首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BopE is a type III secreted protein from Burkholderia pseudomallei, the aetiological agent of melioidosis. Like its Salmonella homologues SopE and SopE2, BopE is a guanine nucleotide exchange factor for Rho GTPases. It is thought that, in order to be secreted by the type III system, proteins must be unfolded or only partially folded. As part of a study of B. pseudomallei virulence proteins, we have expressed, purified and characterized the catalytic domain of BopE (amino acids 78-261). Analytical ultracentrifugation experiments in conjunction with analytical size exclusion chromatography show that BopE(78-261) is monomeric in aqueous solution. CD spectroscopy indicates that the protein is predominantly alpha-helical, with predicted secondary structure composition of 59% alpha-helix and 7% beta-strand. NMR spectroscopy confirms that BopE(78-261) adopts a single, stable conformation. In differential scanning calorimetry experiments, thermal denaturation of BopE(78-261) (T(m) 52 degrees C) is reversible. Also, the secondary structure composition of BopE(78-261) changes little over a range of pH values from 3.5 to 10.5. BopE may therefore fold spontaneously to a functional form upon secretion into the host cell cytoplasm, and retains a native or native-like fold in varied environments. These properties are likely to be advantageous for a secreted bacterial effector protein.  相似文献   

2.
We report the characterization of BopE, a type III secreted protein that is encoded adjacent to the Burkholderia pseudomallei bsa locus and is homologous to Salmonella enterica SopE/SopE2. Inactivation of bopE impaired bacterial entry into HeLa cells, indicating that BopE facilitates invasion. Consistent with this notion, BopE expressed in eukaryotic cells induced rearrangements in the subcortical actin cytoskeleton, and purified BopE exhibited guanine nucleotide exchange factor activity for Cdc42 and Rac1 in vitro.  相似文献   

3.
Burkholderia thailandensis is a close relative of Burkholderia pseudomallei. These organisms are very similar, but B. thailandensis is far less virulent than B. pseudomallei. Nucleotide sequencing and analysis of 14 B. thailandensis isolates revealed variation in the regions coding for the type III secreted BipD protein. The degree of B. thailandensis BipD sequence variation was greater than that found in B. pseudomallei. Western blot analysis indicated that, unlike B. pseudomallei, B. thailandensis type III secreted proteins including BipD and BopE could not be detected in the supernatant of culture medium unless induced by acidic conditions. In addition, culturing B. thailandensis under acidic growth conditions (pH 4.5) can induce the ability of this bacterium to invade human respiratory epithelial cells A549. The identification of an environmental stimulus that increases the invasion capability of B. thailandensis invasion is of value for those who would like to use this bacterium as a model to study B. pseudomallei virulence.  相似文献   

4.
5.
Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative saprophytic bacterium capable of surviving within phagocytic cells. To assess the role of BopC (a type III secreted effector protein) in the pathogenesis of B. pseudomallei, a B. pseudomallei bopC mutant was used to infect J774A.1 macrophage-like cells. The bopC mutant showed significantly reduced intracellular survival in infected macrophages compared to wild-type B. pseudomallei. In addition, the bopC mutant displayed delayed escape from endocytic vesicles compared with the wild-type strain. This indicates that BopC is important, and at least in part, needed for intracellular survival of B. pseudomallei.  相似文献   

6.
Enteropathogenic and enterohaemorrhagic Escherichia coli express a cell cycle-inhibiting factor (Cif), that is injected into host cells via a Type III secretion system (T3SS) leading to arrest of cell division, delayed apoptosis and cytoskeletal rearrangements. A homologue of Cif has been identified in Burkholderia pseudomallei (CHBP; Cif homologue in B. pseudomallei; BPSS1385), which shares catalytic activity, but its prevalence, secretion and function are ill-defined. Among 43 available B. pseudomallei genome sequences, 33 genomes (76.7%) harbor the gene encoding CHBP. Western blot analysis using antiserum raised to a synthetic CHBP peptide detected CHBP in 46.6% (7/15) of clinical B. pseudomallei isolates from the endemic area. Secretion of CHBP into bacterial culture supernatant could not be detected under conditions where a known effector (BopE) was secreted in a manner dependent on the Bsa T3SS. In contrast, CHBP could be detected in U937 cells infected with B. pseudomallei by immunofluorescence microscopy and Western blotting in a manner dependent on bsaQ. Unlike E. coli Cif, CHBP was localized within the cytoplasm of B. pseudomallei-infected cells. A B. pseudomallei chbP insertion mutant showed a significant reduction in cytotoxicity and plaque formation compared to the wild-type strain that could be restored by plasmid-mediated trans-complementation. However, there was no defect in actin-based motility or multinucleated giant cell formation by the chbP mutant. The data suggest that the level or timing of CHBP secretion differs from a known Bsa-secreted effector and that CHBP is required for selected virulence-associated phenotypes in vitro.  相似文献   

7.
Type III secreted Sop protein effectors are delivered into target eukaryotic cells and elicit cellular responses underlying Salmonella pathogenicity. In this work, we have identified another secreted protein, SopE2, and showed that SopE2 is an important invasion-associated effector. SopE2 is encoded by the sopE2 gene which is present and conserved in pathogenic strains of Salmonella. SopE2 is highly homologous to SopE, a protein encoded by a gene within a temperate bacteriophage and present in only some pathogenic strains.  相似文献   

8.
Burkholderia pseudomallei, an infectious Gram-negative bacterium, is the causative pathogen of melioidosis. In the present study, a B. pseudomallei strain with mutation in the bsaQ gene, encoding a structural component of the type III secretion system (T3SS), was constructed. This bsaQ mutation caused a marked decrease in secretion of BopE effector and BipD translocator proteins into culture supernatant. The B. pseudomallei bsaQ mutant also exhibited decreased efficiencies of plaque formation, invasion into non-phagocytic cells and multinucleated giant cell (MNGC) development in a J774A.1 macrophage cell line. Co-localization of the bacteria and lysosome-associated membrane glycoprotein-1 (LAMP-1) containing vesicles suggested that defects in MNGC formation may result from the delayed ability of this B. pseudomallei mutant to escape from the vacuoles of macrophages. Veerachat Muangsombut and Supaporn Suparak contributed equally to this work.  相似文献   

9.
The predominant collagenous protein secreted during the attachment of freshly trypsinized human foreskin fibroblasts was found to be Type I procollagen. Evidence is presented that both the α1 and α2 chains exhibit a 3-hydroxyproline/4-hydroxyproline ratio 4–5 fold higher than that of normal Type I collagen. These findings suggest that caution should be exercised in assigning an observed increase in the 3-hydroxyproline/4-hydroxyproline ratio to the synthesis of a basement membrane type collagen.  相似文献   

10.
The medaka fish α-amylase was expressed and purified. The expression systems were constructed using methylotrophic yeast Pichia pastoris, and the recombinant proteins were secreted into the culture medium. Purified recombinant α-amylase exhibited starch hydrolysis activity. The optimal pH, denaturation temperature, and KM and Vmax values were determined; chloride ions were essential for enzyme activity. The purified protein was also crystallized and examined by X-ray crystallography. The structure has the (α/β)8 barrel fold, as do other known α-amylases, and the overall structure is very similar to the structure of vertebrate (human and pig) α-amylases. A novel expression plasmid was developed. Using this plasmid, high-throughput construction of an expression system by homologous recombination in P. pastoris cells, previously reported for membrane proteins, was successfully applied to the secretory protein.  相似文献   

11.
The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1β secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1β, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1-dependent and -independent cell death mechanisms in the pathogenesis of B. pseudomallei infection.  相似文献   

12.
In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV–vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200 μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal–HSA interactions; while the binding affinity (Ka) of Au(III)–HSA binding was around 3.87 × 105 M−1, it was around 9.68 × 103 M−1 for Ga(III)–HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions.  相似文献   

13.
Solutions of native Type III collagen (chain composition, [α1(III)]3) exhibit a rapid and dramatic decrease in relative viscosity when incubated with trypsin. Cleavage products of the reaction were precipitated with ammonium sulfate and isolated in denatured form by molecular sieve chromatography. They were found to be comprised of: α1(III)-T1 (molecular weight, 71,000) derived from the NH2-terminal portion of the Type III molecule; and α1(III)-T2 (molecular weight, 24,000) from the COOH-terminal portion of the molecule. Determination of the amino acid sequence at the NH2-terminal portion of α1(III)-T2 as well as at the COOH-terminus of α(III)-T1 demonstrated that the products arose from specific cleavage of the type III molecule at an arginine-glycine bond corresponding to residues 780–781 in the repetitive triplet sequence of the α1(III) chain. The results suggest that the trypsin-susceptible bond in the native Type III collagen molecule resides in a region characterized by a relative lack of the normal collagen helicity.  相似文献   

14.
15.
High-quality NMR structures of the C-terminal domain comprising residues 484–537 of the 537-residue protein Bacterial chlorophyll subunit B (BchB) from Chlorobium tepidum and residues 9–61 of 61-residue Asr4154 from Nostoc sp. (strain PCC 7120) exhibit a mixed α/β fold comprised of three α-helices and a small β-sheet packed against second α-helix. These two proteins share 29 % sequence similarity and their structures are globally quite similar. The structures of BchB(484–537) and Asr4154(9–61) are the first representative structures for the large protein family (Pfam) PF08369, a family of unknown function currently containing 610 members in bacteria and eukaryotes. Furthermore, BchB(484–537) complements the structural coverage of the dark-operating protochlorophyllide oxidoreductase.  相似文献   

16.
Type III secretion systems (TTSS) are virulence-associated components of many gram-negative bacteria that translocate bacterial proteins directly from the bacterial cytoplasm into the host cell. The Salmonella translocated effector protein SopE has no consensus cleavable amino-terminal secretion sequence, and the mechanism leading to its secretion through the Salmonella pathogenicity island 1 (SPI-1) TTSS is still not fully understood. There is evidence from other bacteria which suggests that the TTSS signal may reside within the 5' untranslated region (UTR) of the mRNA of secreted effectors. We investigated the role of the 5' UTR in the SPI-1 TTSS-mediated secretion of SopE using promoter fusions and obtained data indicating that the mRNA sequence is not involved in the secretion process. To clarify the proteinaceous versus RNA nature of the signal, we constructed frameshift mutations in the amino-terminal region of SopE of Salmonella enterica serovar Typhimurium SL1344. Only constructs with the native amino acid sequence were secreted, highlighting the importance of the amino acid sequence versus the mRNA sequence for secretion. Additionally, we obtained frameshift mutation data suggesting that the first 15 amino acids are important for secretion of SopE independent of the presence of the chaperone binding site. These data shed light on the nature of the signal for SopE secretion and highlight the importance of the amino-terminal amino acids for correct targeting and secretion of SopE via the SPI-1-encoded TTSS during host cell invasion.  相似文献   

17.
18.
Neutrophils play a key role in the control of Burkholderia pseudomallei, the pathogen that causes melioidosis. Here, we show that survival of intracellular B. pseudomallei was significantly increased in the presence of 3-methyladenine or lysosomal cathepsin inhibitors. The LC3-flux was increased in B. pseudomallei-infected neutrophils. Concordant with this result, confocal microscopy analyses using anti-LC3 antibodies revealed that B. pseudomallei-containing phagosomes partially overlapped with LC3-positive signal at 3 and 6 h postinfection. Electron microscopic analyses of B. pseudomallei-infected neutrophils at 3 h revealed B. pseudomallei-containing phagosomes that occasionally fused with phagophores or autophagosomes. Following infection with a B. pseudomallei mutant lacking the Burkholderia secretion apparatus Bsa Type III secretion system, neither this characteristic structure nor bacterial escape into the cytosol were observed. These findings indicate that human neutrophils are able to recruit autophagic machinery adjacent to B. pseudomallei-containing phagosomes in a Type III secretion system-dependent manner.  相似文献   

19.
Burkholderia pseudomallei, the cause of the severe disease melioidosis in humans and animals, is a gram-negative saprophyte living in soil and water of areas of endemicity such as tropical northern Australia and Southeast Asia. Infection occurs mainly by contact with wet contaminated soil. The environmental distribution of B. pseudomallei in northern Australia is still unclear. We developed and evaluated a direct soil B. pseudomallei DNA detection method based on the recently published real-time PCR targeting the B. pseudomallei type III secretion system. The method was evaluated by inoculating different soil types with B. pseudomallei dilution series and by comparing B. pseudomallei detection rate with culture-based detection rate for 104 randomly collected soil samples from the Darwin rural area in northern Australia. We found that direct soil B. pseudomallei DNA detection not only was substantially faster than culture but also proved to be more sensitive with no evident false-positive results. This assay provides a new tool to detect B. pseudomallei in soil samples in a fast and highly sensitive and specific manner and is applicable for large-scale B. pseudomallei environmental screening studies or in outbreak situations. Furthermore, analysis of the 104 collected soil samples revealed a significant association between B. pseudomallei-positive sites and the presence of animals at these locations and also with moist, reddish brown-to-reddish gray soils.  相似文献   

20.
Type IV pili are surface-exposed filaments and bacterial virulence factors, represented by the Tfpa and Tfpb types, which assemble via specific machineries. The Tfpb group is further divided into seven variants, linked to heterogeneity in the assembly machineries. Here we focus on PilO2Bp, a protein component of the Tfpb R64 thin pilus variant assembly machinery from the pathogen Burkholderia pseudomallei. PilO2Bp belongs to the PF06864 Pfam family, for which an improved definition is presented based on newly derived Hidden Markov Model (HMM) profiles. The 3D structure of the N-terminal domain of PilO2Bp (N-PilO2Bp), here reported, is the first structural representative of the PF06864 family. N-PilO2Bp presents an actin-like ATPase fold that is shown to be present in BfpC, a different variant assembly protein; the new HMM profiles classify BfpC as a PF06864 member. Our results provide structural insight into the PF06864 family and on the Type IV pili assembly machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号