首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative stress is thought to be involved in lead-induced toxicity. The aim of this study was to investigate the possible protective role of naringenin on lead-induced oxidative stress in the liver and kidney of rats. In the present investigation, lead acetate (500 mg Pb/L) was administered orally for 8 weeks to induce hepatotoxicity and nephrotoxicity. The levels of hepatic and renal markers such as alanine aminotransferase, aspartate aminotransferase, urea, uric acid, and creatinine were significantly (P < 0.05) increased following lead acetate administration. Lead-induced oxidative stress in liver and kidney tissue was indicated by a significant (P < 0.05) increase in the level of maleic dialdehyde and decreased levels of reduced glutathione, superoxide dismutase, catalase, and glutathione peroxidase. Naringenin markedly attenuated lead-induced biochemical alterations in serum, liver, and kidney tissues (P < 0.05). The present study suggests that naringenin shows antioxidant activity and plays a protective role against lead-induced oxidative damage in the liver and kidney of rats.  相似文献   

2.
3.
Chronic lead exposure is associated with several health disorders in humans and animals. Lead exposure leads to the generation of reactive oxygen species and depletes body antioxidant enzymes causing damage to various macromolecules and ultimately cell death. Curcumin has been widely recognized to protect against metal toxicity but has major limitations of reduced bioavailability. Nanoencapsulation of curcumin could be an effective strategy to combat lead induced toxic manifestations. The present study investigates the protective efficacy of bulk and nanocurcumin against lead-induced toxicity. Swiss albino mice were daily exposed to lead acetate (25 mg/kg, i.p.) alone and after 1 h treated either with curcumin (15 mg/kg, orally) or nanocurcumin (15 mg/kg, orally) for two consecutive weeks. The preventive efficacy of nanocurcumin was evaluated against various altered biochemical variables suggestive of oxidative stress and lead accumulation in blood and soft tissues. Coadministration of nanocurcumin with lead restored the altered δ-aminolevulinic acid dehydratase activity, glutathione (reduced and oxidized) levels, and also decreased reactive oxygen species, and thiobarbituric acid reactive substances levels. Nanocurcumin due to its possible chelating property and enhanced bioavailability efficiently removed lead from blood and soft tissues compared to bulk curcumin. Results demonstrate the enhanced preventive efficacy of nanocurcumin and suggest an interesting and novel approach for better treatment of lead toxicity.  相似文献   

4.
Psychological stress (PS) could cause decreased iron absorption and iron redistribution in body resulting in low iron concentration in the bone marrow and inhibition of erythropoiesis. In the present study, we investigated the effect of zinc supplementation on the iron metabolism, erythropoiesis, and oxidative stress status in PS-induced rats. Thirty-two rats were divided into two groups randomly: control group and zinc supplementation group. Each group was subdivided into two subgroups: control group and PS group. Rats received zinc supplementation before PS exposure established by a communication box. We investigated the serum corticosterone (CORT) level; iron apparent absorption; iron contents in liver, spleen, cortex, hippocampus, striatum, and serum; hematological parameters; malondialdehyde (MDA); reduced glutathione (GSH); and superoxide dismutase (SOD). Compared to PS-treated rats with normal diet, the PS-treated rats with zinc supplementation showed increased iron apparent absorption, serum iron, hemoglobin, red blood cell, GSH, and SOD activities; while the serum CORT; iron contents in liver, spleen, and regional brain; and MDA decreased. These results indicated that dietary zinc supplementation had preventive effects against PS-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.  相似文献   

5.
Biological Trace Element Research - Aluminum is considered an essential element endowed with toxicity potentials in human and animal. Thus, intoxication with aluminum can lead to oxidative stress,...  相似文献   

6.
Cold restraint stress (CRS) model exerts similar effect as physiological stress because it combines emotional stress (escape reaction) and physical stress (muscle work). It is well established that various responses to stress are regulated by sympathoadrenal system, brain monoaminergic systems and oxidative processes. Nardostachys jatamansi (NJE) is known to possess soothing and sedative action on the central nervous system. The present investigation was performed to explore the anti-stress activity of NJE on CRS model, through its effect on biochemical and neurochemical alterations. The rats were restrained in metallic chambers for 3?h at 4?°C was followed by sacrifice and assessment of stress related alterations. Hydro-ethanolic (30:70) extract of NJE was administrated orally at the doses of 200 and 500?mg/kg for 14?days and compared with vehicle control and Panax ginseng (100?mg/kg). Effects of NJE on CRS induced oxidative stress including reduced glutathione, glutathione peroxidase, glutathione reductase, glutathione-s-transferase were estimated. Dopamine, norepinephrine, serotonin and 5-hydroxy indole acetic acid were measured in the cerebral cortex, hippocampus and hypothalamus by HPLC electrochemical detector. NJE at both doses significantly inhibited CRS induced oxidative stress. It significantly mitigated CRS induced altered level of neurotransmitters in different brain regions. The study implied that NJE has the ability to provide protection against CRS induced oxidative stress and neurochemical alterations. Findings indicated that NJE revealed potent anti-stress effect implicating its therapeutic importance in stress-related disorders.  相似文献   

7.
目的:探讨缬沙坦对糖尿病大鼠心肌的保护作用及氧化应激影响。方法:以链脲佐菌素建立糖尿病大鼠模型,缬沙坦干预治疗12周后,采用ELISA法检测血清中8脱氧鸟酐(8-OHd G)含量、超氧化物歧化酶(SOD)活性,PCR测定心肌NADPH氧化酶亚型NOX2m RNA、p47phox m RNA表达,采用原位末端标记法(TUNEL)检测心肌细胞凋亡。结果:糖尿病大鼠经缬沙坦干预治疗后,8-OHd G含量,NOX2和p47phox m RNA表达均显著降低(P0.05),SOD活性升高(P0.01),心肌细胞凋亡指数显著降低(P0.05)。结论:高血糖导致糖尿病大鼠氧化应激增强和心肌细胞凋亡增加,缬沙坦可降低糖尿病大鼠氧化应激反应及减少心肌细胞凋亡,因而对心肌有一定的保护作用。  相似文献   

8.
The effects of lanthanum (III) (La(III)) in protecting soybean leaves against oxidative stress induced by ultraviolet-B (UV-B) radiation were investigated. The increase in contents of hydrogen peroxide (H2O2) and superoxide () due to UV-B radiation suggested oxidative stress. The increase in the content of malondialdehyde (MDA) and the decrease in the index of unsaturated fatty acid (IUFA) indicated oxidative damage on cell membrane induced by UV-B radiation. La(III) partially reversed UV-B-radiation-induced damage of plant growth. The reduction in the contents of H2O2, , and MDA and increase in the content of IUFA, compared with UV-B treatment, also indicated that La(III) alleviated the oxidative damage induced by UV-B radiation. The increase in the activities of superoxide dismutase and peroxidase and the contents of ascorbate, carotinoids, and flavonoids were observed in soybean leaves with La(III) + UV-B treatment, compared with UV-B treatment. Our data suggested that La(III) could protect soybean plants from UV-B-radiation-induced oxidative stress by reacting with reactive oxygen species directly or by improving the defense system of plants.  相似文献   

9.
Citicoline, a natural compound that functions as an intermediate in the biosynthesis of cell membrane phospholipids, is essential for membrane integrity and repair. It has been reported to protect brain against trauma. This study was designed to investigate the protective effects of citicoline on closed head injury (CHI) in rats. Citicoline (250 mg/kg i.v. 30 min and 4 h after CHI) lessened body weight loss, and improved neurological functions significantly at 7 days after CHI. It markedly lowered brain edema and blood–brain barrier permeability, enhanced the activities of superoxide dismutase and the levels of glutathione, reduced the levels of malondialdehyde and lactic acid. Moreover, citicoline suppressed the activities of calpain, and enhanced the levels of calpastatin, myelin basic protein and αII-spectrin in traumatic tissue 24 h after CHI. Also, it attenuated the axonal and myelin sheath damage in corpus callosum and the neuronal cell death in hippocampal CA1 and CA3 subfields 7 days after CHI. These data demonstrate the protection of citicoline against white matter and grey matter damage due to CHI through suppressing oxidative stress and calpain over-activation, providing additional support to the application of citicoline for the treatment of traumatic brain injury.  相似文献   

10.
To clarify the neuroprotective property of ceruloplasmin and the pathogenesis of aceruloplasminemia, we generated ceruloplasmin-deficient (CP −/−) mice on the C57BL/10 genetic background and further treated them with a mitochondrial complex I inhibitor, rotenone. There was no iron accumulation in the brains of CP −/− mice at least up to 60 weeks of age. Without rotenone treatment, CP −/− mice showed slight motor dysfunction compared with CP +/+ mice, but there were no detectable differences in the levels of oxidative stress markers between these two groups. A low dose of rotenone did not affect the mitochondrial complex I activity in our mice, however, it caused a significant change in motor behavior, neuropathology, or the levels of oxidative stress markers in CP −/− mice, but not in CP +/+ mice. Our data support that ceruloplasmin protects against rotenone-induced oxidative stress and neurotoxicity, probably through its antioxidant properties independently of its function of iron metabolism.  相似文献   

11.
Haider  Saida  Sajid  Irfan  Batool  Zehra  Madiha  Syeda  Sadir  Sadia  Kamil  Noor  Liaquat  Laraib  Ahmad  Saara  Tabassum  Saiqa  Khaliq  Saima 《Neurochemical research》2020,45(11):2762-2774

Noise has always been an important environmental factor that induces health problems in the general population. Due to ever increasing noise pollution, humans are facing multiple auditory and non-auditory problems including neuropsychiatric disorders. In modern day life it is impossible to avoid noise due to the rapid industrialization of society. Continuous exposure to noise stress creates a disturbance in brain function which may lead to memory disorder. Therefore, it is necessary to find preventive measures to reduce the deleterious effects of noise exposure. Supplementation of taurine, a semi essential amino acid, is reported to alleviate psychiatric disorders. In this study noise-exposed (100 db; 3 h daily for 15 days) rats were supplemented with taurine at a dose of 100 mg/kg for 15 days. Spatial and recognition memory was assessed using the Morris water maze and novel object recognition task, respectively. Results of this study showed a reversal of noise-induced memory impairment in rats. The derangements of catecholaminergic and serotonergic levels in the hippocampus and altered brain antioxidant enzyme activity due to noise exposure were also restored by taurine administration. This study highlights the importance of taurine supplementation to mitigate noise-induced impaired memory via normalizing the neurochemical functions and reducing oxidative stress in rat brain.

  相似文献   

12.
In the review contemporary data on the effects of oxidative stresses of various kinds in bacteria are summarized. A general theory of oxidative stress, peculiarities of oxidative stress in eukaryotes and prokaryotes, and natural and induced oxidative stresses are described. Data on the mechanisms of protection against oxidative stress are given, including prevention of the generation of oxidative stress, prevention of propagation of free radical chain reactions, and the mechanisms of repair of damaged DNA. The regulation of effector genes via redox-sensitive iron-containing proteins is analyzed. Special attention is given to the expression of so-called antioxidant and associated enzymes as protection mechanisms and to the space–time organization of the response of bacteria to oxidative stress.  相似文献   

13.
Methyl-3-O-methyl gallate (M3OMG) is a rare natural product that showed promising in vitro antioxidant activities. In this study, the protective role of synthetic M3OMG against sodium fluoride (NaF)-induced oxidative stress in rat brain was evaluated. Animals were treated with either M3OMG (10 and 20 mg/kg i.p.), vitamin C (10 mg/kg i.p.) as the standard antioxidant or the vehicle (5 % dimethyl sulfoxide; 1 ml/kg) for 1 week. Oxidative stress was induced in the brain by adding 600 ppm NaF in the drinking water for 7 days. At the end of the treatment period, the levels of thiobarbituric acid reactive substances (TBARS), reduced glutathione and the activities of antioxidant enzymes (superoxide dismutase and catalase) were evaluated in brain homogenates. M3OMG treatment mitigated the NaF-induced oxidative stress through normalization of the level of TBARS, reduced levels of glutathione and by the restoration of the diminished antioxidant enzyme activities. In conclusion, M3OMG could have a potential for treating neurotoxicity induced by fluoride or related environmental pollutants.  相似文献   

14.
The present study was carried out to evaluate the hepatoprotective effect and antioxidant role of infusion prepared from linden flowers (LF) against ethanol-induced oxidative stress. The hepatoprotective and antioxidant role of the plant’s infusion against ethanol-induced oxidative stress was evaluated by measuring liver damage serum biomarkers, aspartate aminotransferase (AST), alanine aminotransferase, lactate dehydrogenase (LDH), total protein, total albumin, and total cholesterol level; ADS such as GSH, GR, SOD, GST, CAT and GPx, and MDA contents in various tissues of rats. Rats were divided into four experimental groups: I (control), II (20 % ethanol), III (2 % LF), and IV (20 % ethanol + 2 % LF). According to the results, the level of serum marker enzymes, AST and LDH, was significantly increased in group alcohol and group LF as compared to control group, whereas decreased in group IV as compared to ethanol group. With regard to MDA content and ADS constituents, MDA contents of alcohol group in all tissues, except for erythrocytes and heart, and in brain, kidney, and spleen of LF group significantly increased compared to control group, whereas LF beverage extract supplementation did not restore the increased MDA towards close the control level. In addition, while ethanol caused fluctuation in antioxidant defense system constituents level as a result of oxidative stress condition in the rats, it could have not been determined the healing effects of the LF against these fluctuations. The results indicated that LF beverage extract could not be as important as diet-derived antioxidants in preventing oxidative damage in the tissues by reducing the lipid oxidation or inhibiting the production of ethanol-induced free radicals in rats.  相似文献   

15.
氧化胁迫在阿尔茨海默症(AD)的发病过程中起重要作用.花青素是一种广泛存在于植物中的黄酮类物质.实验结果表明,100 μmol/L 的花青素可以有效地缓解AD模型细胞氧化胁迫,具体表现为,降低AD模型细胞的H2O2易感性,减少胞内ROS和[NO]i.c-Jun氨基端激酶(JNK)是氧化胁迫导致细胞损伤的重要信号途径.实验结果显示花青素可以有效地抑制氧化胁迫对JNK的激活.提示花青素的抗氧化胁迫作用与JNK信号途径有关.因此,花青素可以作为一种氧化胁迫因子的清除剂来保护AD模型细胞,有望用于AD的辅助治疗.  相似文献   

16.
研究生姜提取物(Ginger Root Extract)对β淀粉样蛋白(β-amyloid protein,Aβ)所致阿尔茨海默病(Alzheirner’s disease,AD)大鼠脑组织氧化应激的影响,进一步探讨生姜提取物对AD的可能治疗作用及其机制。SD健康大鼠60只,雌雄各半,随机分成OP+LG组、OP+MG组、OP+HG组、SHAM组、OP+HupA组和OP组。药物干预4周后,以超氧化物歧化酶(SOD)、过氧化氢酶(CAT)免疫组化染色及丙二醛(MDA)Elisa分析比较大鼠大脑氧化应激指标及病理变化。结果显示OP+HG组、OP+HupA组的SOD、CAT的阳性表达活性明显升高(P<0.05),MDA水平下降显著(P<0.05);在OP+LG组、OP+MG组,干预效果不显著(P>0.05)。生姜提取物在高剂量时对阿尔茨海默病(AD)大鼠具有提高SOD、CAT阳性表达活性及降低MDA水平作用。  相似文献   

17.
The present study was aimed to investigate the effect of nerolidol on the development of kindling and associate oxidative stress and behavioral comorbidities. Kindling was induced by repeated injections of a sub-convulsive dose of pentylenetetrazol (PTZ-35 mg/kg; i.p.), at an interval of 48?±?2 h for 43 days (21 injections). Nerolidol was administered daily in three doses (12.5, 25 and 50 mg/kg) along with alternate day PTZ injection. To access behavioral comorbidities, animals were subjected to tail suspension test (TST) and passive shock avoidance (PSA) test to evaluate the associated depression and memory impairment respectively on the last day of PTZ administration. Following behavioral assessment, neurotransmitter level and oxidative stress markers were evaluated in brain. The results showed that nerolidol significantly suppressed the progression of kindling. Also, nerolidol ameliorates the kindling associated depression and memory impairment as indicated by decreased immobility time and increased step down latency, respectively, as compared to vehicle control animals. Further, these behavioral observations were complimented with corresponding neurochemical and oxidative stress markers changes. In conclusion, the results of present study showed that nerolidol treatment has protective effect against PTZ-induced kindling and associated oxidative stress and behavioral comorbidities.  相似文献   

18.
Social isolation during early development is one of the most potent stressors that can cause alterations in the processes of brain maturation, leading to behavioral and neurochemical changes that may persist to adulthood. Exposure to palatable diets during development can also affect neural circuits with long-term consequences. The aims of the present study were to investigate the long-term effects of isolation stress during the pre-pubertal period on the exploratory and anxiety-like behavior, the oxidative stress parameters and the respiratory chain enzymes activities in the hippocampus of adult male rats under chronic palatable diets. The results showed that isolated rats receiving either normal or high-fat diet during the pre-pubertal period presented an anxiolytic-like behavior. The animals exposed to stress and treated with high-carbohydrate diet, rich in disaccharides, on the other hand, presented the opposite pattern of behavior. Stress in the pre-pubertal period also leads to decreased activity of the antioxidant enzymes and the mitochondrial respiratory chain complexes II and IV and decreased total thiol content. These effects were reversed by high-fat diet when it was associated with stress. The effects of a sub-acute pre-pubertal isolation stress on anxiety-like behavior and on hippocampal oxidative imbalance during adulthood appear to be modulated by different types of diets, and probably different mechanisms are involved.  相似文献   

19.
Diabetic nephropathy is both a common and a severe complication of diabetes mellitus. Iron is an essential trace element. However, excess iron is toxic, playing a role in the pathogenesis of diabetic nephropathy. The present study aimed to determine the extent of the interaction between iron and type 2 diabetes in the kidney. Male rats were randomly assigned into four groups: control, iron (300-mg/kg iron dextran), diabetes (a single dose of intraperitoneal streptozotocin), and iron + diabetes group. Iron supplementation resulted in a higher liver iron content, and diabetic rats showed higher serum glucose compared with control rats, which confirmed the model as iron overload and diabetic. It was found that iron + diabetes group showed a greater degree of kidney pathological changes, a remarkable reduction in body weight, and a significant increase in relative kidney weight and iron accumulation in rat kidneys compared with iron or diabetes group. Moreover, malondialdehyde values in the kidney were higher in iron + diabetes group than in iron or diabetes group, sulfhydryl concentration and glutathione peroxidase activity were decreased by the diabetes and iron + diabetes groups, and protein oxidation and nitration levels were higher in the kidney of iron + diabetes group as compared to iron or diabetes group. However, iron supplementation did not elevate the glucose level of a diabetic further. These results suggested that iron increased the diabetic renal injury probably through increased oxidative/nitrative stress and reduced antioxidant capacity instead of promoting a rise in blood sugar levels; iron might be a potential cofactor of diabetic nephropathy, and strict control of iron would be important under diabetic state.  相似文献   

20.
Abstract: Incubation with l -DOPA induced a rise in GSH level in cultures of fetal rat mesencephalon, mouse neuroblastoma (Neuro-2A), human neuroblastoma (SK-N-MC), pig kidney epithelial cells (LLC-PK1), and glia from newborn rat brain, but not C6 glioma cells or neuronal cultures (no glia) from the mesencephalon. The pure neuronal cultures were destroyed by incubation with l -DOPA; added ascorbic acid or superoxide dismutase protected the cells. Washout of l -DOPA after 48 h amplified the rise in GSH content in mixed cultures (neurons plus glia). Examination of structure-activity relationships for elevating GSH levels in responsive cell types revealed that autooxidizable compounds (α-methyl-DOPA, dopamine, apomorphine, catechol, and hydroquinone) behaved similarly to l -DOPA, whereas structural analogues that cannot undergo autooxidation (3- O -methyl-DOPA, tyrosine, 2,4-dihydroxyphenylalanine, and resorcinol) failed to elevate GSH levels. Therefore, up-regulation of GSH appears to be a response to a mild oxidative stress. When mixed mesencephalic cultures were exposed to a strong oxidant stress by incubation with tert -butyl hydroperoxide, a loss in viability was seen. Cultures pretreated with l -DOPA or hydroquinone were protected from loss of viability. However, when cultures were pretreated with both l -DOPA and ascorbate, which prevents the rise in GSH level, protection was lost, in accord with the failure to up-regulate GSH. These results show that the up-regulation of cellular GSH evoked by autooxidizable agents is associated with significant protection of cells. Glia play an essential role in the response of mesencephalic cell cultures. An ability to up-regulate GSH may serve a protective role in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号