首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Packaging of genetic material inside a capsid is one of the major processes in the lifecycle of bacteriophages. To establish the basic principles of packing double-stranded DNA into a phage, we present a low-resolution model of bacteriophage varphi29 and report simulations of DNA packaging. The simulations show excellent agreement with available experimental data, including the forces of packaging and the average structures seen in cryo-electron microscopy. The conformation of DNA inside the bacteriophage is primarily determined by the shape of the capsid and the elastic properties of DNA, but the energetics of packaging are dominated by electrostatic repulsions and the large entropic penalty associated with DNA confinement. In this slightly elongated capsid, the DNA assumes a folded toroidal conformation, rather than a coaxial spool. The model can be used to study packaging of other bacteriophages with different shapes under a range of environmental conditions.  相似文献   

2.
The structure of bacteriophage epsilon15 has recently been determined by 3D reconstruction of single particle cryo-electron microscopy images. Although this study revealed that the viral genome inside the bacteriophage is on average coaxially spooled, individual DNA conformations inside the capsid could not be determined. In the current study, we present the results of 40 independent simulations of DNA packaging into epsilon15 using the previously described low-resolution model for bacteriophages. In addition to coaxially spooled conformations, we also observe a number of folded-toroidal patterns, but the density averaged over all conformations closely resembles the experimental density. Thermodynamic analysis of the simulations predicts that a force of approximately 125 pN would be required to package DNA into epsilon15. We also show that the origin of this force is predominantly due to electrostatic and entropic contributions. However, the DNA conformation is determined primarily by the need to minimize the DNA bending energy.  相似文献   

3.
Small, icosahedral double-stranded DNA bacteriophage pack their genomes tightly into preformed protein capsids using an ATP-driven motor. Coarse-grain molecular-mechanics models provide a detailed picture of DNA packaging in bacteriophage, revealing how conformation depends on capsid size and shape, and the presence or absence of a protein core. The forces that oppose packaging have large contributions from both electrostatic repulsions and the entropic penalty of confining the DNA into the capsid, whereas elastic deformations make only a modest contribution. The elastic deformation energy is very sensitive to the final conformation, whereas the electrostatic and entropic penalties are not, so the packaged DNA favors conformations that minimize the bending energy.  相似文献   

4.
We characterize the equilibrium thermodynamics of a thick polymer confined in a spherical region of space. This is used to gain insight into the DNA packaging process. The experimental reference system for the present study is the recent characterization of the loading process of the genome inside the phi29 bacteriophage capsid. Our emphasis is on the modelling of double-stranded DNA as a flexible thick polymer (tube) instead of a beads-and-springs chain. By using finite-size scaling to extrapolate our results to genome lengths appropriate for phi29, we find that the thickness-induced force may account for up to half the one measured experimentally at high packing densities. An analogous agreement is found for the total work that has to be spent in the packaging process. Remarkably, such agreement can be obtained in the absence of any tunable parameters and is a mere consequence of the DNA thickness. Furthermore, we provide a quantitative estimate of how the persistence length of a polymer depends on its thickness. The expression accounts for the significant difference in the persistence lengths of single and double-stranded DNA (again with the sole input of their respective sections and natural nucleotide/base-pair spacing).  相似文献   

5.
6.
The conformational entropic penalty associated with packaging double-stranded DNA into viral capsids remains an issue of contention. So far, models based on a continuum approximation for DNA have either left the question unexamined, or they have assumed that the entropic penalty is negligible, following an early analysis by Riemer and Bloomfield. In contrast, molecular-dynamics (MD) simulations using bead-and-spring models consistently show a large penalty. A recent letter from Ben-Shaul attempts to reconcile the differences. While the letter makes some valid points, the issue of how to include conformational entropy in the continuum models remains unresolved. In this Comment, I show that the free energy decomposition from continuum models could be brought into line with the decomposition from the MD simulations with two adjustments. First, the entropy from Flory-Huggins theory should be replaced by the estimate of the entropic penalty given in Ben-Shaul’s letter, which corresponds closely to that from the MD simulations. Second, the DNA-DNA repulsions are well described by the empirical relationship given by the Cal Tech group, but the strength of these should be reduced by about half, using parameters based on the Rau-Parsegian experiments, rather than treating them as “fitting parameters (tuned) to fit the data from (single molecule pulling) experiments.”  相似文献   

7.
J Ito 《Journal of virology》1978,28(3):895-904
The location of the protein bound to bacteriophage phi29 DNA has been studied with restriction endonucleases, exonucleases, and polynucleotide kinase. The protein is invariably associated with the two terminal DNA fragments generated by restriction endonucleases. The phi29 DNA prepared with or without proteinase K treatment is resistant to the action of the 5'-terminal-specific exonucleases, lambda-exonuclease and T7 exonuclease. The phi29 DNA is also inaccessible to phosphorylation by polynucleotide kinase even after treatment with alkaline phosphatase. On the other hand, phi29 DNA is sensitive to exonuclease III, and the 3' termini of the DNA can be labeled by incubating with alpha-[32P]ATP and terminal deoxynucleotidyl transferase. The protein remains associated with the phi29 DNA after treatment with various chaotropic agents, including 8 M urea, 6 M guanidine-hydrochloride, 4 M sodium perchlorate, 2 M sodium thiocyanate, and 2 M LiCl. These results are consistent with the notion that the protein is linked covalently to the 5' termini of the phi29 DNA.  相似文献   

8.
The Catabolite Activator Protein (CAP) is a showcase example for entropic allostery. For full activation and DNA binding, the homodimeric protein requires the binding of two cyclic AMP (cAMP) molecules in an anti-cooperative manner, the source of which appears to be largely of entropic nature according to previous experimental studies. We here study at atomic detail the allosteric regulation of CAP with Molecular dynamics (MD) simulations. We recover the experimentally observed entropic penalty for the second cAMP binding event with our recently developed force covariance entropy estimator and reveal allosteric communication pathways with Force Distribution Analyses (FDA). Our observations show that CAP binding results in characteristic changes in the interaction pathways connecting the two cAMP allosteric binding sites with each other, as well as with the DNA binding domains. We identified crucial relays in the mostly symmetric allosteric activation network, and suggest point mutants to test this mechanism. Our study suggests inter-residue forces, as opposed to coordinates, as a highly sensitive measure for structural adaptations that, even though minute, can very effectively propagate allosteric signals.  相似文献   

9.
The conformational entropic penalty associated with packaging double-stranded DNA into viral capsids remains an issue of contention. So far, models based on a continuum approximation for DNA have either left the question unexamined, or they have assumed that the entropic penalty is negligible, following an early analysis by Riemer and Bloomfield. In contrast, molecular-dynamics (MD) simulations using bead-and-spring models consistently show a large penalty. A recent letter from Ben-Shaul attempts to reconcile the differences. While the letter makes some valid points, the issue of how to include conformational entropy in the continuum models remains unresolved. In this Comment, I show that the free energy decomposition from continuum models could be brought into line with the decomposition from the MD simulations with two adjustments. First, the entropy from Flory-Huggins theory should be replaced by the estimate of the entropic penalty given in Ben-Shaul’s letter, which corresponds closely to that from the MD simulations. Second, the DNA-DNA repulsions are well described by the empirical relationship given by the Cal Tech group, but the strength of these should be reduced by about half, using parameters based on the Rau-Parsegian experiments, rather than treating them as “fitting parameters (tuned) to fit the data from (single molecule pulling) experiments.”  相似文献   

10.
Physical and Biological Properties of Phage φ29 Deoxyribonucleic Acid   总被引:21,自引:17,他引:4       下载免费PDF全文
Deoxyribonucleic acid (DNA) molecules having a mean length of 5.8 mum were released from purified Bacillus subtilis bacteriophage phi29 with 2 m sodium perchlorate. Small 0.1 to 0.2-mum molecules were also detected in these DNA preparations. Since intact single chains annealed to form linear duplex molecules, phage phi29 DNA was found to be nonpermuted. The molecular weights of single chains of phi29 DNA were approximately half that of native DNA, as determined by analytical band sedimentation in CsCl, indicating that phi29 DNA is composed of two continuous polynucleotide chains. The molecular weight values of native and annealed phi29 DNA from sedimentation agreed with the molecular weight values obtained from electron microscopy. The infectivity of phi29 DNA was reduced to a low level by alkaline denaturation and was partially restored by annealing.  相似文献   

11.
We use Langevin dynamics simulations to study the process by which a coarse-grained DNA chain is packaged within an icosahedral container. We focus our inquiry on three areas of interest in viral packing: the evolving structure of the packaged DNA condensate; the packing velocity; and the internal buildup of energy and resultant forces. Each of these areas has been studied experimentally, and we find that we can qualitatively reproduce experimental results. However, our findings also suggest that the phage genome packing process is fundamentally different than that suggested by the inverse spool model. We suggest that packing in general does not proceed in the deterministic fashion of the inverse-spool model, but rather is stochastic in character. As the chain configuration becomes compressed within the capsid, the structure, energy, and packing velocity all become dependent upon polymer dynamics. That many observed features of the packing process are rooted in condensed-phase polymer dynamics suggests that statistical mechanics, rather than mechanics, should serve as the proper theoretical basis for genome packing. Finally we suggest that, as a result of an internal protein unique to bacteriophage T7, the T7 genome may be significantly more ordered than is true for bacteriophage in general.  相似文献   

12.
Protein p5 is a Bacillus subtilis phage phi 29-encoded protein required for phi 29 DNA replication in vivo. Protein p5 has single-stranded DNA binding (SSB) capacity and stimulates in vitro DNA replication severalfold when phi 29 DNA polymerase is used to replicate either the natural phi 29 DNA template or primed M13 single-stranded DNA (ssDNA). Furthermore, other SSB proteins, including Escherichia coli SSB, T4 gp32, adenovirus DNA-binding protein, and human replication factor A, can functionally substitute for protein p5. The stimulatory effect of phi 29 protein p5 is not due to an increase of the DNA replication rate. When both phi 29 DNA template and M13 competitor ssDNA are added simultaneously to the replication reaction, phi 29 DNA replication is strongly inhibited. This inhibition is fully overcome by adding protein p5, suggesting that protein p5-coated M13 ssDNA is no longer able to compete for replication factors, probably phi 29 DNA polymerase, which has a strong affinity for ssDNA. Electron microscopy demonstrates that protein p5 binds to M13 ssDNA forming saturated complexes with a smoothly contoured appearance and producing a 2-fold reduction of the DNA length. Protein p5 also binds to ssDNA in the phi 29 replicative intermediates produced in vitro, which are similar in structure to those observed in vivo. Our results strongly suggest that phi 29 protein p5 is the phi 29 SSB protein active during phi 29 DNA replication.  相似文献   

13.
The ATPase activity of the DNA packaging protein gp16 (gene product 16) of bacteriophage phi 29 was studied in the completely defined in-vitro assembly system. ATP was hydrolyzed to ADP and Pi in the packaging reaction that included purified proheads, DNA-gp3 and gp16. Approximately one molecule of ATP was used in the packaging of 2 base-pairs of phi 29 DNA, or 9 X 10(3) ATP molecules per virion. The hydrolysis of ATP by gp16 was both prohead and DNA-gp3 dependent. gp16 contained both the "A-type" and the "B-type" ATP-binding consensus sequences (Walker et al., 1982) and the predicted secondary structure for ATP binding. The A-type sequence of gp16 was "basic-hydrophobic region-G-X2-G-X-G-K-S-X7-hydrophobic", and similar sequences were found in the phage DNA packaging proteins gpA of lambda, gp19 of T7 and gp17 of T4. Having both the ATP-binding and potential magnesium-binding domains, all of these proteins probably function as ATPases and may have common prohead-binding capabilities. The phi 29 protein gp3, covalently bound to the DNA, may be analogous in function to proteins gpNul of lambda and gpl of phi 21 that bind the DNA.  相似文献   

14.
The DNA polymerase from phage phi29 is a B family polymerase that initiates replication using a protein as a primer, attaching the first nucleotide of the phage genome to the hydroxyl of a specific serine of the priming protein. The crystal structure of phi29 DNA polymerase determined at 2.2 A resolution provides explanations for its extraordinary processivity and strand displacement activities. Homology modeling suggests that downstream template DNA passes through a tunnel prior to entering the polymerase active site. This tunnel is too small to accommodate double-stranded DNA and requires the separation of template and nontemplate strands. Members of the B family of DNA polymerases that use protein primers contain two sequence insertions: one forms a domain not previously observed in polymerases, while the second resembles the specificity loop of T7 RNA polymerase. The high processivity of phi29 DNA polymerase may be explained by its topological encirclement of both the downstream template and the upstream duplex DNA.  相似文献   

15.
Anderson, D. L. (University of Minnesota, Minneapolis), D. D. Hickman, and B. E. Reilly. Structure of Bacillus subtilis bacteriophage phi29 and the length of phi29 deoxyribonucleic acid. J. Bacteriol. 91:2081-2089. 1966-Bacillus subtilis bacteriophage phi29 were negatively stained with phosphotungstic acid. The head of phi29 has a hexagonal outline with a flattened base, and is about 315 A wide and 415 A in length. The virus has an intricate tail about 325 A in length. Twelve spindle-shaped appendages are attached to the lower of two collars which comprise the proximal portion of the tail. The distal 130 A of the tail axis has a diameter of about 60 A and is larger in diameter than the axis of the upper portion of the tail. Comparison of electron microscopic counts of phi29 with plaque-forming units indicated that about 50% of the microscopic entities were infective. Phenol-extracted phi29 deoxyribonucleic acid (DNA) molecules were prepared for electron microscopy by the cytochrome c film technique of Kleinschmidt et al. Measurement of contour lengths of DNA molecules from three preparations gave skewed distributions of lengths with observed modal class values ranging from 5.7 to 5.9 mu. Assuming that phi29 DNA is a double helix in the B form, the corresponding molecular weights would be 10.9 x 10(6) to 11.3 x 10(6) daltons. The largest DNA molecules would have a volume of 1.9 x 10(7) A(3) which is about 25% greater than the estimated 1.4 x 10(7) A(3) internal volume of the phage head.  相似文献   

16.
Initiation of DNA replication at cloned origins of bacteriophage T7   总被引:2,自引:0,他引:2  
Bacteriophage T7 DNA replication is initiated at a site 15% of the distance from the genetic left end of the chromosome. This primary origin contains two tandem T7 RNA polymerase promoters (phi 1.1A and phi 1.1B) followed by an A + T-rich region. When the primary origin region is deleted replication initiates at secondary origins. We have analyzed the ability of plasmids containing cloned fragments of T7 to replicate after infection of Escherichia coli with bacteriophage T7. All cloned T7 fragments that support plasmid replication contain a T7 promoter but a T7 promoter alone is not sufficient for replication. Replication of plasmids containing the primary origin is dependent on T7 DNA polymerase and gene 4 protein (helicase/primase) and a portion of the A + T-rich region. The other T7 fragments that support plasmid replication after T7 infection are promoter regions phi OR, phi 13 and phi 6.5 (secondary origins). When both the primary and secondary origins are present simultaneously on compatible plasmids, replication of each is temporally regulated. Such regulation may play a role during T7 DNA replication.  相似文献   

17.
Mechanical properties of biological molecular aggregates are essential to their function. A remarkable example are double-stranded DNA viruses such as the φ29 bacteriophage, that not only has to withstand pressures of tens of atmospheres exerted by the confined DNA, but also uses this stored elastic energy during DNA translocation into the host. Here we show that empty prolated φ29 bacteriophage proheads exhibit an intriguing anisotropic stiffness which behaves counterintuitively different from standard continuum elasticity predictions. By using atomic force microscopy, we find that the φ29 shells are approximately two-times stiffer along the short than along the long axis. This result can be attributed to the existence of a residual stress, a hypothesis that we confirm by coarse-grained simulations. This built-in stress of the virus prohead could be a strategy to provide extra mechanical strength to withstand the DNA compaction during and after packing and a variety of extracellular conditions, such as osmotic shocks or dehydration.  相似文献   

18.
In the multispecific DNA(cytosine-5)-methyltransferases (Mtases) of Bacillus subtilis phages SPR and phi 3T the domains responsible for recognition of DNA methylation targets CCA/TGG, CCGG, GGCC (SPR) and GCNGC, GGCC (phi 3T) represent contiguous sequences of approximately 50 amino acids each. These domains are tandemly arranged and do not overlap. They are part of a 'variable' segment within the enzymes which is flanked by 'conserved' amino acids, which are very similar amongst bacterial monospecific and the multispecific Mtases studied here. These results follow from a mutational analysis of the SPR and phi 3T Mtase genes. They further support our concept of a modular enzyme organization, according to which variability of type II Mtases with respect to target recognition is achieved by a combination of the same enzyme core with a variety of target-recognizing domains.  相似文献   

19.
The bacteriophage phi 29 DNA polymerase, involved both in the protein-primed initiation and elongation steps of the viral DNA replication, displays a very processive 3',5'-exonuclease activity acting preferentially on single-stranded DNA. This exonucleolytic activity showed a marked preference for excision of a mismatched versus a correctly paired 3' terminus. These characteristics enable the phi 29 DNA polymerase to act as a proofreading enzyme. A comparative analysis of the wild-type phi 29 DNA polymerase and a mutant lacking 3',5'-exonuclease activity indicated that a productive coupling between the exonuclease and polymerase activities is necessary to prevent fixation of polymerization errors. Based on these data, the phi 29 DNA polymerase, a model enzyme for protein-primed DNA replication, appears to share the same mechanism for the editing function as that first proposed for T4 DNA polymerase and Escherichia coli DNA polymerase I on the basis of functional and structural studies.  相似文献   

20.
Two species of restriction endonuclease were isolated by gel filtration and DEAE-cellulose chromatography from a cell-free extract of Bacillus amyloliquefaciens (B. subtilits) N strain; a lower molecular weight endonuclease (endonuclease R.BamNI) and a higher molecular-weight one (endonuclease R.BamNx). Both of them required only Mg2+ for their activities. Endonuclease R.BamNx introduced a larger number of site-specific scissions in Excherchia coli phage lambda DNA that endonuclease R.BamNI did. Endonuclease R.BamNx cleaved Bacillus phage phi 105C DNA at the specific sites which are classified into two groups: one type of sites is modified by B. amyloliquefaciens H strain in vivo while the other is not affected. It was also active on DNA'S OF E. coli phage T7, lambdadvl, Simian virus 40 (SV40) and colicinogenic factor ColEI and was inactive on DNAs of Bacillus phages phi 29 and M2. Endonuclease R.BamHI isolated from H strain by Wilson and Young. This endonuclease was active on DNAs of phage lambda, lambdadvl and SV40, adn was inactive on DNAs of phages phi 105C, phi 29, M2 and T7, and ColEI DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号