首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is known that myo-inositol pretreatment attenuates the seizure severity and several biochemical changes provoked by experimentally induced status epilepticus. However, it remains unidentified whether such properties of myo-inositol influence the structure of epileptic brain. In the present light and electron microscopic research we elucidate if pretreatment with myo-inositol has positive effect on hippocampal cell loss, and cell and synapses damage provoked by kainic acid-induced status epilepticus. Adult male Wistar rats were treated with (i) saline, (ii) saline + kainic acid, (iii) myo-inositol + kainic acid. Assessment of cell loss at 2, 14, and 30 days after treatment demonstrate cytoprotective effect of myo-inositol in CA1 and CA3 areas. It was strongly expressed in pyramidal layer of CA1, radial and oriental layers of CA3 and in less degree—in other layers of both fields. Ultrastructural alterations were described in CA1, 14 days after treatment. The structure of neurons, synapses, and porosomes are well preserved in the rats pretreated with myo-inositol in comparing with rats treated with only kainic acid  相似文献   

2.
Abstract: A cDNA clone encoding a human γ-aminobutyric acid (GABA) transporter has been isolated from a brain cDNA library, and its functional properties have been examined in mammalian cells. The nucleotide sequence predicts a transporter with 614 amino acids and 12 putative transmembrane domains. The highest degree of amino acid identity is with a betaine/GABA transporter originally cloned from the dog termed BGT-1 (91%) and a related transporter from mouse brain (87%). These identities are similar to those for species homologues of other neurotransmitter transporters and suggest that the new clone represents the human homologue of BGT-1. The transporter displays high affinity for GABA (IC50 of 30 µM) and is also sensitive to phloretin, l -2,4-diaminobutyric acid, and hypotaurine (IC50 values of ~150–400 µM). The osmolyte betaine is ~25-fold weaker than GABA, displaying an IC50 of ~1 mM. The relative potencies of these inhibitors at human BGT-1 differ from those of mouse and dog BGT-1. Northern blot analysis reveals that BGT-1 mRNA is widely distributed throughout the human brain. The cloning of the human homologue of BGT-1 will further our understanding of the roles of GABA and betaine in neural function.  相似文献   

3.
4.
高等植物光合同化产物蔗糖的质外体运输主要是靠蔗糖载体蛋白来完成的。MdSUT1是从苹果果实中克隆的蔗糖载体家族基因,本文将MdSUT1构建到酵母表达载体pMETαB,重组质粒转化毕赤酵母PMAD16经0.5%甲醇诱导后获得Md—SUT1表达。纯化的MdsuT1异源表达蛋白免疫Balb/C小鼠制备多克隆抗体,抗体特异性分析结果显示该抗体对酵母表达和苹果中的MdsuT1识别具有较高的特异性。免疫共沉淀实验结果也证明抗体能够应用于苹果果实中MdSUT1的功能分析。  相似文献   

5.
Abstract: The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the phosphatase calcineurin (CaN) are especially abundant in the mammalian CNS, where they have been implicated repeatedly in different neuronal functions. CaMKII is a holoenzyme that is likely to be constituted of both homomultimers and heteromultimers, CaMKIIα and CaMKIIβ being the most abundant subunits in the brain. CaN is a heterodimer constituted of a catalytic subunit (CaN A) and a regulatory subunit (CaN B), and CaN Aα is the predominant form in the brain. We studied the expression of CaMKIIα, CaMKIIβ, and CaN Aα subunit messenger RNAs in the mouse hippocampus at different times after the administration of a convulsant dose of kainic acid. CaMKIIα and CaN A immunohistochemistry was also performed. We observed a transient decrease in the three messenger RNAs in the kainic acid-treated mice, peaking at 5 or 24 h of treatment. The effect had disappeared completely 8 days after treatment. No significant alterations in CaMKII or CaN immunolabelling were observed in the hippocampus of kainic acid-treated mice. The observed modifications could be due to the neuronal hyperexcitability induced by kainic acid rather than neuronal degeneration, because no areas of neuronal loss were detected. Our results suggest that the expression of CaMKII and CaN mRNAs is down-regulated in neuronal cells in response to the hyperexcitability induced by kainic acid. The transient nature of the effect and the apparent absence of significant modifications in the amount of their corresponding proteins may be related to the absence of neuronal damage.  相似文献   

6.
1型糖尿病是T细胞介导的以胰腺β细胞特异性损伤为特征的炎症性自身免疫疾病,侵润胰岛的巨噬细胞,淋巴细胞等产生的细胞因子如白细胞介素-1β、肿瘤坏死因子-α、干扰素-α、干扰素-γ、肿瘤坏死因子-β和白细胞介素-2等通过诱导胰腺β细胞凋亡/坏死和胰岛素分泌缺陷、调节T细胞的活化和种群比例,以及调控T细胞对β细胞的免疫识别和杀伤等,在1型糖尿病的发生和发展中起关键作用。  相似文献   

7.
The effect of N-methyl-D-aspartic acid (NMDA), a selective glutamate receptor agonist, on the release of previously incorporated [3H]-aminobutyric acid(GABA) was examined in superfused striatal slices of the rat. NMDA (0.01 to 1.0 mM) increased [3H]GABA overflow with an EC50 value of 0.09 mM. The [3H]GABA releasing effect of NMDA was an external Ca2+-dependent process and the GABA uptake inhibitor nipecotic acid (0.1 mM) potentiated this effect. These findings support the view that NMDA evokes GABA release from vesicular pool in striatal GABAergic neurons. Addition of glycine (1 mM), a cotransmitter for NMDA receptor, did not influence the NMDA-induced [3H]GABA overflow. Kynurenic acid (1 mM), an antagonist of glycineB site, decreased the [3H]GABA-releasing effect of NMDA and this reduction was suspended by addition of 1 mM glycine. Neither glycine nor kynurenic acid exerted effects on resting [3H]GABA outflow. These data suggest that glycineB binding site at NMDA receptor may be saturated by glycine released from neighboring cells. Glycyldodecylamide (GDA) and N-dodecylsarcosine, inhibitors of glycineT1 transporter, inhibited the uptake of [3H]glycine (IC50 33 and 16 M) in synaptosomes prepared from rat hippocampus. When hippocampal slices were loaded with [3H]glycine, resting efflux was detected whereas electrical stimulation failed to evoke [3H]glycine overflow. Neither GDA (0.1 mM) nor N-dodecylsarcosine (0.3 mM) influenced [3H]glycine efflux. Using Krebs-bicarbonate buffer with reduced Na+ for superfusion of hippocampal slices produced an increased [3H]glycine outflow and electrical stimulation further enhanced this release. These experiments speak for glial and neuronal [3H]glycine release in hippocampus with a dominant role of the former one. GDA, however, did not influence resting or stimulated [3H]glycine efflux even when buffer with low Na+ concentration was applied.  相似文献   

8.
Mood disorders have been linked to glial and synaptic pathology such as disturbed neurotransmission of γ-aminobutyric acid (GABA). We evaluated the expression of GABAergic marker genes in rats with helpless behaviour, an animal model of depression. Male Sprague-Dawley rats from inbred lines were tested for helpless behaviour and grouped according to failures in terminating foot shock currents. Expression levels of GABAergic marker genes were assessed using semiquantitative in situ-hybridization. Animals with congenital helpless behaviour (cH) were unable to escape current exposure in contrast to cH-animals derived from the same litters with low failure rates and to non-helpless animals (cNH). We found a significant downregulation of the GABA transporter GAT3 in cLH rats. GAT1 showed small changes, glutamic acid decarboxylase (GAD67) and the vesicular GABA transporter were not significantly altered. Reduced GABA transporter expression is well in concert with the behavioural phenotypes of knockout animals and strengthens the hypothesis of impaired glial functions in depression.  相似文献   

9.
三磷酸腺苷结合盒转运体A1(ATP binding cassette transporter A1,ABCA1)在脑组织中广泛表达,它将脑细胞内胆固醇转运给载脂蛋白E(apolipoprotein E,apoE)及载脂蛋白A1(apolipoprotein A1,apoA-Ⅰ)形成高密度脂蛋白(high density lipoprotein,HDL),从而调控脑内胆固醇平衡.研究表明,ABCA1与胆固醇代谢相关脑疾病存在密切联系,包括阿尔茨海默病(Alzheimer's disease,AD)、创伤性脑损伤(traumatic brain injury,TBI)及脑梗死.虽然近来在ABCA1与相关脑疾病的研究取得了一些进展,但仍存在许多问题尚未阐明.本文对ABCA1在各种相关脑疾病发生发展中的作用做一综述,期望为相关脑疾病的治疗寻找新的靶点和方法.  相似文献   

10.
11.
Inflammation in Traumatic Brain Injury: Role of Cytokines and Chemokines   总被引:24,自引:0,他引:24  
A traumatic injury to the adult mammalian central nervous system (CNS), such as a stab wound lesion, results in reactive astrogliosis and the migration of hematogenous cells into the damaged neural tissue. The roles of cytokines and growth factors released locally by the damaged endogenous cells are recognized in controlling the cellular changes that occur following CNS injury. However, the role of chemokines, a novel class of chemoattractant cytokines, is only recently being studied in regulating inflammatory cell invasion in the injured/diseased CNS (1). The mRNAs for several chemokines have been shown to be upregulated in experimental allergic encephalomyelitis (EAE), an inflammatory demyelinating disease of the CNS, but chemokine expression in traumatic brain injury has not been studied in detail. Astrocytes have been demonstrated to participate in numerous processes that occur following injury to the CNS. In particular, astrocytic expression of cytokines and growth factors in the injured CNS has been well reviewed (2). Recently a few studies have detected the presence of chemokines in astrocytes following traumatic brain injury (3,4). These studies have suggested that chemokines may represent a promising target for future therapy of inflammatory conditions. This review summarizes the events that occur in traumatic brain injury and discusses the roles of resident and non-resident cells in the expression of growth factors, cytokines and chemokines in the injured CNS.  相似文献   

12.
Abstract: cDNA clones representing four pharmacologically distinct GABA transporters (GAT1–GAT4) were previously identified in mouse brain. Two of these, GAT1 and GAT4, were found to be brain specific. We studied GAT1 and GAT4 in the developing rat brain using polyclonal antibodies against recombinant fusion proteins. Patterns of immunoreactivity were very similar in the embryonic and early postnatal stages for both transporters. However, whereas GAT1 immunoreactivity was detected in distinct patterns in gray matter and growing axons, GAT4 immunoreactivity was found in a subset of radial glial cell fascicles. These patterns usually oriented perpendicularly to the axons expressing GAT1. Our results suggest a transient relationship between GAT4-expressing radial glial elements and GAT1-expressing axons. The presence of GAT1 in the cortical marginal zone and the numerous GAT4-positive fascicles observed in the fetal anterior commissure indicate that both transporters may play a role in processes of brain maturation. Because the beginning of expression for both GAT1 and GAT4 correlates with the expression of the α1 subunit of the GABA receptor, the transporters may be connected with the maturation of adult-type GABAergic inhibitory system in the brain.  相似文献   

13.
Abstract: Rat cerebrum, prelabeled in vivo by intraventric-ular injection of [1-14C]arachidonic acid, was used to assess cyclooxygenase and lipoxygenase reaction products in total homogenates, cytosol, synaptosomes, and microsomes. Effects of bicuculline-induced status epilepticus on arachi-donic acid metabolism in synaptosomes and microsomes were also measured. Lipoxygenase activity, resulting in the synthesis of hydroxyeicosatetraenoic acids (HETEs), and cyclooxygenase activity, resulting in the synthesis of prostaglandins (PGs), were measured by reverse-phase and normal-phase HPLC with flow scintillation detection. Endogenous lipoxygenase products in synaptosomes were identified by capillary gas chromatography-mass spectrometry. PGs and HETEs were detected in all subcellular fractions. The synaptosomal fraction showed the highest lipoxygenase activity, with 5-HETE, 12-HETE, and leukotriene B4 as the major products. Following bicuculline-induced status epilepticus, endogenous free arachidonic acid and other fatty acids accumulated in synaptosomes, but not in microsomes. Incorporation of [1-l4C]arachidonic acid into synaptosomal and microsomal phospholipids was decreased after bicuculline treatment. Bicuculline-induced status epilepticus resulted in increased synthesis of HETEs in synaptosomes. PG synthesis increased in the microsomal fraction. When [1-14C]arachidonic acid-labeled synaptosomes and microsomes were incubated for 1 h at 37°C the synthesis of eicosa-noids, particularly PGD2, was increased significantly in bi-cuculline-treated rats, as compared with untreated rats. Depolarization (45 mM K+) of synaptosomes induced a loss of [1-14C]arachidonic acid from phosphatidylinositol, and increased the synthesis of PGD2 and HETEs, an effect that was enhanced in bicuculline-treated rats. This study localizes changes in arachidonic acid metabolism and lipoxygenase activity resulting from bicuculline-induced status epilepticus in the brain subcellular fraction enriched in nerve endings.  相似文献   

14.
Cisplatin is one of the first-line platinum-based chemotherapeutic agents for treatment of many types of cancer, including ovary cancer. CTR1 (copper transporter 1), a transmembrane solute carrier transporter, has previously been shown to increase the cellular uptake and sensitivity of cisplatin. It is hypothesized that increased CTR1 expression would enhance the sensitivity of cancer cells to cisplatin (cDDP). The present study demonstrates for the first time that (-)-epigallocatechin-3-gallate (EGCG), a major polyphenol from green tea, can enhance CTR1 mRNA and protein expression in ovarian cancer cells and xenograft mice. EGCG inhibits the rapid degradation of CTR1 induced by cDDP. The combination of EGCG and cDDP increases the accumulation of cDDP and DNA-Pt adducts, and subsequently enhances the sensitivity of ovarian cancer SKOV3 and OVCAR3 cells to the chemotherapeutic agent. In the OVCAR3 ovarian cancer xenograft nude mice model, the combination of the lower concentration of cDDP and EGCG strongly repressed the tumor growth and exhibited protective effect on the nephrotoxicity induced by cisplatin. Overall, these findings uncover a novel chemotherapy mechanism of EGCG as an adjuvant for the treatment of ovarian cancer.  相似文献   

15.
In general, the release of neurotransmitters in the central nervous system is accomplished by a calcium-dependent process which constitutes a common feature of exocytosis, a conserved mechanism for transmitter release in all species. However, neurotransmitters can also be released by the reversal of their transporters. In the retina, a large portion of GABA is released by this mechanism, which is under the control of neuroactive agents, such as excitatory amino acids and dopamine. In this review, we will focus on the transporter mediated GABA release and the role played by excitatory amino acids and dopamine in this process. First, we will discuss the works that used radiolabeled GABA to study the outflow of the neurotransmitter and then the works that took into consideration the endogenous pool of GABA and the topography of GABAergic circuits influenced by excitatory amino acids and dopamine.  相似文献   

16.
17.
Glycyrrhizin (GL), a triterpene present in the roots and rhizomes of licorice (Glycyrrhiza glabra), has been shown to have anti-inflammatory and anti-viral effects. In our previous reports, we demonstrated the neuroprotective effects of GL in the postischemic brain and in kainic acid (KA)-induced seizure animal model. In this KA-induced seizure model, the systemic administration of GL 30 min before KA administration significantly suppressed neuronal cell death and markedly suppressed gliosis and proinflammatory marker inductions. In the present study, we showed that high-mobility group box 1 (HMGB1), an endogenous danger signal, was induced in hippocampal CA1 and CA3 regions of the same KA-induced model, and peaked at ~3 h and at 6 days post-KA. HMGB1 was transiently induced in neurons and astrocyte at 3 h post-KA, and it was released from dying neurons and accumulated in serum at 12 h post-KA. Furthermore, after ~4 days of almost undetectable levels in the hippocampus, delayed and marked HMGB1 induction was detected at 6 days post-KA, mainly in astrocytes and endothelial cells, in which HMGB1 was localized in nuclei, and not secreted into serum. Interestingly, GL suppressed HMGB1 inductions in hippocampus and also suppressed its release into serum in KA-treated mice. Since we established previously that GL has anti-inflammatory and anti-excitotoxic effects in this KA-induced seizure model, these results indicate that the neuroprotective effect of GL in the KA-injected mouse brain might be attributable to the inhibitions of HMGB1 induction and release, which in turn, mitigates the inflammatory process.  相似文献   

18.
We determined the changes in the levels of the mammalian small heat shock protein of 25-28 kDa (hsp27) and the hsp alphaB-crystallin in various regions of rat brain after kainic acid-induced seizure activity by means of specific immunoassays. The levels of hsp27 in the hippocampus and entorhinal cortex were markedly increased and reached a maximum (1.5-2 microg/mg of protein) 2-4 days after the seizure. The levels of hsp27 in these regions were considerably high even 10 days after the seizure. A marked increase in levels of mRNA for hsp27 was also observed in the hippocampus of rats 1-2 days after the seizure. A severalfold increase in the levels of alphaB-crystallin was observed in the hippocampus and entorhinal cortex of rats 2 days after the seizure. However, the maximum levels were <50 ng/mg of protein. The levels of protein sulfhydryl group and glutathione were significantly reduced in the hippocampus of rats at 24 h after the seizure, which might have enhanced the expressions of hsp27 and alphaB-crystallin. The expression of inducible mammalian hsp of 70 kDa (hsp70) was also enhanced in the hippocampus of rats after the seizure, as detected by western and northern blotting analyses. Immunohistochemically, an intensive staining of hsp27 was observed in both glial cells and neurons in the hippocampus, piriform cortex, and entorhinal cortex of rats with kainic acid-induced seizure. However, in the cerebellum, where the receptors for kainic acid are also rich, hsp27 was barely induced in the same rats. This might be due to high levels of the cerebellar calcium-binding proteins parvalbumin and 28-kDa calbindin-D, which might have a protective effect against the kainic acid-inducible damage.  相似文献   

19.
Growth arrest-specific 1 (Gas1) is a pleiotropic protein that induces apoptosis of tumor cells and has important roles during development. Recently, the presence of two forms of Gas1 was reported: one attached to the cell membrane by a GPI anchor; and a soluble extracellular form shed by cells. Previously, we showed that Gas1 is expressed in different areas of the adult mouse CNS. Here, we report the levels of Gas1 mRNA protein in different regions and analyzed its expressions in glutamatergic, GABAergic, and dopaminergic neurons. We found that Gas1 is expressed in GABAergic and glutamatergic neurons in the Purkinje-molecular layer of the cerebellum, hippocampus, thalamus, and fastigial nucleus, as well as in dopaminergic neurons of the substantia nigra. In all cases, Gas1 was found in the cell bodies, but not in the neuropil. The Purkinje and the molecular layers show the highest levels of Gas1, whereas the granule cell layer has low levels. Moreover, we detected the expression and release of Gas1 from primary cultures of Purkinje cells and from hippocampal neurons as well as from neuronal cell lines, but not from cerebellar granular cells. In addition, using SH-SY5Y cells differentiated with retinoic acid as a neuronal model, we found that extracellular Gas1 promotes neurite outgrowth, increases the levels of tyrosine hydroxylase, and stimulates the inhibition of GSK3β. These findings demonstrate that Gas1 is expressed and released by neurons and promotes differentiation, suggesting an important role for Gas1 in cellular signaling in the CNS.  相似文献   

20.
The role of monoamine oxidase (MAO) type A and B on the metabolism of dopamine (DA) in discrete regions of the monkey brain was studied. Monkeys were administered (–)-deprenyl (0.25 mg/kg) or clorgyline (1.0 mg/kg) or deprenyl and clorgyline together by intramuscular injections for 8 days. Levels of DA and its metabolites, dihydroxy phenylacetic acid (DOPAC) and homovanillic acid (HVA) were estimated in frontal cortex (FC), motor cortex (MC), occipital cortex (OC), entorhinal cortex (EC), hippocampus (HI), hypothalamus (HY), caudate nucleus (CN), globus pallidus (GP) and substantia nigra (SN). (–)-Deprenyl administration significantly increased DA levels in FC, HY, CN, GP and SN (39–87%). This was accompanied by a reduction in the levels of DOPAC (37–66%) and HVA (27–79%). Clorgyline administration resulted in MAO-A inhibition by more than 87% but failed to increase DA levels in any of the brain regions studied. Combined treatment of (–)-deprenyl and clorgyline inhibited both types of MAO by more than 90% and DA levels were increased (57–245%) in all brain regions studied with a corresponding decrease in the DOPAC (49–83%) and HVA (54–88%) levels. Our results suggest that DA is metabolized preferentially, if not exclusively by MAO-B in some regions of the monkey brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号