首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptotic DNA fragmentation induced by gamma-rays has been compared with the DNA loop sizes in G0-human lymphocytes using pulsed field gel electrophoresis (PFGE). Genomic DNA was cleaved into the DNA loops at the topoisomerase II mediated attachment points using short treatment of cells with etoposide. The apoptotic fragmentation, with a distinct cut-off around 50 kb for a maximum length of fragments, appeared 5 h after irradiation when the most part of radiation-induced DNA double strand breaks (DSBs) have been repaired. The data indicate that apoptotic fragmentation of DNA in the G0-human lymphocytes begins when repair of radiation-induced DSBs has been completed. Similar apoptotic DNA fragmentation was also observed following the treatment of cells with etoposide. All genomic DNA was fragmented into 50-kb fragments during the final stages of apoptosis. Most of the DNA in resting lymphocytes is organized into Mb-size loops but loops of sizes down to 50 kb were also observed. A sharp border between the size distributions of DNA loops and apoptotic fragments was found. The data suggest that 50 kb apoptotic fragmentation is not based on excision of the DNA loops. No apoptotic fragments with the sizes more than 5.7 Mb were seen during the whole course of apoptosis. This observation indicates that despite intensive apoptotic fragmentation into the 50-kb fragments the chromosomes maintain integrity during radiation-induced apoptosis in human lymphocytes. We propose a model for radiation-induced apoptotic fragmentation in human lymphocytes that involves four stages: induction of DNA breaks and relaxation of DNA loops; DNA repair followed by reorganization of the DNA loops into the 50-kb units of condensed chromatin; co-operative fragmentation of the reorganized DNA loops into the distinct 50-kb fragments and resealing of the chromosome ends at the sites of this fragmentation; cleavage of the 50-kb fragments at the internucleosomal spacers.  相似文献   

2.
Mechanisms that control the fidelity of DNA replication are discussed. Data are reviewed for 3 steps in a fidelity pathway: nucleotide insertion, exonucleolytic proofreading, and extension from matched and mismatched 3′-primer termini. Fidelity mechanisms that involve predominately Km discrimination, Vmax discrimination, or a combination of the two are analyzed in the context of a simple model for fidelity. Each fidelity step is divided into 2 components, thermodynamics and kinetic. The thermodynamic component, which relates to free-energy differences between right and wrong base pair, is associated with a Km discrimination mechanism for polymerase. The kinetic component, which represents the enzyme's ability to select bases for insertion and excision to achieve fidelity greater than that availablek from base pairing free-energy differences, is associated with a Vmax discrimination mechanism for polymerase. Currently available fidelity data for nucleotide insertion and primer extension in the absence of proofreading appears to have relatively large Km and small Vmax components. An important complication can arise when analyzing data from polymerases containing an associated 3′-exonuclease activity. In the presence of proofreading, a Vmax discrimination mechanisms is likely to occur, but this may be the result of two Km discrimination mechanisms acting serially, one for nucleotide insertion and other for excision. Possible relationships between base pairing free energy differences measured in aqueous solution and those defined within the polymerase active cleft are considered in the context of the enzyme's ability to exclude water, at least partially, from the vicinity of its active site.  相似文献   

3.
Replicating molecules of Simian virus 40 DNA labeled during a short pulse with [3H]thymidine have been fractionated by ultracentrifugation methods and the open circular form (DNA component II) has been characterized. The pulse-labeled DNA component II is a relatively small constituent (1 to 3%) of the pool of replicating molecules. Examination of the circular (18 S) and linear (16 S) strands of DNA component II by alkaline sedimentation and by degradation using exonuclease III of Escherichia coli reveals that the newly synthesized DNA is principally in the linear strand. Cleavage of pulse-labeled DNA component II by an fi+, R-factor restriction endonuclease from E. coli demonstrates that the interruption in the pulse-labeled strand is specifically located at the termination point for replication.During a chase period of 20 minutes the amount of DNA component II increases to about 6 to 8% of the total labeled viral DNA. The kinetics of formation of superhelical, DNA component I and disappearance of replicative intermediates are linear during the chase period. After several hours of continuous labeling of replicating viral DNA, the DNA component II pool consists mainly of molecules labeled in both strands with the interruption non-specifically located in either strand. These molecules probably arise by the random introduction of single-strand breaks in newly synthesized DNA component I. During short periods of continuous labeling with [3H]thymidine, the ratio of DNA components I to II increases as a function of the pulse duration. These results support a model for 8V 40 DNA replication in which the open circular form is a precursor of the superhelical form.  相似文献   

4.
5.
DNA regions undergoing programmed repair synthesis during pachytene were isolated and used as a probe for analyzing the organization of these regions. Segments that are the sites of nick-repair activity are referred to as PsnDNA. These segments are distributed at intervals ranging from 30–350 kilobase pairs (kbp) within about half the genome. The other half of the genome, which consists of DNA molecules longer than 350 kbp under defined conditions of extraction, lacks these segments. PsnDNA sequences range in length from about 150–300 base pairs (bp) and are arranged in larger P.DNA units measuring 0.8–3.0 kbp. P.DNA units have three identifiable regions. Each end region consists of a PsnDNA sequence and the middle region contains sequences that do not share homology with PsnDNA and have a much lower repeat number. Pachytene nicking of PsnDNA sequences is polar with respect to the orientation of individual DNA strands. Most of the PsnDNA sequences are present at the 5 ends of the single strands generated in vivo by endonuclease action. Nicking is probably repeated at each PsnDNA site during early and midpachytene, and both members of a duplex are nicked within any single P.DNA region.  相似文献   

6.
In this work we demonstrate that heat and pressure induce only slightly different energetic changes in the unfolded state of RNase A. Using pressure and temperature as denaturants on a significant number of variants, and by determining the free energy of unfolding at different temperatures, we estimated the stability of variants unable to complete the unfolding transition owing to the experimental conditions required for pressure experiments. The overall set of results allowed us to map the contributions to stability of the hydrophobic core residues of RNase A, with the positions most critical for stability being V54, V57, I106 and V108. We also show that the stability differences can be attributed to both hydrophobic interactions and packing density with an equivalent energetic magnitude. The main hydrophobic core of RNase A is tightly packed, as shown by the small-to-large and isosteric substitutions. In addition, we found that large changes in the number of methylene groups have non-additive positive stability interaction energies that are consistent with exquisite tight core packing and rearrangements of van der Waals' interactions in the protein interior, even after drastic deleterious substitutions.  相似文献   

7.
8.
The organization of intranuclear Herpes simplex virus DNA in rabbit fibroblast cells infected for 7 hr with HSV type 1 was examined before and during encapsidation by electron microscopic cytochemistry. Most non-encapsidated viral deoxyribonucleoprotein fibers exhibited a non-nucleosomal configuration. Empty capsids within the virus-specific regions of infected nuclei were wrapped with portions of the viral genome which adhered tightly to their surfaces even under conditions that loosened and spread apart other nucleoprotein fibers. During encapsidation, the internal surface of the capsid shell also appeared to bind a part of the viral genome, specifically the outer cage portion, which is detectable in methanol-dehydrated cells. Variations in the amount of DNA within the capsids indicated that the insertion of HSV genome into the capsid is a progressive process. The cage and core cylinder portions of the viral nucleoid appear to form and develop simultaneously. We propose that there may be binding sites on both the external and internal surfaces of the capsid shells which might play a role in the encapsidation process.  相似文献   

9.
Ding S  Shapiro R  Geacintov NE  Broyde S 《Biochemistry》2005,44(44):14565-14576
The drug Premarin is the most widely used formula for hormone replacement therapy. However, long-term exposure to estrogens from the Premarin drug increases the risk of breast cancer. Equilin and equilenin, major components of Premarin, are predominantly metabolized to 4-hydroxyequilenin (4-OHEN). The quinoids produced by 4-OHEN oxidation react with dG, dA, and dC to form unusual stable cyclic bulky adducts, with four stereoisomers identified for each base adduct. The 4-OHEN-dC adducts are most predominant. They are mutagenic in vitro and have been found in human tumor tissue. We have carried out molecular modeling and molecular dynamics simulations to investigate structures and thermodynamics of the four 4-OHEN-dC stereoisomeric adducts in DNA duplexes. Our results show that the structure of each stereoisomer adduct in duplex DNA is specifically governed by its unique stereochemistry. The bulky adducts, with an obstructed Watson-Crick edge and an equilenin ring system near perpendicular to the damaged cytosine, are located in the B-DNA major or minor groove, with the modified cytosine in the syn or anti conformation, respectively. The DNA duplex structures are distorted, in terms of Watson-Crick pairing at and near the lesion, stacking interactions, and groove dimensions. Stereochemistry determines the orientation of the equilenin rings with respect to the 5'- to 3'-direction of the modified strand, as well as the positioning of the equilenin moiety's methyl and hydroxyl groups for each stereoisomer. The unusual structures and the stereochemical effects underlie their biological processing as miscoding DNA lesions whose mutagenic properties may contribute to breast cancer.  相似文献   

10.
A study was undertaken to test for the occurrence of DNA rearrangements or amplifications during embryonic development in Xenopus laevis. DNA isolated from testes and liver was digested with four restriction enzymes, separated on agarose gels, transferred to nitrocellulose, and hybridized with over 50 cloned cDNA probes generated from embryonic poly (A)+ RNA. No qualitative or quantitative differences were detectable in the DNA hybridization patterns of testes and liver DNA, suggesting that, at least during liver development, selective amplifications or rearrangements occur rarely if at all. In the course of this investigation a wide range of restriction-site polymorphisms for different genes was observed. While some genes showed little polymorphism among different animals, several genes showed considerable polymorphism, involving changes in several restriction enzyme sites. These complex polymorphisms could be the result of gene rearrangements that occur occasionally during the course of sexual reproduction rather than during development.  相似文献   

11.
This review describes available data on the structure of viral RNA-dependent RNA polymerases (RdRP) obtained from X-ray analysis and discusses the functional significance of the structural elements of these enzymes. Because most of the studies done to date relate to RdRP structures of picorna-, flavi-, and caliciviruses, here we consider mostly the structures of RdRP of these groups of viruses, and also include information about polymerases of other virus families.  相似文献   

12.
The association of simian virus 40 (SV40) DNA or plasmid DNA in subcellular fractions from either infected or transfected cells was examined. In lytically infected cells, approx. 25% of viral specific DNA during the infection cycle was retained in nuclei after washing with low ionic strength buffer and 1% Triton X-100. Viral replicating DNA found in the nuclear matrix was capable of performing limited DNA synthesis by the endogenous DNA polymerase in vitro. Viral DNA synthesized in vitro hybridized preferentially to SV40 Hind-III B and C fragments which are in proximity to the origin of replication. In plasmid-transfected COS-7 cells (SV40-transformed cells), the amount of plasmid DNA found in the nuclear matrix was related to its replication efficiency in cells. More than 80% of the plasmid DNA was tightly associated with subnuclear structures. Little or no plasmid DNA was found in the cytoplasmic fraction. The results suggest that, in extrachromosomal model systems, the association of DNA with nuclear matrix is important for the regulation of DNA replication.  相似文献   

13.
Kinetics and thermodynamics of DNA hybridization on gold nanoparticles   总被引:1,自引:0,他引:1  
Hybridization of single-stranded DNA immobilized on the surface of gold nanoparticles (GNPs) into double stranded DNA and its subsequent dissociation into ssDNA were investigated. Melting curves and rates of dissociation and hybridization were measured using fluorescence detection based on hybridization-induced fluorescence change. Two distribution functions, namely the state distribution and the rate distribution, were proposed in order to take interfacial heterogeneity into account and to quantitatively analyze the data. Reaction and activation enthalpies and entropies of DNA hybridization and dissociation on GNPs were derived and compared with the same quantities in solution. Our results show that the interaction between GNPs and DNA reduces the energetic barrier and accelerates the dissociation of adhered DNA. At low surface densities of ssDNA adhered to GNP surface, the primary reaction pathway is that ssDNA in solution first adsorbs onto the GNP, and then diffuses along the surface until hybridizing with an immobilized DNA. We also found that the secondary structure of a DNA hairpin inhibits the interaction between GNPs and DNA and enhances the stability of the DNA hairpin adhered to GNPs.  相似文献   

14.
15.
Mode of DNA packing within bacteriophage heads   总被引:15,自引:0,他引:15  
Electron micrographs of five different DNA bacteriophages, as prepared by drying in thin films of negative stain, frequently show their heads to be disrupted and flattened. In such cases DNA strands, no larger than 2.5 nm in diameter, become visible, either contained within partially ruptured capsids or completely ejected from severely ruptured ones. Seen in either aspect, the strands appear with circular outline; in some cases a set of concentric circles (or a tightly wound spiral) is evident.Two alternative models of DNA packing within phage heads are proposed. Both are consistent with the electron microscopic observations and, as applied specifically to T4 phage heads, they are also consistent with available data from birefringence studies. One model proposes that the DNA, in simple double-helix form, is wound into a ball. The other suggests that the DNA is wound like a spool, with a greater number of turns in the central region than at the two ends and with the spool axis perpendicular to the axis of the phage particle. The available evidence does not permit a choice to be made between the two models.  相似文献   

16.
DNA organization in nucleosomes   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
Genome packaging and delivery are fundamental steps in the replication cycle of all viruses. Icosahedral viruses with linear double-stranded DNA (dsDNA) usually package their genome into a preformed, rigid procapsid using the power generated by a virus-encoded packaging ATPase. The pressure and stored energy due to this confinement of DNA at a high density is assumed to drive the initial stages of genome ejection. Membrane-containing icosahedral viruses, such as bacteriophage PRD1, present an additional architectural complexity by enclosing their genome within an internal membrane vesicle. Upon adsorption to a host cell, the PRD1 membrane remodels into a proteo-lipidic tube that provides a conduit for passage of the ejected linear dsDNA through the cell envelope. Based on volume analyses of PRD1 membrane vesicles captured by cryo-electron tomography and modeling of the elastic properties of the vesicle, we propose that the internal membrane makes a crucial and active contribution during infection by maintaining the driving force for DNA ejection and countering the internal turgor pressure of the host. These novel functions extend the role of the PRD1 viral membrane beyond tube formation or the mere physical confinement of the genome. The presence and assistance of an internal membrane might constitute a biological advantage that extends also to other viruses that package their linear dsDNA to high density within an internal vesicle.  相似文献   

19.
20.
Nearest-neighbor thermodynamic parameters of the ‘universal pairing base’ deoxyinosine were determined for the pairs I·C, I·A, I·T, I·G and I·I adjacent to G·C and A·T pairs. Ultraviolet absorbance melting curves were measured and non-linear regression performed on 84 oligonucleotide duplexes with 9 or 12 bp lengths. These data were combined with data for 13 inosine containing duplexes from the literature. Multiple linear regression was used to solve for the 32 nearest-neighbor unknowns. The parameters predict the Tm for all sequences within 1.2°C on average. The general trend in decreasing stability is I·C > I·A > I·T ≈ I· G > I·I. The stability trend for the base pair 5′ of the I·X pair is G·C > C·G > A·T > T·A. The stability trend for the base pair 3′ of I·X is the same. These trends indicate a complex interplay between H-bonding, nearest-neighbor stacking, and mismatch geometry. A survey of 14 tandem inosine pairs and 8 tandem self-complementary inosine pairs is also provided. These results may be used in the design of degenerate PCR primers and for degenerate microarray probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号