首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurogenic Drosophila genes brainiac and egghead are essential for epithelial development in the embryo and in oogenesis. Analysis of egghead and brainiac mutants has led to the suggestion that the two genes function in a common signaling pathway. Recently, brainiac was shown to encode a UDP-N-acetylglucosamine:beta Man beta 1,3-N-acetylglucosaminyltransferase (beta 3GlcNAc-transferase) tentatively assigned a key role in biosynthesis of arthroseries glycosphingolipids and forming the trihexosylceramide, GlcNAc beta 1-3Man beta 1-4Glc beta 1-1Cer. In the present study we demonstrate that egghead encodes a Golgi-located GDP-mannose:beta Glc beta 1,4-mannosyltransferase tentatively assigned a biosynthetic role to form the precursor arthroseries glycosphingolipid substrate for Brainiac, Man beta 1-4Glc beta 1-1Cer. Egghead is unique among eukaryotic glycosyltransferase genes in that homologous genes are limited to invertebrates, which correlates with the exclusive existence of arthroseries glycolipids in invertebrates. We propose that brainiac and egghead function in a common biosynthetic pathway and that inactivating mutations in either lead to sufficiently early termination of glycolipid biosynthesis to inactivate essential functions mediated by glycosphingolipids.  相似文献   

2.
The Drosophila genes fringe and brainiac exhibit sequence similarities to glycosyltransferases. Drosophila and mammalian fringe homologs encode UDP-N-acetylglucosamine:fucose-O-Ser beta1,3-N-acetylglucosaminyltransferases that modulate the function of Notch family receptors. The biological function of brainiac is less well understood. brainiac is a member of a large homologous mammalian beta3-glycosyltransferase family with diverse functions. Eleven distinct mammalian homologs have been demonstrated to encode functional enzymes forming beta1-3 glycosidic linkages with different UDP donor sugars and acceptor sugars. The putative mammalian homologs with highest sequence similarity to brainiac encode UDP-N-acetylglucosamine:beta1,3-N-acetylglucosaminyltransferases (beta3GlcNAc-transferases), and in the present study we show that brainiac also encodes a beta3GlcNAc-transferase that uses beta-linked mannose as well as beta-linked galactose as acceptor sugars. The inner disaccharide core structures of glycosphingolipids in mammals (Galbeta1-4Glcbeta1-Cer) and insects (Manbeta1-4Glcbeta1-Cer) are different. Both disaccharide glycolipids served as substrates for brainiac, but glycolipids of insect cells have so far only been found to be based on the GlcNAcbeta1-3Manbeta1-4Glcbeta1-Cer core structure. Infection of High Five(TM) cells with baculovirus containing full coding brainiac cDNA markedly increased the ratio of GlcNAcbeta1-3Manbeta1-4Glcbeta1-Cer glycolipids compared with Galbeta1-4Manbeta1-4Glcbeta1-Cer found in wild type cells. We suggest that brainiac exerts its biological functions by regulating biosynthesis of glycosphingolipids.  相似文献   

3.
T Szumilo  G P Kaushal  A D Elbein 《Biochemistry》1987,26(17):5498-5505
The presence of an N-acetylglucosaminyltransferase (GlcNAc-transferase) capable of adding a GlcNAc residue to GlcNAcMan3GlcNAc was demonstrated in mung bean seedlings. This enzyme was purified about 3400-fold by using (diethylaminoethyl)cellulose and phosphocellulose chromatographies and chromatography on Concanavalin A-Sepharose. The transferase was assayed by following the change in the migration of the [3H]mannose-labeled GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc on Bio-Gel P-4, or by incorporation of [3H]GlcNAc from UDP-[3H]GlcNAc into a neutral product, (GlcNAc)2Man3GlcNAc. Thus, the purified enzyme catalyzed the addition of a GlcNAc to that mannose linked in alpha 1,6 linkage to the beta-linked mannose. GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc was an excellent acceptor while Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, Man alpha 1,6(Man alpha 1,3)Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, and Man alpha 1,6(Man apha 1,3)Man alpha 1,6[GlcNAcMan alpha 1,3]Man beta 1,4GlcNAc were not acceptors. Methylation analysis and enzymatic digestions showed that both terminal GlcNAc residues on (GlcNAc)2Man3GlcNAc were attached to the mannoses in beta 1,2 linkages. The GlcNAc transferase had an almost absolute requirement for divalent cation, with Mn2+ being best at 2-3 mM. Mn2+ could not be replaced by Mg2+ or Ca2+, but Cd2+ showed some activity. The enzyme was also markedly stimulated by the presence of detergent and showed optimum activity at 0.15% Triton X-100. The Km for UDP-GlcNAc was found to be 18 microM and that for GlcNAcMan3GlcNAc about 16 microM.  相似文献   

4.
The binding to concanavalin A (Con A) by pyridylaminated oligosaccharides derived from bromelain (Man alpha 1,6(Xyl beta 1, 2) Man beta 1, 4GlcNAc beta 1, 4(Fuc alpha 1, 3)GlcNAc), horseradish peroxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1, 3) GlcNAc), bee venom phospholipase A2 (Man alpha 1,6Man beta 1,4GlcNAc beta 1,4GlcNAc and Man alpha 1,6(Man alpha 1, 3)Man beta 1,4GlcNAc beta 1, 4 (Fuc alpha 1, 3)GlcNAc) and zucchini ascorbate oxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4 GlcNAc beta 1, 4GlcNAc) was compared to the binding by Man3GlcNAc2, Man5GlcNAc2 and the asialo-triantennary complex oligosaccharide from bovine fetuin. While the fetuin oligosaccharide did not bind, bromelain, zucchini, Man2GlcNAc2 and horseradish peroxidase were retarded (in that order). The alpha 1, 3-fucosylated phospholipase, Man3GlcNAc2 and Man5GlcNAc2 structures were eluted with 15 M alpha -methylmannoside. It is concluded that core alpha 1,3-fucosylation has little or no effect on ConA binding while xylosylation decreases affinity for ConA. In a parallel study comparing the endoglycosidase D (Endo D) sensitivities of Man3GlcNAc2, IgG-derived GlcNAc beta 1, 2Man alpha 1,6(GlcNAc beta 1,2Man alpha 1,3)Man beta 1,4GlcNAc beta 1,4(Fuc alpha 1,6)GlcNAc, the phospholipase Man alpha 1,6(Man alpha 1, 3)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1,3)GlcNAc, and horseradish and zucchini pyridylaminated N-linked oligosaccharides, it was found that only the Man3GlcNAc2 structure was cleaved. The IgG structure was sensitive only when beta -hexosaminidase was also present. Thus, in contrast to core alpha 1,6-fucosylated structures, such as those present in mammals, the presence of core alpha 1,3-fucose, as found in structures from plants and insects, and/or beta 1,2-xylose, as found in plants, causes resistance to Endo D.  相似文献   

5.
In order to purify the glycosyltransferases involved in the assembly of lipid-linked oligosaccharides and to be able to study the acceptor substrate specificity of these enzymes, methods were developed to prepare and purify a variety of lipid-linked oligosaccharides, differing in the structure of the oligosaccharide moiety. Thus, Man9 (GlcNAc)2-pyrophosphoryl-dolichol was prepared by isolation and enzymatic synthesis using porcine pancreatic microsomes, while Glc3Man9(GlcNAc)2-PP-dolichol was isolated from Madin-Darby canine kidney cells. Treatment of these oligosaccharide lipids with a series of selected glycosidases led to the preparation of Man alpha 1,2Man alpha 1,2Man alpha 1,3[Man alpha 1,6(Man alpha 1,3)Man alpha 1,6]Man beta 1,4GlcNAc beta 1,4GlcNAc-PP-dolichol; Man alpha 1,2Man alpha 1,2Man alpha 1,3[Man alpha 1,6]Man beta 1,4GlcNAc beta 1, 4GlcNac-PP-dolichol; and Man alpha 1,6(Man alpha 1,3)Man alpha 1, 6[Man alpha 1,3]Man beta 1,4GlcNAc-beta 1,4GlcNAc-PP-dolichol. The preparation, isolation, and characterization of each of these lipid-linked oligosaccharide substrates are described.  相似文献   

6.
The distinction between the different classes of glycolipids is conditioned by the action of specific core transferases. The entry point for lacto-series glycolipids is catalyzed by the beta1,3 N-acetylglucosaminyltransferase GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (Lc3) synthase enzyme. The Lc3 synthase activity has been shown to be regulated during development, especially during brain morphogenesis. Here, we report the molecular cloning of a mouse gene encoding an Lc3 synthase enzyme. The mouse cDNA included an open reading frame of 1131 base pairs encoding a protein of 376 amino acids. The Lc3 synthase protein shared several structural motifs previously identified in the members of the beta1,3 glycosyltransferase superfamily. The Lc3 synthase enzyme efficiently utilized the lactosyl ceramide glycolipid acceptor. The identity of the reaction products of Lc3 synthase-transfected CHOP2/1 cells was confirmed by thin-layer chromatography immunostaining using antibodies TE-8 and 1B2 that recognize Lc3 and Gal(beta1,4)GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (nLc4) structures, respectively. In addition to the initiating activity for lacto-chain synthesis, the Lc3 synthase could extend the terminal N-acetyllactosamine unit of nLc4 and also had a broad specificity for gangliosides GA1, GM1, and GD1b to generate neolacto-ganglio hybrid structures. The mouse Lc3 synthase gene was mainly expressed during embryonic development. In situ hybridization analysis revealed that that the Lc3 synthase was expressed in most tissues at embryonic day 11 with elevated expression in the developing central nervous system. Postnatally, the expression was restricted to splenic B-cells, the placenta, and cerebellar Purkinje cells where it colocalized with HNK-1 reactivity. These data support a key role for the Lc3 synthase in regulating neolacto-series glycolipid synthesis during embryonic development.  相似文献   

7.
Structure of Saccharomyces cerevisiae alg3, sec18 mutant oligosaccharides   总被引:3,自引:0,他引:3  
Asparagine-linked oligosaccharides are synthesized by transfer of Glc3Man9GlcNAc2 from dolichol pyrophosphate to nascent polypeptides. Assembly of the precursor proceeds by highly ordered sequential addition of mannose and glucose to form Glc3Man9GlcNAc2-P-P-dolichol. Yeast mutants in asparagine-linked glycosylation (alg), generated by an 3H-Man suicide technique, were assigned to eight complementation groups which define steps in oligosaccharide-lipid synthesis (Huffaker, T.C., and Robbins, P.W. (1982) J. Biol. Chem. 257, 3203-3210). Alg3 invertase oligosaccharides are resistant to endo-beta-N-acetylglucosaminidase H, and the lipid-oligosaccharide pool yields Man5Glc-NAc2, suggesting its structure may be that from mammalian cells lacking Man-P-dolichol (Chapman, A., et al. (1980) J. Biol. Chem. 255, 4441-4446). To test this supposition, the endoplasmic reticulum form of invertase derepressed in alg3,sec18 yeast at 37 degrees C was isolated as a source of oligosaccharides whose processing beyond glucose and/or mannose trimming, if involved, would be prevented. Man8GlcNAc2 and Man5GlcNAc2 were released by peptide-N-glycosidase F from alg3,sec18 invertase in a 1:5 molar ratio. 1H NMR spectroscopy revealed Man8GlcNAc2 to be the alpha 1,2-mannosidase-trimming product described earlier (Byrd, J. C., Tarentino, A. L., Maley, F., Atkinson, P. H., and Trimble, R. B. (1982) J. Biol. Chem. 257, 14657-14666), while Man5GlcNAc2 was Man alpha 1, 2Man alpha 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc beta 1, 4GlcNAc. This provides a structural proof for the lipid-linked Man5GlcNAc2 originally proposed from enzymatic and chemical analyses of the radiolabeled mammalian precursor. Experimental evidence indicates that, unlike the mammalian cell mutants which are unable to synthesize Man-P-dolichol, alg3 yeast accumulate Man5GlcNAc2-P-P-dolichol due to a defective alpha 1,3-mannosyltransferase required for the next step in oligosaccharide-lipid elongation.  相似文献   

8.
Bovine milk UDPgalactose:N-acetylglucosamine beta-4-galactosyltransferase has been used to investigate the effect of a bisecting GlcNAc residue (linked beta 1,4 to the beta-linked mannose of the trimannosyl core of asparagine-linked complex oligosaccharides) on galactosylation of biantennary complex oligosaccharides. Columns of immobilized lectins (concanavalin A, erythroagglutinating phytohemagglutinin, and Ricinus communis agglutinin 120) were used to separate the various products of the reactions. Preferential galactosylation of the GlcNAc beta 1,2Man alpha 1,3 arm occurred both in the absence and in the presence of a bisecting GlcNAc residue; the ratio of the rates of galactosylation of the Man alpha 1,3 arm to the Man alpha 1,6 arm was 6.5 in the absence of a bisecting GlcNAc and 2.8 in its presence. The bisecting GlcNAc residue reduced galactosylation of the Man alpha 1,3 arm by about 78% probably due to steric hindrance of the GlcNAc beta 1,2Man alpha 1,3 beta 1,4 region of the substrate by the bisecting GlcNAc. This steric hindrance prevents the action of four other enzymes involved in assembly of complex asparagine-linked oligosaccharides and indicates the importance of the bisecting GlcNAc residue in the control of glycoprotein biosynthesis. The Man alpha 1,3 arm of biantennary oligosaccharides is believed to be freely accessible to enzyme action whereas the Man alpha 1,6 arm is believed to be folded back toward the core. This may explain the preferential action of Gal-transferase on the Man alpha 1,3 arm of both bisected and nonbisected oligosaccharides.  相似文献   

9.
The distribution of sialic acid residues as well as other glycosidic sugars has been investigated in the horse oviductal isthmus during anoestrus, oestrus and pregnancy by means of lectin and pre-lectin methods. Ciliated cells and non-ciliated (secretory) cells exhibited different lectin binding profiles that were found to change during the investigated stages. Ciliated cells did not show any reactivity in the basal cytoplasm, while the supra-nuclear cytoplasm displayed a few of oligosaccharides with terminal and internal alphamannose (Man) and/or alphaglucose (Glc) during oestrus and pregnancy and a moderate presence of oligosaccharides terminating in alphafucose (Fuc) during oestrus; cilia exhibited a more complex glycoconjugate pattern for the presence of oligosaccharides terminating in N-acetylgalactosamine (GalNAc), GalNAcalpha1,3 GalNAcalpha1,3galactose(Gal)beta1,4Galbeta1,4N-acetylglucosamine(GlcNAc), Fuc, sialic acid (Neu5Ac)-aGalNAc belonging or not to the GalNAca1,3GalNAca1,3 Galb1,4 Galb1, 4GlcNAc sequence, and. alphaGalNAc and Neu5Aca 2,6Gal/GalNAc increased during oestrus. Cilia displayed terminal Galbeta1,3 GalNAc in pregnancy, terminal alphaGal in anoestrus and pregnancy and terminal or internal D-GlcNAc during anoestrus and pregnancy, respectively. The whole cytoplasm of non-ciliated cells showed oligosaccharides terminating with alphaGalNAc, Neu5Aca2,6Gal/GalNAc, Neu5Ac GalNAca 1,3GalNAcalpha1,3Galbeta1,4Galbeta1,4GlcNAc during the investigated stages, as well as GlcNAc in anoestrus and pregnancy. The supra-nuclear zone of non-ciliated cells exhibited oligosaccharides with terminal Galbeta1,4GlcNAc and internal Man during oestrus and pregnancy as well as terminal alphaGal and Fuc in oestrus and Neu5Ac-Galbeta1,3GalNAc in pregnancy. The luminal surface of non-ciliated cells showed glycans terminating with alphaGalNAc and/or Neu5Ac GalNAcalpha1,3 GalNAcalpha1,3Galbeta1,4Galbeta1,4GlcNAc in all specimens, oligosaccharides with terminal Galbeta1,4GlcNAc and internal Man during oestrus and pregnancy, Neu5Ac alpha2,6Gal/GalNAc in anoestrus and oestrus, and glycans terminating with Galbeta1,3GalNAc, Neu5A acalpha2,3 Galbeta1, 4GlcNac, Neu5ac-Galbeta1,3GalNAc, Neu5Ac-Galbeta1,4 GlcNAc in pregnancy. These findings show the presence of sialoglycoconjugates in the oviductal isthmus of the mare as well as the existence of great modifications in the glycoconjugates linked to different physiological conditions.  相似文献   

10.
R L Brockbank  H J Vogel 《Biochemistry》1990,29(23):5574-5583
The major form of the oligosaccharide of hen phosvitin was studied with two-dimensional 1H NMR of the intact glycoprotein. Its structure was determined from an analysis of the chemical shifts of the structural reporter groups, and it was further confirmed by comparison to several related model oligosaccharides. The oligosaccharide is N-linked and is present in a 1:1 stoichiometry to the protein. It has a complex type 1 triantennary structure with two NeuAc alpha 2,6Gal beta 1,4GlcNAc beta 1,2 arms linked to the Man-4 and Man-4' and a third Gal beta 1, 4GlcNAc beta 1,4 arm attached to the Man-4. The oligosaccharide contains the common core sequence which is present in all N-linked glycoproteins [Man alpha 1,3(Man alpha 1,6)-Man beta 1,4GlcNAc beta 1,4GlcNAc beta 1,N]. In the course of this study, we have found that unique spin systems for the GlcNAc and NeuAc are obtained for spectra recorded in 90% H2O. Their NH peaks were assigned at low pH, and these assignments proved useful for confirming the identity of cross-peaks in the anomeric region. In addition, the protons of GlcNAc-1 could be correlated to the NH of the asparagine link. The cross-peak patterns determined in phase-sensitive 2D experiments for the H1,H2 protons have a different appearance for each type of monosaccharide, and this information was also used for making first-order assignments. A comparison with model compounds suggests that the solution conformation of the oligosaccharide is not affected by its attachment to the protein.  相似文献   

11.
Jack bean α-mannosidase (JBM) is a well-studied plant vacuolar α-mannosidase, and is widely used as a tool for the enzymatic analysis of sugar chains of glycoproteins. In this study, the JBM digestion profile of hybrid-type N-glycans was examined using pyridylamino (PA-) sugar chains. The digestion efficiencies of the PA-labeled hybrid-type N-glycans Manα1,6(Manα1,3)Manα1,6(GlcNAcβ1,2Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAc-PA (GNM5-PA) and Manα1,6(Manα1,3)Manα1,6(Galβ1,4GlcNAcβ1,2Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAc-PA (GalGNM5-PA) were significantly lower than that of the oligomannose-type N-glycan Manα1,6(Manα1,3)Manα1,6Manβ1,4GlcNAcβ1,4GlcNAc-PA (M4-PA), and the trimming pathways of GNM5-PA and GalGNM5-PA were different from that of M4-PA, suggesting a steric hindrance to the JBM activity caused by GlcNAcβ1-2Man(α) residues of the hybrid-type N-glycans. We also found that the substrate preference of JBM for the terminal Manα1-6Man(α) and Manα1-3Man(α) linkages in the hybrid-type N-glycans was altered by the change in reaction pH, suggesting a pH-dependent change in the enzyme-substrate interaction.  相似文献   

12.
Cipollo JF  Trimble RB 《Glycobiology》2002,12(11):749-762
N-glycosylation in nearly all eukaryotes proceeds in the endoplasmic reticulum (ER) by transfer of the precursor Glc(3)Man(9)GlcNAc(2) from dolichyl pyrophosphate (PP-Dol) to consensus Asn residues in nascent proteins. The Saccharomyces cerevisiae alg (asparagine-linked glycosylation) mutants fail to synthesize oligosaccharide lipid properly, and the alg12 mutant accumulates a Man(7)GlcNAc(2)-PP-Dol intermediate. We show that the Man(7)GlcNAc(2) released from alg12Delta-secreted invertase is Manalpha1,2Manalpha1,2Manalpha1,3(Manalpha1,2Manalpha1,3Manalpha1,6)-Manbeta1,4-GlcNAcbeta1-4GlcNAcalpha/beta, confirming that the Man(7)GlcNAc(2) is the product of the middle-arm terminal alpha1,2-mannoslytransferase encoded by the ALG9 gene. Although the ER glucose addition and trimming events are similar in alg12Delta and wild-type cells, the central-arm alpha1,2-linked Man residue normally removed in the ER by Mns1p persists in the alg12Delta background. This confirms in vivo earlier in vitro experiments showing that the upper-arm Manalpha1,2Manalpha1,6-disaccharide moiety, missing in alg12Delta Man(7)GlcNAc(2), is recognized and required by Mns1p for optimum mannosidase activity. The presence of this Man influences downstream glycan processing by reducing the efficiency of Ochlp, the cis-Golgi alpha1,6-mannosyltransferase responsible for initiating outer-chain mannan synthesis, leading to hypoglycosylation of external invertase and vacuolar protease A.  相似文献   

13.
Antiserum against GlcNAc beta 1----2Man alpha 1----3Man beta 1----4Glc beta 1----1Cer (MlOse4Cer), a mannolipid isolated from spermatozoa of the fresh-water bivalve Hyriopsis schlegelii, was elicited in rabbits by repeated injection of a mixture of hapten-bovine serum albumin with Freund's adjuvant. The specificity of the affinity-purified antibody obtained from the serum was based on two forms of enzyme-immunodetection of its binding to structurally related glycolipids, either adsorbed to microtiter plates or chromatographed on thin-layer plates. The purified antibody exhibited a significant cross-reactivity with GlcNAc beta 1----2Man alpha 1----3(Xyl beta 1----2)Man beta 1----4Glc beta 1----1Cer, (MIXOse5Cer) containing a core structure closely related to MlOse4Cer, but almost unrelated to other glycolipids. Distribution of MlOse4Cer and MlXOse5Cer in various bivalve and snail glycolipid extracts were screened in thin-layer immunobinding assays by using this purified specific antibody. The presence of the glycolipid antigens was limited to certain taxonomic orders of shellfish species.  相似文献   

14.
Several mammalian alpha(1,3)fucosyltransferases (alpha[1,3]Fuc-T) that synthesize carbohydrates containing alpha(1,3)fucosylated lactosamine units have been identified. Although Chinese hamster ovary (CHO) cells do not express alpha(1,3)Fuc-T activity, the rare mutants LEC11 and LEC12, isolated after mutagenesis or DNA transfection, each express an alpha(1,3)Fuc-T that may be distinguished by several criteria. Two new CHO mutants possessing alpha(1,3)Fuc-T activity (LEC29 and LEC30) have now been isolated after treatment of a CHO cell population with 5-azacytidine (5-AzaC), ethylnitrosourea (ENU), or 5-AzaC followed by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Like LEC12, both mutants possess an N-ethylmaleimide-resistant alpha(1,3)Fuc-T activity that can utilize a variety of acceptors and both express the Lewis X (Lex) determinant (Gal beta[1,4](Fuc alpha[1,3])GlcNAc beta 1)) but not the sialyl alpha(2,3)Lex determinant on cell-surface carbohydrates. However, LEC29 and LEC30 may be distinguished from LEC11 and LEC12, as well as from each other, on the basis of their unique patterns of lectin resistance and their abilities to bind the VIM-2 monoclonal antibody that recognizes carbohydrates terminating in NeuNAc alpha(2,3)Gal beta(1,4)GlcNAc beta(1,3)Gal beta(1,4)(Fuc alpha[1,3])GlcNAc beta and also by the different in vitro substrate specificities and kinetic properties of their respective alpha(1,3)Fuc-T activities. The combined data provide good evidence that the LEC29 and LEC30 alpha(1,3)Fuc-Ts are novel transferases encoded by distinct gene products.  相似文献   

15.
Incubation of a membrane preparation from the lactating bovine mammary gland with UDP-[3H]GlcNAc, GDP-[14C]Man, and UDP-[3H]Glc results in the biosynthesis of 15 lipid-linked saccharides that differ from one another by a monosaccharide unit. Pulse and chase kinetics indicate that these glycolipids are related to one another as precursor products for the biosynthesis of asparagine-linked glycoproteins of this tissue. [Man-14C]- and [Man-14C, GlcNAc-3H]saccharides were prepared from corresponding glycolipids by mild acid hydrolysis. Following extensive purification by paper and gel filtration chromatography, structural characterization was conducted on tri-, tetra-, penta-, and undecasaccharides via size determination on calibrated columns of Bio-Gel P-2 and P-4, compositional analysis, exo- and endoglycosidase digestions, methylation, Smith degradation, and acetolysis. These structures were identified as: Man beta 1 leads to 4(3)GlcNAc beta 1 leads to 4(3)Glc-NAc, Man alpha 1 leads to 3Man beta 1 leads to 4(3)GlcNAc beta 1 leads to 4(3)GlcNAc, Man alpha 1 leads to 3(Man alpha 1 leads to 6)Man beta 1 leads to 4(3)Glc NAc beta 1 leads to 4(3)Glc-NAc, and Man alpha 1 leads to 2 Man alpha 1 leads to 2Man alpha 1 leads to 3(Man alpha 1 leads to 2Man alpha 1 leads to 6[Man alpha 1 leads to 2Man alpha 1 leads to 3]Man alpha 1 leads to 6)Man beta 1 leads to 4(3)GlcNAc beta 1 leads to 4(3)GlcNAc.  相似文献   

16.
The activity of N-acetylglucosaminyltransferase III, which adds a "bisecting" GlcNAc in beta 1,4 linkage to the beta-linked Man of the core of Asn-linked oligosaccharides (Narasimhan, S. (1982) J. Biol. Chem. 257, 10235-10242), was determined in hepatic nodules of rats initiated by administration of a single dose of carcinogen 1,2-dimethylhydrazine.2HCl (100 mg/kg, intraperitoneal) 18 h after partial hepatectomy and promoted by feeding a diet supplemented with 1% orotic acid for 32-40 weeks. N-Acetylglucosaminyltransferase III was assayed using glycopeptide GlcNAc beta 1,2Man alpha 1,6(GlcNAc beta 1,2Man alpha 1,3)Man beta 1, 4GlcNAc beta 1,4GlcNAc-Asn as substrate and, as enzyme sources, microsomal membranes of the hepatic nodules, surrounding liver, regenerating liver, and age- and sex-matched control liver. The nodules had significant N-acetylglucosaminyltransferase III activity (0.78-2.18 nmol GlcNAc transferred/h/mg of protein), while the surrounding liver, the regenerating liver (24 h after partial hepatectomy), and the control liver had negligible activity (0.02-0.03 nmol/h/mg of protein). Product isolated from a large scale N-acetylglucosaminyltransferase III incubation with hepatic nodules as enzyme source showed the presence of the bisecting GlcNAc residue by 500 MHz proton NMR spectroscopy. Concomitant with the appearance of N-acetylglucosaminyltransferase III activity in the preneoplastic nodules, the activities of N-acetylglucosaminyltransferase I and II were decreased in these membranes when compared to those from surrounding liver, regenerating liver, and control liver. These results suggest that N-acetylglucosaminyltransferase III is induced at the preneoplastic stage in liver carcinogenesis promoted by orotic acid and are consistent with the reported presence of bisecting GlcNAc residues in the Asn-linked oligosaccharides of rat and human hepatoma gamma-glutamyl transpeptidase and their absence in enzyme from normal liver of rats and humans (Kobata, A., and Yamashita, K. (1984) Pure Appl. Chem. 56, 821-832).  相似文献   

17.
Kitajima T  Chiba Y  Jigami Y 《The FEBS journal》2006,273(22):5074-5085
In yeast, the N-linked oligosaccharide modification in the Golgi apparatus is initiated by alpha1,6-mannosyltransferase (encoded by the OCH1 gene) with the addition of mannose to the Man(8)GlcNAc(2) or Man(9)GlcNAc(2) endoplasmic reticulum intermediates. In order to characterize its enzymatic properties, the soluble form of the recombinant Och1p was expressed in the methylotrophic yeast Pichia pastoris as a secreted protein, after truncation of its transmembrane region and fusion with myc and histidine tags at the C-terminus, and purified using a metal chelating column. The enzymatic reaction was performed using various kinds of pyridylaminated (PA) sugar chains as acceptor, and the products were separated by high performance liquid chromatography. The recombinant Och1p efficiently transferred a mannose to Man(8)GlcNAc(2)-PA and Man(9)GlcNAc(2)-PA acceptors, while Man(5)GlcNAc(2)-PA, which completely lacks alpha1,2-linked mannose residues, was not used as an acceptor. At high enzyme concentrations, a novel product was detected by HPLC. Analysis of the product revealed that a second mannose was attached at the 6-O-position of alpha1,3-linked mannose branching from the alpha1,6-linked mannose that is attached to beta1,4-linked mannose of Man(10)GlcNAc(2)-PA produced by the original activity of Och1p. Our results indicate that Och1p has the potential to transfer two mannoses from GDP-mannose, and strictly recognizes the overall structure of high mannose type oligosaccharide.  相似文献   

18.
A UDP-Gal:N-acetylglucosamine beta(1,4)-galactosyltransferase which catalyzes the synthesis of beta-D-Gal(1,4)-D-GlcNAc units has been purified 17,560-fold from Ehrlich tumor cells to apparent electrophoretic homogeneity. The enzyme appears to be a monomeric protein with Mr = 56,000-58,000. Enzymatic activity requires the presence of MnCl2, is stimulated by detergent, and exhibits a pH optimum at 6.9. The Km values for GlcNAc and UDP-Gal are 1.89 and 0.046 mM, respectively. The Ehrlich cell beta-galactosyltransferase acts efficiently on glycoproteins and glycolipids terminating in GlcNAc, but is inactive toward glycoconjugates possessing terminal GalNAc units. The oligosaccharides beta-D-GlcNAc(1,3)-D-Gal and beta-D-GlcNAc(1,3)[beta-D-GlcNAc(1,6)]-D-Gal are good acceptors for the beta-galactosyltransferase from Ehrlich cells, suggesting that the enzyme may participate in the biosynthesis of i/I structures. In addition, other linear and branched sugars presenting GlcNAc residues at their nonreducing termini also act as acceptors for the enzyme. The activity of Ehrlich cell beta-galactosyltransferase both in the presence and absence of alpha-lactalbumin has been studied using a series of derivatives of Glc and GlcNAc which were substituted at various positions of the pyranose ring. This study has provided a map of the molecular contacts necessary for enzymatic activity in the presence and in the absence of alpha-lactalbumin.  相似文献   

19.
20.
The aim of this work was the characterization of the glycoconjugates of the premeiotic spermatogenetic cells of the testis of an urodele amphibian, Pleurodeles waltl, by means of lectins in combination with several chemical and enzymatic procedures, in order to establish the distribution of N- and O-linked oligosaccharides in these cells. In the cytoplasm of the primordial germ cells, primary and secondary spermatogonia and primary spermatocytes, a granular structure can be observed close to the nucleus. These granules contain four types of sugar chains according to their appearance during the differentiation process: 1. some oligosaccharides that are identified in all the four cell types above mentioned, which include N-linked oligosaccharides with Fuc, Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc and O-linked oligosaccharides with Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc; 2. other glycan chains that are not present in the primary spermatocytes (N-linked oligosaccharides with DBA-positive GalNAc, GlcNAc, and a slight amount of Neu5Ac alpha2,6Gal/GalNAc and O-linked oligosaccharides with WGA-positive GlcNAc); 3. the sugar chains that are not in the earliest step of spermatogenesis (formed by both N-linked and O-linked oligosaccharides with Glc); and 4. other that appear at the earliest and latest stages, but not in the intermediate ones, (N-linked oligosaccharides with Man and O-linked oligosaccharides with SBA- and HPA-positive GalNAc and PNA-positive Gal beta1,3GalNAc). This structure could be related with the Drosophila spectrosome and fusome, unusual cytoplasmic organelles implicated in cystic germ cell development. Data from the present work, as compared with those from mammals and other vertebrates, suggest that, although no dramatic changes in the glycosylation pattern are observed, some cell glycoconjugates are modified in a predetermined way during the early steps of the spermatogenetic differentiation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号