首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The site (intra- vs. extraocular) of the circadian clock driving an ocular melatonin rhythm in Japanese quail was investigated by alternately covering the left and right eyes of individual quail, otherwise held in constant light (LL), for 12-hr periods. This procedure exposed each eye to a light-dark (LD) 12:12 light cycle 180 degrees (12 hr) out of phase with the LD 12:12 light cycle experienced by the other eye. This protocol entrained the melatonin rhythm in the left eye of quail 180 degrees out of phase with the rhythm expressed in the right eye. These results are compatible with the hypothesis that an independent light-entrainable circadian pacemaker resides in each eye; they are incompatible with the hypothesis that a single (or functionally single) extraocular pacemaker drives the ocular melatonin rhythm in both eyes. However, the results are also compatible with a model in which two independent extraocular circadian pacemakers, each with an exclusive photic input from one eye, drive the ocular melatonin rhythm.  相似文献   

2.
Our previous studies showed that the eyes of Japanese quail contain a biological clock that drives a daily rhythm of melatonin synthesis. Furthermore, we hypothesized that these ocular clocks are pacemakers because eye removal abolishes freerunning rhythms in constant darkness (DD). If the eyes are indeed acting as pacemakers, we predicted that the two ocular pacemakers in an individual bird must remain in phase in DD and, furthermore, the two ocular pacemakers would rapidly regain coupling after being forced out of phase. These predictions were confirmed by demonstrating that 1) the ocular melatonin rhythms of the two eyes maintained phase for at least 57 days in DD and 2) after ocular pacemakers were forced out of phase by alternately patching the eyes in constant light, two components of body temperature were observed that fused into a consolidated rhythm after 5-6 days in DD, showing pacemaker recoupling. The ability to maintain phase in DD and rapidly recouple after out-of-phase entrainment demonstrates that the eyes are strongly coupled pacemakers that work in synchrony to drive circadian rhythmicity in Japanese quail.  相似文献   

3.
The pineal organ of the lizard Anolis carolinensis acts as a transducer of photoperiodic information, since light can affect the pineal melatonin rhythm (PMR). The synthesis and secretion of melatonin may be a major mechanism whereby a circadian pacemaker within the pineal can control circadian clocks located elsewhere. An investigation into potential routes by which light could affect the PMR showed that (1) removal of the photosensory parietal eye did not affect the PMR as compared to controls under either a light-dark (LD) 12:12 cycle and a constant temperature (32 degrees C) or an LD 12:12 cycle and a daily temperature cycle (32 degrees C/20 degrees C); (2) removal of both the parietal eye and the lateral eyes did not affect the PRM of anoles held in LD 12:12 (constant 32 degrees C); (3) the PMR of blinded anoles re-entrained to a 10-hr shift in the phase of the LD cycle as rapidly as that of sighted anoles; (4) blocking light penetration to the brains of anoles, but leaving the lateral eyes exposed, blocked the ability of anoles to re-entrain to a 10-hr shift in the phase of an LD cycle. The data support the hypothesis that light directly affects the PMR in Anolis and that other potential photic inputs (parietal eye, lateral eyes) play little or no role. This conclusion is supported by previous neurophysiological and ultrastructural studies showing that the lizard pineal possesses functional photoreceptors.  相似文献   

4.
Blinding by enucleation has a dramatic effect on the circadian activity rhythm of Japanese quail. The activity patterns of enucleated birds held under 24-hr light-dark cycles are disrupted, although entrainment can persist in many birds. In constant darkness (DD), blinded birds are rendered arrhythmic. These results demonstrate that the eyes are a major component of the circadian system, and that insofar as enucleation produces arrhythmicity in DD, the eyes' role is not merely a photosensory one. The eyes of quail can synthesize and secrete the hormone melatonin, which has been implicated as a blood-borne messenger relaying timing information between elements of the circadian system in some avian species. However, the way in which the eyes communicate with the rest of the circadian system in quail appears to be neural, since (1) optic nerve section produces the same effects as blinding by enucleation on the circadian activity rhythm, and (2) eyes subjected to optic nerve section retain their ability to synthesize and secrete melatonin.  相似文献   

5.
Adult male crickets (Gryllus bimaculatus) show a nocturnal circadian locomotor rhythm, which is driven by the pacemaker in the optic lamina-medulla complex and synchronizes to the light-dark (LD) cycle received by the compound eye. To see whether there was any specially differentiated circadian photoreceptor area in the eye, we examined the effect of a partial reduction of various areas of the compound eye, in addition to a removal of the contralateral optic lamina-medulla-compound eye complex, on entrainability of the locomotor rhythm. All operated animals showed a response to the LD cycle in their locomotor rhythm, no matter which area of the eye was left intact: They either stably entrained to an LD cycle or showed a sign of weak entrainment. The capacity for stable entrainment was still retained when only 262 ommatidia were left. Transient cycles needed for re-entrainment, following a 6-hr phase advance of the LD cycle, were measured in 20 reduced-eye animals showing clear stable entrainment. They were in inverse proportion to the number of ommatidia in the reduced eye: The fewer ommatidia there were, the more transient cycles were observed (r = -0.76, p less than 0.001). These results suggest that almost the whole area of the compound eye may contain circadian photoreceptors, and that the photic information from each ommatidium may additively affect the circadian clock to entrain via neural integration mechanisms.  相似文献   

6.
Daily and circadian variations of melatonin contents in the diencephalic region containing the pineal organ, the lateral eyes, and plasma were studied in a urodele amphibian, the Japanese newt (Cynops pyrrhogaster), to investigate the possible roles of melatonin in the circadian system. Melatonin levels in the pineal region and the lateral eyes exhibited daily variations with higher levels during the dark phase than during the light phase under a light-dark cycle of 12 h light and 12 h darkness (LD12:12). These rhythms persisted even under constant darkness but the phase of the rhythm was different from each other. Melatonin levels in the plasma also exhibited significant day-night changes with higher values at mid-dark than at mid-light under LD 12:12. The day-night changes in plasma melatonin levels were abolished in the pinealectomized (Px), ophthalmectomized (Ex), and Px+Ex newts but not in the sham-operated newts. These results indicate that in the Japanese newts, melatonin production in the pineal organ and the lateral eyes were regulated by both environmental light-dark cycles and endogenous circadian clocks, probably located in the pineal organ and the retina, respectively, and that both the pineal organ and the lateral eyes are required to maintain the daily variations of circulating melatonin levels.  相似文献   

7.
Japanese quail exhibit a robust circadian rhythm in body temperature. This rhythm is readily entrainable by 24 h light-dark (LD) cycles and persists under constant conditions. Because both the pineal organ and the eyes have been implicated as major components of the circadian system of birds, the role of these organs in generating the rhythm of body temperature was investigated. Pinealectomy, when performed alone, had little effect on the body temperature rhythm of quail either under LD or under constant darkness (DD). Most birds subjected to optic nerve section alone remained rhythmic in DD although the robustness of the rhythm was decreased, and 25% became arrhythmic. Birds subjected to both pinealectomy and optic nerve section behaved similarly to birds subjected to optic nerve section alone. However, complete eye removal, when performed alone or in combination with pinealectomy, caused all birds to become arrhythmic in DD. The data support the hypothesis that the eyes are the loci of circadian pacemakers in quail that act, via both neural and hormonal outputs, to preserve the integrity of (self-sustaining or damped) circadian oscillators located elsewhere.  相似文献   

8.
Using in vivo microdialysis, effects of retinally perceived light on pineal melatonin release and its rhythmicity was examined in the pigeon. In the first experiment, light-induced suppression of pineal melatonin release was studied. Although light given to the whole body during the dark strongly suppressed pineal melatonin release to a daytime level, light exclusively delivered to the eyes did not remarkably inhibit melatonin release. In the second experiment, in order to determine whether retinally perceived light has phase-shifting effects on pineal melatonin rhythms, pigeons were given a single light pulse of 2 h at circadian time (CT) 18 and the phases of the second cycle after the light pulse were compared with those of control pigeons without the light pulse. In this experiment, phase advances of pineal melatonin rhythms were observed when the light was given to the whole body but not when only the eyes were illuminated. In a third experiment, after entrainment to light-dark 12:12 (LD 12:12) cycles, birds whose heads were covered with black tapes were transferred into constant light (LL) conditions and only the eyes were exposed to new LD cycles for 7 days (the phase was advanced by 6 h from the previous cycles) using a patching protocol. This procedure, however, could not entrain pineal melatonin rhythms to the retinal LD cycles. These results indicate that the eyes are not essential for photic regulation of pineal melatonin release and its rhythmicity in the pigeon.Abbreviations CT circadian time - LD light-dark - LL constant light - SCN suprachiasmatic nucleus - LLdim constant dim light - NE norepinephrine - SCG superior cervical ganglia - WB whole body - E eye - EX extraretina - C control  相似文献   

9.
The earliest detectable event in the photoperiodic response of quail is a rise in luteinizing hormone (LH) secretion beginning at about hour 20 on the first long day. The timing of this rise was measured in castrated quail after entrainment to short daylengths which cause significant phase angle differences in the circadian system: (1) LD 2:22 and LD 10:14, and (2) LD 3:21 (T = 24 hr) and LD 3:24 (T = 27 hr). The quail were then exposed to 24 hr of light (by delaying lights-off), and the time of the first LH rise was measured; it was similar in all schedules. Quail were also entrained to LD 3:21 or LD 3:24 and then given a single 6-hr nightbreak 6-12, 7-13, or 13-19 hr after dawn. The earlier pulse was marginally more inductive in the 27-hr cycle. Thus the entrainment characteristics of the photoinducible rhythm (phi i) in quail appear very different from those of the locomotor circadian rhythm, and raise doubts as to whether phi i is a primary circadian oscillator.  相似文献   

10.
The relationship between circadian rhythms in the blood plasma concentrations of melatonin and rhythms in locomotor activity was studied in adult male sheep (Soay rams) exposed to 16-week periods of short days (8 hr of light and 16 hr of darkness; LD 8:16) or long days (LD 16:8) followed by 16-week periods of constant darkness (dim red light; DD) or constant light (LL). Under both LD 8:16 and LD 16:8, there was a clearly defined 24-hr rhythm in plasma concentrations of melatonin, with high levels throughout the dark phase. Periodogram analysis revealed a 24-hr rhythm in locomotor activity under LD 8:16 and LD 16:8. The main bouts of activity occurred during the light phase. A change from LD 8:16 to LD 16:8 resulted in a decrease in the duration of elevated melatonin secretion (melatonin peak) and an increase in the duration of activity corresponding to the changes in the ratio of light to darkness. In all rams, a significant circadian rhythm of activity persisted over the first 2 weeks following transfer from an entraining photoperiod to DD, with a mean period of 23.77 hr. However, the activity rhythms subsequently became disorganized, as did the 24-hr melatonin rhythms. The introduction of a 1-hr light pulse every 24 hr (LD 1:23) for 2 weeks after 8 weeks under DD reinduced a rhythm in both melatonin secretion and activity: the end of the 1-hr light period acted as the dusk signal, producing a normal temporal association of the two rhythms. Under LL, the 24-hr melatonin rhythms were disrupted, though several rams still showed periods of elevated melatonin secretion. Significant activity rhythms were either absent or a weak component occurred with a period of 24 hr. The introduction of a 1-hr dark period every 24 hr for 2 weeks after 8 weeks under LL (LD 23:1) failed to induce or entrain rhythms in either of the parameters. The occurrence of 24-hr activity rhythm in some rams under LL may indicate nonphotoperiodic entrainment signals in our experimental facility. Reproductive responses to the changes in photoperiod were also monitored. After pretreatment with LD 8:16, the rams were sexually active; exposure to LD 16:8, DD, or LL resulted in a decline in all measures of reproductive function. The decline was slower under DD than LD 16:8 or LL.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Substantial progress has been made in unraveling the organization of the circadian system of Aplysia californica. There are at least three circadian pacemakers in Aplysia. One has been localized in each eye and a third lies outside the eyes. Removal of the eyes disrupts the free-running locomotor activity rhythm; however, an extraocular oscillator can mediate a free-running rhythm in some eyeless animals. Although photoreceptors sufficient for entrainment of the ocular oscillator have been localized in the retina, photoreceptors outside the eyes are capable of "driving" a diurnal rhythm of locomotor activity and may also influence entrainment of ocular pacemakers. Finally, attention has been focused on the optic nerve as a coupling pathway between various parts of the system. The evidence suggests that information transmitted in the optic nerves is involved in entrainment of the ocular pacemaker by light, and in ocular control of the locomotor activity rhythm.  相似文献   

12.
A distinct daily rhythm of melatonin production was found in the pineal gland of both precocial Japanese quail (Coturnix coturnix japonica) and altricial European starling (Sturnus vulgaris) during the first day of postembryonic life. Rhythmic melatonin production was reflected in a rhythmic profile in the general circulation. Significant day-night differences in melatonin content were also observed in the eyes of Japanese quail.The amplitude of the rhythm in the quail pineal gland increased steadily during the first two weeks of postem-bryonic life. A transient increase in maximum melatonin concentration was observed at the end of the first week of life in the plasma but not in the pineal gland of quail suggesting that a metabolizing pathway or a changed ocular contribution may influence the melatonin profile in the circulation and its availability to other tissues. There was no delay in the postembryonic development of melatonin rhythmicity in the altricial starling in comparison with the precocial quail. The amplitude of the plasma melatonin rhythm did not increase over the first week of life in starlings as it did in quail and the only significant increase was found between 6- and 17-day old starlings.In general, the development of the rhythm resulted from an increase of dark-time values. The day-time concentrations were low in all age groups of both species. A one-hour light pulse suppressed the high dark-time melatonin concentrations in 1-, 7- and 14-day old Japanese quail as well as in 7- and 14-day old European starlings. The manner in which the rhythm develops suggests that the circadian pacemaker(s) as well as the mechanisms of photoreception and entrainment are developed in hatchlings of both species in spite of their otherwise different developmental strategies.  相似文献   

13.
Summary Pineal and ocular melatonin was assessed, over 24 h periods, in male lizards (Anolis carolinensis) entrained to 24 h light-dark (LD) cycles and a constant 32 C, and in lizards entrained to both 24 h LD cycles and 24 h temperature cycles (32 C/20 C). At a constant temperature, the duration of the photoperiod has a profound effect on the duration, amplitude, and phase of the pineal melatonin rhythm (Fig. 1). The pineal melatonin rhythm under cyclic temperature peaks during the cool (20 C) phase of the cycle regardless of whether or not the cool phase occurs during the light or dark phase of a LD 1212 cycle (Fig. 3). Under a temperature cycle and constant dim illumination, a pineal melatonin rhythm is observed which peaks during the cool phase of the temperature cycle, but the amplitude of the rhythm is depressed relative to that observed under LD (Fig. 2). Illumination up to 2 h in duration does not suppress the nocturnal melatonin peak in theAnolis pineal (Fig. 4). No melatonin rhythm was observed in the eyes ofAnolis under either 24 h LD cycles and a constant temperature (Fig. 1), or under simultaneous light and temperature cycles (Fig. 3). Ocular melatonin content was, in all cases, either very low or non-detectable.Abbreviations HIOMT hydroxyindole-O-methyltransferase - NAT N-acetyltransferase  相似文献   

14.
The aim of these experiments was to test the effect of a cyclic administration of melatonin, by mimicking the daily rhythm of hormone levels, on the circadian organization of two distinct functions in quail: oviposition and feeding activity. Laying and feeding rhythms under photoperiodic conditions and constant darkness (DD) were investigated. Under DD, where the two rhythms were free running, a daily rhythm of melatonin was administered. In LD 14h:10h, two different individual profiles of laying were established, with stable females laying at the same time each day and delayed females laying progressively later each day. For feeding activity, all birds were clearly synchronized to the photoperiodic cycle. In DD, the laying birds showed a free-running rhythm of oviposition with a period longer than 24 h for both profiles but the delayed profile females had a longer period than stable profile females. In comparison, the free-running period of feeding rhythm of the same birds was shorter than 24 h. A cyclic administration of melatonin had no effect on laying rhythm, which continued to free-run in DD, whereas feeding activity was synchronized as soon as the first cycle of melatonin was administered. From these results, it seems that two different circadian systems drive each of the two types of behavior separately. Melatonin could be the main synchronizer for the temporal control of feeding behavior, but it does not play a part in the control of oviposition in Japanese quail.  相似文献   

15.
Protein synthesis of Gonyaulax polyedra was analyzed by means of electron microscopic autoradiographs under constant conditions at different times of the 24-hr cycle. Circadian rhythmic changes in the synthesis rate of total protein were determined in the cytoplasm and chloroplasts of growing cells. Three independent series of experiments in constant light showed a maximum of grains per unit area during the 'subjective' dark phase (=phase that corresponds to the dark phase during a 12:12 hr LD cycle) in both compartments. Minimum and maximum grain number are different by a factor of 5-10. The maximum of total protein synthesis coincided with the maximum phase shift by cycloheximide pulses (1) suggesting protein species within the total pool involved in the mechanism of the circadian clock. A similar rhythm of lower amplitude was observed in the mitochondria, but this rhythm cannot with certainty be attributed to these organelles. In a slowly growing culture a rhythm of total protein synthesis was observed that showed a smaller amplitude and a different phasing.  相似文献   

16.
Both diapause induction and diapause termination are under photoperiodic control in the lepidopteran, Ostrinia nubilalis. In the present study, induction of diapause was maximal in light-dark (LD) cycles that contained 12 hr of light alternating with 12 hr of darkness (LD 12:12). Termination of diapause was maximal in LD 16:8. Diapause termination also occurred rapidly in non-24-hr LD cycles that possessed an 8-hr dark phase. In each of these cases, the period of the LD cycle was not important. Diapause termination did not, however, occur rapidly in non-24-hr LD cycles that lacked an 8-hr dark phase. Thus, the clock mechanism underlying the termination response resembles an hourglass in its behavior. This is in contrast with what is known about induction of diapause. Here it has been demonstrated that the circadian system is somehow involved. It is thus possible that two different physiological clocks underlie these responses.  相似文献   

17.
This study tests the effect on the laying rhythm of a light cycle reaching directly the encephala via a diode in Japanese quail maintained in constant darkness. In DD, all the birds expressed their free-running laying rhythm (period close to 25 h). When the diode is switched on 14 h per 24 h cycle, females showed the same organization as in LD with the same laying time. Thus, a photoperiodic cycle, where light was only perceived through the skull of the female quail, could synchronize its laying rhythm. This device with a LED is an interesting alternative solution to eye-patching or blinding of birds.  相似文献   

18.
Experimental photoperiods, presented either once only or repeatedly, were used to assess the oscillatory and hourglass properties of the photoperiodic clock in Japanese quail. Gonadectomized quail on 8-hr daylengths respond to a single skeleton photoperiod consisting of two 8-hr light pulses separated by 2 hr of darkness (i.e., LDLD 8:2:8:6) with a marked increase in secretion rate of luteinizing hormone (LH). This response suggests that the second light pulse interacts with a "photoinducible phase" (phi i) lying some 10-16 hr from "dawn" (start of the first light pulse). If, however, groups of quail maintained on 8-hr daylengths are transferred to continuous darkness (DD), and the position of the phi i is sought by a single 8-hr light pulse applied at various times on the first or third day of DD, then an increase in circulating LH is, at best, barely detectable. It would appear that a strongly responsive phi i does not recur rhythmically in DD. Instead, the light pulse apparently acts primarily as a "dawn" signal that triggers a single cycle of photoinducibility, since a second 8-hr light pulse, placed to begin 2 hr after the end of the first, induces a large increase in plasma LH. Similar results are obtained if any single 8-hr light pulse presented to animals held in darkness is preceded, 10 hr earlier, by a short "dawn" light signal. Such dawn signals can be effective when very short; a pulse of only 30 sec can cause a subsequent phi i. The dawn pulse is effective at any circadian phase and leads to a single cycle in photoinducibility. In contrast, a much longer light pulse (perhaps not less than 4 hr) is needed to interact with phi i if significant gonadotropin secretion is to be stimulated. In confirmation of the findings described above, we found that Nanda-Hammer lighting schedules have remarkably little effect in stimulating gonadotropin secretion in gonadectomized quail. There is, for example, a very marked difference between the effectiveness of "resonating" schedules such as LD 6:6, which stimulates a high LH secretion rate since each "inductive" light pulse is preceded by an appropriate "dawn" signal, and a theoretically effective schedule such as LD 6:30, which induces a very small response by comparison. Such schedules (even theoretically noninductive ones) can, however, be made very highly inductive if alternate light pulses are preceded by an appropriately positioned 15-min light pulse to act as "dawn."  相似文献   

19.
Retinal ganglion cells (RGCs) contain circadian clocks driving melatonin synthesis during the day, a subset of these cells acting as nonvisual photoreceptors sending photic information to the brain. In this work, the authors investigated the temporal and light regulation of arylalkylamine N-acetyltransferase (AA-NAT) activity, a key enzyme in melatonin synthesis. The authors first examined this activity in RGCs of wild-type chickens and compared it to that in photoreceptor cells (PRs) from animals maintained for 48?h in constant dark (DD), light (LL), or regular 12-h:12-h light-dark (LD) cycle. AA-NAT activity in RGCs displayed circadian rhythmicity, with highest levels during the subjective day in both DD and LL as well as in the light phase of the LD cycle. In contrast, AA-NAT activity in PRs exhibited the typical nocturnal peak in DD and LD, but no detectable oscillation was observed under LL, under which conditions the levels were basal at all times examined. A light pulse of 30-60?min significantly decreased AA-NAT activity in PRs during the subjective night, but had no effect on RGCs during the day or night. Intraocular injection of dopamine (50 nmol/eye) during the night to mimic the effect of light presented significant inhibition of AA-NAT activity in PRs compared to controls but had no effect on RGCs. The results clearly demonstrate that the regulation of the diurnal increase in AA-NAT activity in RGCs of chickens undergoes a different control mechanism from that observed in PRs, in which the endogenous clock, light, and dopamine exhibited differential effects. (Author correspondence: mguido@fcq.unc.edu.ar ).  相似文献   

20.
Circadian rhythms are generated by an internal biological clock. The suprachiasmatic nucleus (SCN) in the hypothalamus is known to be the dominant biological clock regulating circadian rhythms in mammals. In birds, two nuclei, the so-called medial SCN (mSCN) and the visual SCN (vSCN), have both been proposed to be the avian SCN. However, it remains an unsettled question which nuclei are homologous to the mammalian SCN. We have identified circadian clock genes in Japanese quail and demonstrated that these genes are expressed in known circadian oscillators, the pineal and the retina. Here, we report that these clock genes are expressed in the mSCN but not in the vSCN in Japanese quail, Java sparrow, chicken, and pigeon. In addition, mSCN lesions eliminated or disorganized circadian rhythms of locomotor activity under constant dim light, but did not eliminate entrainment under light-dark (LD) cycles in pigeon. However, the lesioned birds became completely arrhythmic even under LD after the pineal and the eye were removed. These results indicate that the mSCN is a circadian oscillator in birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号