首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Furan is a multispecies liver carcinogen whose cancer mode of action (MOA) is unclear. A major metabolite of furan is a direct acting mutagen; however, it is not known if genotoxicity is a key step in the tumors that result from exposure to furan. In order to address this question, transgenic Big Blue rats were treated by gavage five times a week for 8 weeks with two concentrations of furan used in cancer bioassays (2 and 8mg/kg), and with two higher concentrations (16 and 30mg/kg). Peripheral blood samples taken 24h after the 5th dose (1 week of dosing) were used to assay for micronucleus (MN) frequency in normochromatic erythrocytes (NCEs) and reticulocytes (RETs), and Pig-a gene mutation in total red blood cells (RBCs). 24h after the last dose of the 8-week treatment schedule, the rats were euthanized, and their tissues were used to perform NCE and RET MN assays, the Pig-a RBC assay, Pig-a and Hprt lymphocyte gene mutation assays, the liver cII transgene mutation assay, and the liver Comet assay. The responses in the MN assays conducted at both sampling times, and all the gene mutation assays, were uniformly negative; however, the Comet assay was positive for the induction of liver DNA damage. As the positive responses in the Comet assay were seen only with doses in excess of the cancer bioassay doses, and at least one of these doses (30mg/kg) produced toxicity in the liver, the overall findings from the study are consistent with furan having a predominantly nongenotoxic MOA for cancer.  相似文献   

2.
The compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a significant environmental contaminant resulting from such industrial processes as pulp and paper production. TCDD is a suspected human carcinogen and its ability to induce cancer in laboratory rodents is well documented. Its mechanism of tumor initiation, however, is not well understood and in vitro mutagenicity studies have yielded inconsistent results. In this study, Big Blue lacI transgenic rats were used to assess the mutagenicity of TCDD in both male and female animals. After 6 weeks of exposure to 2 microg/kg TCDD neither an increase in mutation frequency nor any change in mutation spectrum was observed in either male or female animals.  相似文献   

3.
4.
Summary When Neurospora crassa conidia were injected into the peritoneal cavity of untreated mice or rats and kept there for more than 24 hours, the ad-3 mutation frequency among the surviving conidia increased sharply, more so in rats than in mice. This increase in the ad-3 mutation frequency was attributed both to direct cellular contact between conidia and mammalian cells and to macromolecules already present in untreated animals. Conidia enclosed in dialysis tubing or in diffusion chambers placed surgically in the peritoneal cavity had a much lower frequency of ad-3 mutations than conidia injected into the peritoneal cavity as a suspension. This was interpreted as indicating that the major fraction of mutations are mediated through a cellular contact.To determine whether the dialysis bags were permeable to mutagens, a comparison was made between the mutation frequencies obtained with conidia placed in dialysis bags and with conidia distributed at random throughout the peritoneal cavity in host animals treated with methyl methanesulfonate (MMS). MMS (100 mg/kg) was injected into the tail vein 8 hours after the conidia were placed in the animals. Ten hours after the injection of the mutagen, the conidia were recovered and analyzed for the induction of ad-3 mutations. The MMS-induced mutation frequency was the same among both groups of conidia, demonstrating that the dialysis bags did not become impermeable to small molecules during the time of incubation in the animal.In the host-mediated assay an indiactor organism is injected into the peritoneal cavity of an animal which is then treated with a chemical or its metabolites, to assay for mutagenicity. The present experiments show that the increased mutation frequency induced in the indicator organism after intraperitoneal injection and incubation may give false positive results in the host-mediated assay unless a comparison is made with suitable untreated controls.Autopsies of animals 24 days after intraperitoneal inoculation with Neurospora conidia, and sectioning and staining of various organs (Malling and Cosgrove, 1970) showed that some conidia were still localized in various organs, even though essentially all of them had been inactivated 96 hours after injection. The inactivation of these fungal spores may result from an enzymatic degradation of their DNA, mediated by the host, and halting this process prematurely may result in the induction of recessive-lethal mutations. Thus these studies also suggest that one of the important defense mechanisms of higher animals against infectious organisms may be the induction of mutations.Research sponsored by the National Cancer Institute, National Institutes of Health, and by the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation.  相似文献   

5.
6.
J Ryu  J Youn  Y Kim  O Kwon  Y Song  H Kim  K Cho  I Chang 《Mutation research》1999,445(1):127-135
This paper describes the spectrum of mutations induced by 4-nitroquinoline N-oxide (4-NQO) in the lacI target gene of the transgenic Big Blue Rat2 cell line. There are only a few report for the mutational spectrum of 4-NQO in a mammalian system although its biological and genetic effects have been well studied. Big Blue Rat2 cells were treated with 0.03125, 0.0625 or 0.125 microg/ml of 4-NQO, the highest concentration giving 85% survival. Our results indicated that the mutant frequency (MF) induced by 4-NQO was dose-dependent with increases from three- to seven-fold. The DNA sequence analysis of lacI mutants from the control and 4-NQO treatment groups revealed an obvious difference in the spectra of mutations. In spontaneous mutants, transition (60%) mutations, especially G:C-->A:T transition (45%), were most frequent. However, the major type of base substitution after treatment of 4-NQO was transversions (68.8%), especially G:C-->T:A (43.8%), while only 25% of mutants were transitions. These results are consistent with those produced by 4-NQO in other systems and the transgenic assay system will be a powerful tool to postulate more accurately the mechanism of chemical carcinogenesis involved.  相似文献   

7.
8.
As a part of the 2nd Collaborative Study for the Transgenic Mouse Mutation Assay, we studied the organ specificity and the temporal changes in mutant frequency (MF) of the lacZ gene following intraperitoneal injection of 250 mg/kg N-propyl-N-nitrosourea into male MutaMouse. We used a positive selection system and examined eight organs, i.e., bone marrow, liver, kidney, lung, spleen, brain, heart, and testis. The chemical caused a significant increase in MF in all organs except for brain, and the bone marrow was the most sensitive organ, exhibiting a MF on day 7 that was 10 times that of the control. The MF increased from day 7 to day 28 in liver, kidney, and testis, while it decreased in bone marrow. The relationship between the results of this study and the target organs of carcinogenesis, and the cause of the temporal changes in MF, are discussed.  相似文献   

9.
Leucomalachite green (LMG) is the major metabolite of malachite green (MG), a triphenylmethane dye that has been used widely as an antifungal agent in the fish industry. Concern over MG and LMG is due to the potential for consumer exposure, suggestive evidence of tumor promotion in rodent liver, and suspicion of carcinogenicity based on structure-activity relationships. In order to evaluate the risks associated with exposure to LMG, female Big Blue rats were fed up to 543 ppm LMG; groups of these rats were killed after 4, 16, or 32 weeks of exposure and evaluated for genotoxicity. We previously reported that this treatment resulted in a dose-dependent induction of liver DNA adducts, and that the liver lacI mutant frequency (MF) was increased, but only in rats fed 543 ppm LMG for 16 weeks. In the present study, we report the results from lymphocyte Hprt mutant assays and bone marrow micronucleus assays performed on these same rats. In addition, we have determined the types of lacI mutations induced in the rats fed 543 ppm LMG for 16 weeks and the rats fed control diet. No significant increases in the frequency of micronuclei or Hprt mutants were observed for any of the doses or time points assayed. Molecular analysis of 80 liver lacI mutants from rats fed 543 ppm LMG for 16 weeks revealed that 21% (17/80) were clonal in origin and that most (55/63) of the independent mutations were base pair substitutions. The predominant type of mutation was G:C --> A:T transition (31/63) and the majority (68%) of these involved CpG sites. When corrected for clonality, the 16-week lacI mutation frequency (36 +/- 10) x 10(-6) in treated rats was not significantly different from the clonally corrected control frequency (17 +/- 9 x 10(-6); P = 0.06). Furthermore, the lacI mutational spectrum in treated rats was not significantly different from that found for control rats (P = 0.09). Taken together, these data indicate that the DNA adducts produced by LMG in female rats do not result in detectable levels of genotoxicity, and that the increase in lacI MF observed previously in the liver of treated rats may be due to the disproportionate expansion of spontaneous lacI mutations.  相似文献   

10.
11.
Amyotrophic lateral sclerosis (ALS) is a progressive paralytic disorder caused by motor neuron degeneration. A similar disease phenotype is observed in mice overexpressing a mutant human hSOD1 gene (G93A, 1Gurd(1)). Mice transgenic for lacI (Big Blue) and human mutant (1Gurd(1), Mut hSOD1) or wild type (2Gur, Wt hSOD1) SOD1 genes were used to examine spontaneous mutation, oxidative DNA damage, and neurodegeneration in vivo. The frequency and pattern of spontaneous mutation were determined for forebrain (90% glia), cerebellum (90% neurons) and thymus from 5-month-old male mice. Mutation frequency is not elevated significantly and mutation pattern is unaltered in Mut hSOD1 mice compared to control mice. Mutation frequency is reduced significantly in the cerebellum of Wt hSOD1 mice (1.6x10(-5); P=0.0093; Fisher's Exact Test) compared to mice without a human transgene (2.7x10(-5)). Mutation pattern is unaltered. This first report of an endogenous factor that can reduce in vivo, the frequency of spontaneous mutation suggests potential strategies for lowering mutagenesis related to aging, neurodegeneration, and carcinogenesis.  相似文献   

12.
Summary High concentrations of deoxythymidine monophosphate (dTMP) induce mutations in Saccharomyces cerevisiae. Strains defective in the RAD6 gene-thought to be involved in error-prone DNA repair-do not show dTMP-induced mutation. We propose a model to explain these findings and suggest that fluxes of thymidine nucleotides may diminish the fidelity of DNA replication.  相似文献   

13.
Sunlight does not induce mutations in a repair competent strain of Escherichia coli but is strongly mutagenic for an excision repair deficient derivative both at ice-temperature and at ambient temperature. These findings appear to be related to a strong suppression of far-ultraviolet induction of mutation provoked by short exposures to sunlight in the repair competent but not in the repair defective mutant. Mutation induction by sunlight is primarily due to radiation at wavelengths shorter than 320 nm whereas the mutation suppression is due to radiation at wavelengths longer than 320 nm.  相似文献   

14.
Earlier studies have indicated that sucrose increases 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced aberrant crypt foci in the colon. In this study, we investigated the role of sucrose in IQ-induced genotoxicity of the colon mucosa and liver. Big Blue rats were fed with IQ (20 ppm in feed) and/or sucrose (3.45 or 6.85 wt.% in feed) for 3 weeks. IQ increased DNA strand breaks in the colon, whereas the mutation frequency was increased in the liver. The level of IQ-induced DNA adducts was elevated in both colon mucosa cells and liver. In the liver, high sucrose intake increased the level of DNA adducts above that of IQ and low sucrose intake. Oxidative DNA damage detected in terms of 7-hydro-8-oxo-2'-deoxyguanosine by HPLC-EC, or endonuclease III or formamidopyrimidine DNA glycosylase sensitive sites were unaltered in the colon and liver. Expression of ERCC1 and OGG1 mRNA levels were unaffected by IQ or sucrose feeding. Biomarkers of oxidative stress, including Vitamin C, malondialdehyde and protein oxidations (gamma-glutamyl semialdehyde and 2-amino adipic semialdehyde) were unaltered in plasma and in liver. In conclusion, sucrose feeding increases IQ-induced genotoxicity in liver but not in colon, suggesting different mechanisms for sucrose and IQ in colon mutagenesis.  相似文献   

15.
Summary Mutation induction (resistance to sodium azide) in spores ofBacillus subtilis was investigated after irradiation with heavy ions from Neon to Uranium with specific particle energies between 0.17 and 18.6 MeV/u. A strong dependence of the mutation induction cross section on particle charge and energy was observed. From the results it was concluded that mutation induction in bacterial spores by very heavy ions is mainly caused by secondary electrons.  相似文献   

16.
《Autophagy》2013,9(12):1490-1499
The ability to respond and adapt to changes in the physical environment is a universal and essential cellular property. Here we demonstrated that cells respond to mechanical compressive stress by rapidly inducing autophagosome formation. We measured this response in both Dictyostelium and mammalian cells, indicating that this is an evolutionarily conserved, general response to mechanical stress. In Dictyostelium, the number of autophagosomes increased 20-fold within 10 min of 1 kPa pressure being applied and a similar response was seen in mammalian cells after 30 min. We showed in both cell types that autophagy is highly sensitive to changes in mechanical pressure and the response is graduated, with half-maximal responses at ~0.2 kPa, similar to other mechano-sensitive responses. We further showed that the mechanical induction of autophagy is TOR-independent and transient, lasting until the cells adapt to their new environment and recover their shape. The autophagic response is therefore part of an integrated response to mechanical challenge, allowing cells to cope with a continuously changing physical environment.  相似文献   

17.
King JS  Veltman DM  Insall RH 《Autophagy》2011,7(12):1490-1499
The ability to respond and adapt to changes in the physical environment is a universal and essential cellular property. Here we demonstrated that cells respond to mechanical compressive stress by rapidly inducing autophagosome formation. We measured this response in both Dictyostelium and mammalian cells, indicating that this is an evolutionarily conserved, general response to mechanical stress. In Dictyostelium, the number of autophagosomes increased 20-fold within 10 min of 1 kPa pressure being applied and a similar response was seen in mammalian cells after 30 min. We showed in both cell types that autophagy is highly sensitive to changes in mechanical pressure and the response is graduated, with half-maximal responses at ~0.2 kPa, similar to other mechano-sensitive responses. We further showed that the mechanical induction of autophagy is TOR-independent and transient, lasting until the cells adapt to their new environment and recover their shape. The autophagic response is therefore part of an integrated response to mechanical challenge, allowing cells to cope with a continuously changing physical environment.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号