pancreatic phospholipase (TPP) has been purified from delipidated pancreases. The purification included ammonium sulfate fractionation, acidic (pH 5) treatment, followed by sequencial column chromatographies on DEAE-cellulose, Sephadex G-75, and reverse phase high pressure liquid chromatography. The purified enzyme was found to be a monomeric protein with molecular mass of 14 kDa. The optimal activity was measured at pH 8 and 37°C using egg yolk emulsion as substrate. Our results show that the enzyme (TPP) was not stable for 1 h at 60°C, and that bile salt and Ca2+ were required for the expression of the purified enzyme. The sequence of the N-terminal amino acids of the purified enzyme shows a very close similarity between TPP and all other known pancreatic phospholipases.  相似文献   

9.
Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase ( PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t‐butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0‐40% (w/v), extract to t‐butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0‐40% (w/v), crude extract to t‐butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26‐36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1340–1347, 2015  相似文献   

10.
《Process Biochemistry》2007,42(3):491-495
The technique of three-phase partitioning (TPP) was used to purify a bifunctional amylase/protease inhibitor from ragi (Eleusine coracana). This process of purification is a potential method used for separation of proteins directly from large volumes of crude suspension. It involves the addition of a salt (ammonium sulphate) to the crude extract followed by the addition of an organic solvent (t-butanol). The addition of t-butanol, in the presence of ammonium sulphate pushes the protein out of the solution to form an interfacial precipitate layer between the lower aqueous and upper organic layers. The process was carried out in two steps. The various conditions required for attaining efficient purification of the protein fractions were optimized. It was seen that 30% ammonium sulphate saturation with 1:1 ratio of crude extract to tert-butanol gave 8.9- and 8.65-fold purification with 83% and 80% yield of amylase inhibitor and trypsin inhibitor, respectively, in step I. In TPP-step II, 60% ammonium sulphate saturation and ratio of aqueous phase to t-butanol of 1:2 gave maximum 20.1- and 16-fold purification with 39.5% and 32% yield of amylase inhibitor and trypsin inhibitor, respectively. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the inhibitor protein showed substantial purification and the molecular weight of the protein was found to be 14 kDa.  相似文献   

11.
Turkey pancreatic phospholipase (TPP) has been purified from delipidated pancreases. The purification included ammonium sulfate fractionation, acidic (pH 5) treatment, followed by sequencial column chromatographies on DEAE-cellulose, Sephadex G-75, and reverse phase high pressure liquid chromatography. The purified enzyme was found to be a monomeric protein with molecular mass of 14 kDa. The optimal activity was measured at pH 8 and 37 degrees C using egg yolk emulsion as substrate. Our results show that the enzyme (TPP) was not stable for 1 h at 60 degrees C, and that bile salt and Ca2+ were required for the expression of the purified enzyme. The sequence of the N-terminal amino acids of the purified enzyme shows a very close similarity between TPP and all other known pancreatic phospholipases.  相似文献   

12.
Tripeptidyl-peptidase II (TPP II) is a subtilisin-like serine protease which forms a large enzyme complex (> 4 MDa). It is considered a potential drug target due to its involvement in specific physiological processes. However, information is scarce concerning the kinetic characteristics of TPP II and its active site features, which are important for design of efficient inhibitors. To amend this, we probed the active site by determining the pH dependence of TPP II catalysis. Access to pure enzyme is a prerequisite for kinetic investigations and herein we introduce the first efficient purification system for heterologously expressed mammalian TPP II. The pH dependence of kinetic parameters for hydrolysis of two different chromogenic substrates, Ala-Ala-Phe-pNA and Ala-Ala-Ala-pNA, was determined for murine, human and Drosophila melanogaster TPP II as well as mutant variants thereof. The investigation demonstrated that TPP II, in contrast to subtilisin, has a bell-shaped pH dependence of kcatapp/KM probably due to deprotonation of the N-terminal amino group of the substrate at higher pH. Since both the KM and kcatapp are lower for cleavage of AAA-pNA than for AAF-pNA we propose that the former can bind non-productively to the active site of the enzyme, a phenomenon previously observed with some substrates for subtilisin. Two mutant variants, H267A and D387G, showed bell-shaped pH-dependence of kcatapp, possibly due to an impaired protonation of the leaving group. This work reveals previously unknown differences between TPP II orthologues and subtilisin as well as features that might be conserved within the entire family of subtilisin-like serine peptidases.  相似文献   

13.
Muscle, hemolymph and hepatopancreas transketolase activities and their thiamin pyrophosphate (TPP) effects were assessed for their potential to determine the thiamin status of juvenile Penaeus monodon after a 9-week feeding trial. Transketolase activity increased in response to increasing thiamin supplementation, while TPP effects decreased with increasing dietary thiamin levels. The TPP effect showed a significant increment when the dietary thiamin was reduced from 20 mg/kg diet to no supplement. Thiamin requirement assessed by TPP effect as the criterion was lower than that by transketolase activity; the thiamin requirement estimated by the TPP effect of the muscle (13.3 mg/kg) and hemolymph (18.3 mg/kg) was similar to that of the growth results (12.9 mg/km). These data suggest that, like vertebrates, measurement of the TPP effect in the tissues of the marine crustacean is a more sensitive indicator of thiamin status than measurement of transketolase activity. Among all criteria examined, the hemolymph TPP effect was the most sensitive and specific indicator of thiamin status.  相似文献   

14.
Tripeptidyl-peptidase II (TPP II) is a cytosolic peptidase that has been implicated in fat formation and cancer, apparently independent of the enzymatic activity. In search for alternative functional regions, conserved motifs were identified and eleven signatures were constructed. Seven of the signatures covered previously investigated residues, whereas the functional importance of the other motifs is unknown. This provides directions for future investigations of alternative activities of TPP II. The obtained signatures provide an efficient bioinformatic tool for the identification of TPP II homologues. Hence, a TPP II sequence homologue from fission yeast, Schizosaccharomyces pombe, was identified and demonstrated to encode the TPP II-like protein previously reported as multicorn. Furthermore, an homologous protein was found in the prokaryote Blastopirellula marina, albeit the TPP II function was apparently not conserved. This gene is probably the result of a rare gene transfer from eukaryote to prokaryote.  相似文献   

15.
The classical late infantile neuronal ceroid lipofuscinosis (LINCLs) is an autosomal recessive disease, where the defective gene is Cln2, encoding tripeptidyl-peptidase I (TPP1). At the molecular level, LINCL is caused by accumulation of autofluorescent storage materials in neurons and other cell types. Currently, there is no established treatment for this fatal disease. This study reveals a novel use of gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, in up-regulating TPP1 in brain cells. Both gemfibrozil and fenofibrate up-regulated mRNA, protein, and enzymatic activity of TPP1 in primary mouse neurons and astrocytes as well as human astrocytes and neuronal cells. Because gemfibrozil and fenofibrate are known to activate peroxisome proliferator-activated receptor-α (PPARα), the role of PPARα in gemfibrozil- and fenofibrate-mediated up-regulation of TPP1 was investigated revealing that both drugs up-regulated TPP1 mRNA, protein, and enzymatic activity both in vitro and in vivo in wild type (WT) and PPARβ−/−, but not PPARα−/−, mice. In an attempt to delineate the mechanism of TPP1 up-regulation, it was found that the effects of the fibrate drugs were abrogated in the absence of retinoid X receptor-α (RXRα), a molecule known to form a heterodimer with PPARα. Accordingly, all-trans-retinoic acid, alone or together with gemfibrozil, up-regulated TPP1. Co-immunoprecipitation and ChIP studies revealed the formation of a PPARα/RXRα heterodimer and binding of the heterodimer to an RXR-binding site on the Cln2 promoter. Together, this study demonstrates a unique mechanism for the up-regulation of TPP1 by fibrate drugs via PPARα/RXRα pathway.  相似文献   

16.
Tripeptidyl-peptidase 1 (TPP1) null or residual activity occurs in neuronal ceroid lipofuscinosis (NCL) with underlying TPP1/CLN2 mutations. A survey of 25 South American CLN2 affected individuals enabled the differentiation of two phenotypes: classical late-infantile and variant juvenile, each in approximately 50% of patients, with residual TPP1 activity occurring in approximately 32%. Each individual was assigned to one of three subgroups: (I) n = 11, null TPP1 activity in leukocytes; (II) n = 8, residual TPP1 activity of 0.60–15.85 nmol/h/mg (nr 110–476); (III) n = 6, activity not measured in leukocytes. Curvilinear bodies (CB) appeared in almost all studied CLN2 subjects; the only exceptions occurred in cases of subgroup II: two individuals had combined CBs/fingerprints (FPs), and one case had pure FPs. There were 15 mutations (4 first published in this paper, 3 previously observed in South America by our group, and 8 previously observed by others). In subgroup I, mutations were either missense or nonsense; in subgroups II and III, mutations prevailed at the non-conserved intronic site, c.887 − 10A>G (intron 7), and to a lesser extent at c.89 + 5G>C (intron 2), in heterozygous combinations. Grouping phenotypically and genetically known individuals on the basis of TPP1 activity supported the concept that residual enzyme activity underlies a protracted disease course. The prevalence of intronic mutations at non-conserved sites in subgroup II individuals indicates that some alternative splicing might allow some residual TPP1 activity.  相似文献   

17.
Three phase partitioning, a technique described for protein purification, has been employed for precipitation and purification of three different commercial preparations of alginates. Three phase partitioning works by the addition of t-butanol to aqueous solution of the polymer containing 20–30% ammonium sulphate (w/v). Three phases formed are: upper t-butanol layer, interfacial polymer precipitate and lower aqueous phase. In all the three cases, the process optimization was carried out by varying ammonium sulphate concentration, volume of t-butanol, alginate concentration and temperature. Fluorescence spectroscopy was used to show that repeated cycles of TPP also resulted in considerable reduction in polyphenol content of a crude alginate preparation.  相似文献   

18.
The aim of this study was to isolate and characterize a trehalose‐synthesizing enzyme from Euglena gracilis Klebs. After purification by anion exchange chromatography, gel filtration, isoelectric focusing, and native electrophoresis, trehalose‐6‐phosphate synthase (TPS, EC 2.4.1.15) and trehalose‐6‐phosphate phosphatase (TPP, EC 3.1.3.12) activities could not be separated. Consequently, a TPS/TPP enzyme complex of about 250 kDa was suggested as responsible for trehalose synthesis in E. gracilis. The TPS activity was shown to be highly specific for glucose‐6‐P, and UDP‐Glc was the preferred glucose donor, but GDP‐Glc and CDP‐Glc could also act as TPS substrates. The TPP activity was highly specific for trehalose‐6‐P. In vitro phosphorylation assays revealed rapid decreases in TPS and TPP activities. These changes corresponded to variations in the elution profile of gel filtration chromatography after the phosphorylation treatment. Taken together, these results suggest that the proposed TPS/TPP complex might be regulated through a protein phosphorylation/dephosphorylation‐mediated mechanism that could affect the association state of the complex. Such a regulatory mechanism might lead to a rapid change in trehalose synthesis in response to variations in environmental conditions.  相似文献   

19.
The production isolation and purification of a yellow mycotoxin fromPenicillium citreoviride NRRL 2579 in different culture media was described. When injected subcutaneously to albino rats it alters the kinetic pattern of transketolase (EC 2.2.1.1) in liver in vivo in a competitive manner. In vitro, the inhibition is noncompetitive in nature. However, addition of thiamine diphosphate (TPP) to the m vitro system relieved the inhibitory effect. These findings suggested a relationship between citreoviridininduced beriberi and the probable antithiamine effect of the toxin.  相似文献   

20.
The trehalose biosynthesis pathway has recently received attention for therapeutic intervention combating infectious diseases caused by bacteria, helminths or fungi. Trehalose-6-phosphate phosphatase (TPP) is a key enzyme of the most common trehalose biosynthesis pathway and a particularly attractive target owing to the toxicity of accumulated trehalose-6-phosphate in pathogens.Here, we characterised TPP-like proteins from bacterial pathogens implicated in nosocomial infections in terms of their steady-state kinetics as well as pH- and metal-dependency of their enzymatic activity. Analysis of the steady-state kinetics of recombinantly expressed enzymes from Acinetobacter baumannii, Corynebacterium diphtheriae and Pseudomonas stutzeri yielded similar kinetic parameters as those of other reported bacterial TPPs. In contrast to nematode TPPs, the divalent metal ion appears to be bound only weakly in the active site of bacterial TPPs, allowing the exchange of the resident magnesium ion with other metal ions. Enzymatic activity comparable to the wild-type enzyme was observed for the TPP from P. stutzeri with manganese, cobalt and nickel. Analysis of the enzymatic activity of S. maltophilia TPP active site mutants provides evidence for the involvement of four canonical aspartate residues as well as a strictly conserved histidine residue of TPP-like proteins from bacteria in the enzyme mechanism. That histidine residue is a member of an interconnected network of five conserved residues in the active site of bacterial TPPs which likely constitute one or more functional units, directly or indirectly cooperating to enhance different aspects of the catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号