首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The crystal structure of the double-helical B-DNA dodecamer of sequence C-G-C-G-A-A-T-T-C-G-C-G has been solved and refined independently in three forms: (1) the parent sequence at room temperature; (2) the same sequence at 16 K; and (3) the 9-bromo variant C-G-C-G-A-A-T-TBrC-G-C-G at 7 °C in 60% (v/v) 2-methyl-2.4-pentanediol. The latter two structures show extensive hydration along the phosphate backbone, a feature that was invisible in the native structure because of high temperature factors (indicating thermal or static disorder) of the backbone atoms. Sixty-five solvent peaks are associated with the phosphate backbone, or an average of three per phosphate group. Nineteen other molecules form a first shell of hydration to base edge N and O atoms within the major groove, and 36 more are found in upper hydration layers. The latter tend to occur in strings or clusters spanning the major groove from one phosphate group to another. A single spermine molecule also spans the major groove. In the minor groove, the zig-zag spine of hydration that we believe to be principally responsible for stabilizing the B form of DNA is found in all three structures. Upper level hydration in the minor groove is relatively sparse, and consists mainly of strings of water molecules extending across the groove, with few contacts to the spine below. Sugar O-1′ atoms are closely associated with water molecules, but these are chiefly molecules in the spine, so the association may reflect the geometry of the minor groove rather than any intrinsic attraction of O-1′ atoms for hydration. The phosphate O-3′ and O-5′ atoms within the backbone chain are least hydrated of all, although no physical or steric impediment seems to exist that would deny access to these oxygen atoms by water molecules.  相似文献   

2.
Abstract

A nonoriented hydrated film of poly(dG-dC) with ≈20 water molecules per nucleotide (called B by Loprete and Hartman (Biochem. 32, 4077–4082 (1993)) was studied by Fourier transform infrared (FT-IR) spectroscopy either as equilibrated sample between 290 and 270 K or, after quenching into the glassy state, as nonequilibrated film isothermally at 200 and 220 K. IR spectral changes on isothermal relaxation at 200 and 220 K, caused by interconversion of two conformer substates, are revealed by difference spectra. Comparison with difference curves obtained in the same manner from two classical B-DNA forms, namely the d(CGCGAATTCGCG)2 dodecamer and polymeric NaDNA from salmon testes, revealed that the spectral changes on BIto-BII interconversion in the classical B-DNA forms are very similar to those in the B-form, and that the spectroscopic differences between the BI and BII features from classical B-DNA and those from the modified B-form are minor. Nonexponential kinetics of the BI→BII transition in the B-form of poly(dG-dC) at 200 K showed that the structural relaxation time is about three times of that in the classical B-DNA forms (≈30 versus ≈10 min at 200 K). The unexpected reversal of conformer substates interconversion (that is BII→BI transition on cooling from 290 K and BI→BII transition on isothermal relaxation at 200 K) observed for classical B-DNA occurs also in the modified B-form. We therefore conclude that restructuring of hydration shells rules the low-temperature dynamics of the B-form via its two conformer substates in the same manner reported for classical B-DNA by Pichler et al. (J. Phys. Chem. B 106, 3263–3274 (2002)).  相似文献   

3.
Divalent metals associate with DNA in a site-selective manner, which can influence nucleosome positioning, mobility, compaction, and recognition by nuclear factors. We previously characterized divalent metal binding in the nucleosome core using hard (short-wavelength) X-rays allowing high-resolution crystallographic determination of the strongest affinity sites, which revealed that Mn2+ associates with the DNA major groove in a sequence- and conformation-dependent manner. In this study, we obtained diffraction data with soft X-rays at the Mn2+ absorption edge for a core particle crystal in the presence of 10 mM MnSO4, mimicking prevailing Mg2+ concentration in the nucleus. This provides an exceptional view of counterion binding in the nucleosome through identification of 45 divalent metal binding sites.In addition to that at the well-characterized major interparticle interface, only one other histone-divalent metal binding site is found, which corresponds to a symmetry-related counterpart on the ‘free’ H2B α1 helix C-terminus. This emphasizes the importance of the α-helix dipole in ion binding and suggests that the H2B motif may serve as a nucleation site in nucleosome compaction. The 43 sites associated with the DNA are characterized by (1) high-affinity direct coordination at the most electrostatically favorable major groove locations, (2) metal hydrate binding to the major groove, (3) direct coordination to phosphate groups at sites of high charge density, (4) metal hydrate binding in the minor groove, or (5) metal hydrate-divalent anion pairing. Metal hydrates are found within the minor groove only at locations displaying a narrow range of high-intermediate width and to which histone N-terminal tails are not associated or proximal. This indicates that divalent metals and histone tails can both collaborate and compete in minor groove association, which sheds light on nucleosome solubility and chromatin compaction behavior.  相似文献   

4.
5.
Transcription of the his3 gene region in Saccharomyces cerevisiae   总被引:48,自引:0,他引:48  
The dodecamer d(CpGpCpGpApApTpTpCpGpCpG) or C-G-C-G-A-A-T-T-C-G-C-G crystallizes as slightly more than one full turn of right-handed B-DNA. It is surrounded in the crystal by one bound spermine molecule and 72 ordered water molecules, most of which associate with polar N and O atoms at the exposed edges of base-pairs. Hydration within the major groove is principally confined to a monolayer of water molecules associated with exposed N and O groups on the bases, with most association being monodentate. Waters hydrating backbone phosphate oxygens tend not to be ordered, except where they are immobilized by 5-methyl groups from nearby thymines. In contrast, the minor groove is hydrated in an extensive and regular manner, with a zigzag “spine” of first- and second-shell hydration along the floor of the groove serving as a foundation for less-regular outer shells extending beyond the radius of the phosphate backbone. This spine network bridges purine N-3 and pyrimidine O-2 atoms in adjacent base-pairs. It is particularly regular in the A-A-T-T center, and is disrupted at the C-G-C-G ends, in part by the presence of the N-2 amino groups on guanine residues. The minor groove hydration spine may be responsible for the stability of the B form of polymers containing only A · T and I · C base-pairs, and its disruption may explain the ease of transition to the A form of polymers with G · C pairs.  相似文献   

6.
7.
Abstract

Proteins rely on a variety of readout mechanisms to preferentially bind specific DNA sequences. The nucleosome offers a prominent example of a shape readout mechanism where arginines insert into narrow minor groove regions that face the histone core. Here we compare DNA shape and arginine recognition of three nucleosome core particle structures, expanding on our previous study by characterizing two additional structures, one with a different protein sequence and one with a different DNA sequence. The electrostatic potential in the minor groove is shown to be largely independent of the underlying sequence but is, however, dominated by groove geometry. Our results extend and generalize our previous observation that the interaction of arginines with narrow minor grooves plays an important role in stabilizing the deformed DNA in the nucleosome.  相似文献   

8.
Using competitive reconstitution, we have refined the parameters for the binding of histone octamers to artificial nucleosome-positioning sequences of the form: (A/T3nn(G/C)3nn. We find that the optimal period between flexible segments is approximately 10.1 base-pairs, supporting the view that the DNA on the nucleosome surface is overwound. The strongest requirement for flexible DNA is near the protein dyad. However, we see no indication of changes in DNA helical repeat in this region. Using a series of repetitive sequences, we confirm that neither all A/T-rich nor all G/C-rich regions are identical in promoting nucleosome formation. Surprisingly, A/T-rich segments containing the TpA step, subject to purine-purine clash in the minor groove, favor nucleosome formation over sequences lacking this step. Short tracts of adenine residues are found to position on the histone surface like other A/T-rich regions, in the manner predicted by the direction of their sequence-directed bends as determined by electrophoretic methods. Tracts containing five adenine residues are extremely aniostropic in their flexibility and are strongly detrimental to nucleosome formation when positioned for major groove compression. Longer adenine tracts are found to position near the ends of the nucleosomal DNA. However, other positions may be occupied by an A12 tract, with only a minor penalty in the free energy of nucleosome formation. Overall, reconstituted nucleosome positions are translationally degenerate, suggesting a weak dependence on DNA flexibility for nucleosome positioning. Dinucleosomal reconstitutions on tandem dimers of the 5 S RNA gene of Lytechinus variegatus demonstrate a weak phasing dependence for the interaction between nucleosomes. This interaction is maximal for the 202 base-pair repeat and suggests a co-operative mechanism for the formation of ordered nucleosomal arrays based on a combination of DNA flexibility and nucleosome-nucleosome interactions.  相似文献   

9.
Abstract

Using the circular dichroism spectra induced in the visible by the binding to the minor groove of DNA, we found that Hoechst 33258 is able to occupy its specific sites even when these are located inside the nucleosome structure. This high accessibility of the DNA in the nucleosome is not modified by the removal of the amino-terminal domains of the octamer histones and is not reduced by the presence of linker histone. Interesting and reasonable differences were found in the association constants.  相似文献   

10.
Abstract

Bending flexibility of the six tetrameric duplexes was investigated d(AAAA):d(TTTT), d(AATT)2, d(TTAA) 2, d(GGGG):d(CCCC), d(GGCC) 2 and d(CCGG) 2. The tetramers were extended in the both directions by regular double helices. The stiffness of the B-DNA double helix when bent into the both grooves proved to be less than that in the perpendicular direction by an order of magnitude. Such an anisotropy is a property of the sugar-phosphate backbone structure. The calculated fluctuations of the DNA bending along the dyad axis, 5–7°, are in agreement with experimental value of the DNA persistence length.

Anisotropy of the double helix is sequence-dependent: most easily bent into the minor groove are the tetramers with purine-pyrimidine dimer (RY) in the middle. In contrast, YR dinucleotides prefer bending into the major groove. Moreover, they have an equilibrium bend of 6–12° into this groove. The above inequality is caused by stacking interaction of the bases.

The bend in the central dimer is distributed to some extent between the adjacent links, though the main fraction of the bend remains within the central link. Variation of the sugar-phosphate geometry in the bent helix is inessential, so that DNA remains within the B-family of forms: namely, when the helical axis is bent by 20°, the backbone dihedral angles vary by no more than 15°.

The obtained results are in accord with x-ray structure of the B-DNA dodecamer; they further substantiate our early model of DNA wrapping in the nucleosome by means of “mini-kinks” separated by a half-pitch of the double helix, i.e. by 5–6 b.p. Sequence-dependent anisotropy of DNA presumably dictates the three-dimentional structure of DNA in solution as well. We have found that nonrandom allocation of YR dimers leads to the systematic bends in equilibrium structure of certain DNA fragments.  相似文献   

11.
DNA structure is known to be sensitive to hydration and ionic environment. To explore the dynamics, hydration, and ion binding features of A-tract sequences, a 7-ns Molecular dynamics (MD) study has been performed on the dodecamer d(CGCAAATTTGCG)(2). The results suggest that the intrusion of Na(+) ion into the minor groove is a rare event and the structure of this dodecamer is not very sensitive to the location of the sodium ions. The prolonged MD simulation successfully leads to the formation of sequence dependent hydration patterns in the minor groove, often called spine of hydration near the A-rich region and ribbon of hydration near the GC regions. Such sequence dependent differences in the hydration patterns have been seen earlier in the high resolution crystal structure of the Drew-Dickerson sequence, but not reported for the medium resolution structures (2.0 approximately 3.0 A). Several water molecules are also seen in the major groove of the MD simulated structure, though they are not highly ordered over the extended MD. The characteristic narrowing of the minor groove in the A-tract region is seen to precede the formation of the spine of hydration. Finally, the occurrence of cross-strand C2-H2.O2 hydrogen bonds in the minor groove of A-tract sequences is confirmed. These are found to occur even before the narrowing of the minor groove, indicating that such interactions are an intrinsic feature of A-tract sequences.  相似文献   

12.
The affinity of a DNA sequence for the histone octamer in a core nucleosome depends on the intrinsic flexibility of the DNA. This parameter can be affected both by the sequence-dependent conformational preferences of individual base steps and by the nature and location of the exocyclic groups of the DNA bases. By adopting highly preferred conformations particular types of base step can influence the rotational positioning of the DNA on the surface of the histone octamer. The asymmetry of the next higher order of chromatin structure is determined in part by the asymmetric binding of the globular domain of histone H5 to the core nucleosome. © 1998 John Wiley & Sons, Inc. Biopoly 44: 423–433 1997  相似文献   

13.
Summary The actinomycin-D-d(A1-A2-A3-G4-C5-T6-T7-T8) complex (1 drug per duplex) has been generated in aqueous solution and its structure characterized by a combined application of two-dimensional NMR experiments and molecular dynamics calculations. We have assigned the exchangeable and nonexchangeable proton resonances of Act and d(A3GCT3) in the complex and identified the intermolecular proton-proton NOES that define the alignment of the antitumor agent at its binding site on duplex DNA. The molecular dynamics calculations were guided by 70 intermolecular distance constraints between Act and nucleic acid protons in the complex. The phenoxazone chromophore of Act intercalates at the (G-C)I·(G-C)II step in the d(A3GCT3) duplex with the phenoxazone ring stacking selectively with the G4I and G4II purine bases but not with C4I and C4II pyrimidine bases at the intercalation site. There is a pronounced unwinding between the A3·T6 and G4·C5 base pairs which are the next steps located in either direction from the intercalation site in the Act-d(A3GCT3) complex. The Act cyclic pentapeptide ring conformations in the complex are similar to those for free Act in the crystal except for a change in orientation of the ester linkage connecting meVal and Thr residues. The cyclic pentapeptide rings are positioned in the minor groove with the established G-C sequence specificity of binding associated with intermolecular hydrogen bonds between the Thr backbone CO and NH groups to the NH2-2 and N3 positions of guanosine, respectively. Complex formation is also stabilized by van der Waals interactions between nonpolar groups on the cyclic pentapeptide rings and the sugar residues and base pair edges lining the widened minor groove of the (A3-G4-C5-T6)I·(A3-G4-C5-T6)II binding site segment of the DNA helix.Dedicated to the memory of Professor V.F. Bystrov  相似文献   

14.
Hydration of the RNA duplex r(CGCAAAUUUGCG)2 determined by NMR.   总被引:3,自引:1,他引:2       下载免费PDF全文
M R Conte  G L Conn  T Brown    A N Lane 《Nucleic acids research》1996,24(19):3693-3699
The so-called spine of hydration in the minor groove of AnTn tracts in DNA is thought to stabilise the structure, and kinetically bound water detected in the minor groove of such DNA species by NMR has been attributed to a narrow minor groove [Liepinsh, E., Leupin, W. and Otting, G. (1994) Nucleic Acids Res. 22, 2249-2254]. We report here an NMR study of hydration of an RNA dodecamer which has a wide, shallow minor groove. Complete assignments of exchangeable protons, and a large number of non-exchangeable protons in r(CGCAAAUUUGCG)2 have been obtained. In addition, ribose C2'-OH resonances have been detected, which are probably involved in hydrogen bonds. Hydration at different sites in the dodecamer has been measured using ROESY and NOESY experiments at 11.75 and 14.1 T. Base protons in both the major and minor grooves are in contact with water, with effective correlation times for the interaction of approximately 0.5 ns, indicating weak hydration, in contrast to the hydration of adenine C2H in the homologous DNA sequence. NOEs to H1' in the minor groove are consistent with hydration water present that is not observed in the analogous DNA sequence. Hydration kinetics in nucleic acids may be determined by chemical factors such as hydrogen-bonding more than by simple conformational factors such as groove width.  相似文献   

15.
The nucleosome comprises two histone dimers of H2A-H2B and one histone tetramer of (H3-H4)2, wrapped around by ~145 bp of DNA. Detailed core structures of nucleosomes have been established by X-ray and cryo-EM, however, histone tails have not been visualized. Here, we have examined the dynamic structures of the H2A and H2B tails in 145-bp and 193-bp nucleosomes using NMR, and have compared them with those of the H2A and H2B tail peptides unbound and bound to DNA. Whereas the H2A C-tail adopts a single but different conformation in both nucleosomes, the N-tails of H2A and H2B adopt two distinct conformations in each nucleosome. To clarify these conformations, we conducted molecular dynamics (MD) simulations, which suggest that the H2A N-tail can locate stably in either the major or minor grooves of nucleosomal DNA. While the H2B N-tail, which sticks out between two DNA gyres in the nucleosome, was considered to adopt two different orientations, one toward the entry/exit side and one on the opposite side. Then, the H2A N-tail minor groove conformation was obtained in the H2B opposite side and the H2B N-tail interacts with DNA similarly in both sides, though more varied conformations are obtained in the entry/exit side. Collectively, the NMR findings and MD simulations suggest that the minor groove conformer of the H2A N-tail is likely to contact DNA more strongly than the major groove conformer, and the H2A N-tail reduces contact with DNA in the major groove when the H2B N-tail is located in the entry/exit side.  相似文献   

16.
Solvent binding in the nucleosome core particle containing a 147 base pair, defined-sequence DNA is characterized from the X-ray crystal structure at 1.9 Å resolution. A single-base-pair increase in DNA length over that used previously results in substantially improved clarity of the electron density and accuracy for the histone protein and DNA atomic coordinates. The reduced disorder has allowed for the first time extensive modeling of water molecules and ions.Over 3000 water molecules and 18 ions have been identified. Water molecules acting as hydrogen-bond bridges between protein and DNA are approximately equal in number to the direct hydrogen bonds between these components. Bridging water molecules have a dual role in promoting histone-DNA association not only by providing further stability to direct protein-DNA interactions, but also by enabling formation of many additional interactions between more distantly related elements. Water molecules residing in the minor groove play an important role in facilitating insertion of arginine side-chains. Water structure at the interface of the histones and DNA provides a means of accommodating intrinsic DNA conformational variation, thus limiting the sequence dependency of nucleosome positioning while enhancing mobility.Monovalent anions are bound near the N termini of histone α-helices that are not occluded by DNA phosphate groups. Their location in proximity to the DNA phosphodiester backbone suggests that they damp the electrostatic interaction between the histone proteins and the DNA. Divalent cations are bound at specific sites in the nucleosome core particle and contribute to histone-histone and histone-DNA interparticle interactions. These interactions may be relevant to nucleosome association in arrays.  相似文献   

17.
18.
Several periodic motifs have been implicated in facilitating the bending of DNA around the histone core of the nucleosome. For example, di-nucleotides AA/TT/TA and GC at ∼10-bp periods, but offset by 5 bp, are found with higher-than-expected occurrences in aligned nucleosomal DNAs in vitro and in vivo. Additionally, regularly oscillating period-10 trinucleotide motifs non-T, A/T, G and their complements have been implicated in the formation of regular nucleosome arrays. The effects of these periodic motifs on nucleosome formation have not been systematically tested directly by competitive reconstitution assays. We show that, in general, none of these period-10 motifs, except TA, in certain sequence contexts, facilitates nucleosome formation. The influence of periodic TAs on nucleosome formation is appreciable; with some of the 200-bp DNAs out-competing bulk nucleosomal DNA by more than 400-fold. Only the nucleotides immediately flanking TA influence its nucleosome-forming ability. Period-10 TA, when flanked by a pair of permissive nucleotides, facilitates DNA bending through compression of the minor groove. The free energy change for nucleosome formation decreases linearly with the number of consecutive TAs, up to eight. We suggest how these data can be reconciled with previous findings.  相似文献   

19.
Using the circular dichroism spectra induced in the visible by the binding to the minor groove of DNA, we found that Hoechst 33258 is able to occupy its specific sites even when these are located inside the nucleosome structure. This high accessibility of the DNA in the nucleosome is not modified by the removal of the amino-terminal domains of the octamer histones and is not reduced by the presence of linker histone. Interesting and reasonable differences were found in the association constants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号